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A Method for the Calculation of Settlements, Contact
Pressures, and Bending Moments in a Foundation Including
the Influence of the Flexural Rigidity of the Superstructure

Une Méthode pour le calcul des tassements, des pressions sur sol et des moments fléchissants dans une
fondation tenant compte de I'influence de la rigidité de la superstructure

H. SOMMER, DR.ING., Mitarbeiter im Institut fiir Bodenmechanik und Grundbau der Technischen Hochschule Darm-

stadt, Darmstadt, Germany

SUMMARY

In this paper a method is developed for the analysis of founda-
tion beams and foundation slabs, which are flexible in only one
direction, the rigidity of the superstructure being taken into
account. Structures with various degrees of rigidity including the
perfectly flexible and the perfectly rigid cases on any subsoil are
investigated, using unit settlements and expressed in matrix form.
The method gives the contact pressures and the settlements of
the structure as well as the resulting bending moments in the
foundation and the superstructure.

A symmetrical superstructure, supported on four columns is
considered as an example, and the relation between the rigidity
of the foundation and that of the superstructure is determined
and expressed in terms of the flexural rigidity of the whole
structure. The conditions are shown under which the calculation
of settlements and contact pressures can be simplified by assum-
ing an imaginary foundation slab carrying no superstructure and
having a flexural rigidity equal to that of the whole structure.
Furthermore, the relationship of the bending moments in the
foundation slab to the rigidity of structure and compressibility
of subsoil is shown.

SOMMAIRE

Cet article démontre une méthode pour I'analyse des radiers
et des poutres de fondations qui se déforment dans une seule
direction, en tenant compte de la rigidité de l'ossature de la
superstructure. On étudie des structures de différentes rigidités,
incluant celles infinement souples ou infinement rigides, posées
sur n’importe quel type de sol. Ce procédé, basé sur la méthode
des déformations et présenté sous forme de matrice, permet de
déterminer les pressions sur le sol et les tassements, ainsi que
les moments fléchissants dans la fondation et dans l'ossature.

Comme exemple, l'auteur analyse un batiment symétrique a
quatre montants. En particulier on étudie la rigidité de I'en-
semble de la construction en fonction de celle du radier et de
celle de l'ossature. On indique quand il est admissible dans le
calcul des pressions sur le sol et des tassements de la con-
struction de remplacer celle-ci par un radier de méme rigidité.
En outre on détermine I'influence de 'action réciproque entre la
construction et le sol sur les moments fléchissants dans le
radier, lorsqu’on fait varier la rigidité de la premiére et la com-
pressibilité¢ du second. :

THE CONTACT PRESSURE, the bending moments, and the
settlements of a foundation beam and a foundation slab are
dependent on the relative stiffness of the structure and the
soil. The rigidity of the structure is a function of the rigidity
of the superstructure and the foundation, and in the usual
methods of calculation it is only the rigidity of the founda-
tion that is included (De Beer, 1948; De Beer and Krsmano-
vitch, 1952; Grasshoff, 1955; Kany, 1959; Ohde, 1942).
The rigidity of the superstructure cannot, with the given
methods of calculation, be included if it is supported on the
foundation slab by positional columns or walls, as is the
case with modern framed structures (Fig. la). The super-
structure can be connected to the foundation through hinged,
fixed-end flexible or fixed-end rigid columns and these sys-
tems are often statically indeterminate.

Solutions exist for special cases of the superstructure.
Krsmanovitch (1955) has put forward an iteration method
for hinged supports between the superstructure and founda-
tion, and Grasshoff (1957) has examined the influence of
perfectly rigid and perfectly flexible superstructures sup-
ported on a foundation through hinged and fixed-end rigid
columns. Generally, the superstructure is neither entirely
flexible nor rigid. Furthermore, in most cases the structure
is supported on the foundation, not by hinged or fixed-end

rigid columns, but by fixed-end flexible columns. In this
paper a method is given in which all possible cases of
rigidity of the structure, including the extreme conditions,
are considered.

DEVELOPMENT OF A GENERALLY VALID METHOD FOR THE
ANALYSIS OF FOUNDATIONS INCLUDING THE TOTAL FLEXURAL
RIGIDITY OF A FRAMED STRUCTURE

This method is developed for foundation beams and for
foundation slabs which are flexible in only one direction.
It is based on the elastic theory for both structure and soil.
In the derivation of the method the assumption of the iso-
tropic half-space is used for the calculation of the stress
distribution in the subsoil. However, the method also allows
any other settlement analysis of the soil to be considered.

This method is developed for any framed structure with
any form of loading system (Fig. la). The superstructure
is represented with an equivalent moment of inertia Jy,
which can be calculated exactly from deflection considera-
tions ‘of the superstructure or approximately from the
formula of Meyerhof (1953). The columns and the founda-
tion have moments of inertia Jg, and J;, respectively.

The foundation is considered to be divided into parts, in
this case (n 4+ n” — 1) parts, and the middle of each part
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FIG. 1. Framed structure on an elastic continuous

footing. (a) Loading diagram; (b) division of

foundation; (c¢) Influence line for the settlements in
the characteristic cross-section.

is taken to represent an imaginary support (Figs. 1a and 1b).
The problem is to specify the contact pressure at each of
these supports, and the method shown in this paper to
calculate them uses deformations. We introduce unit settle-
ments at the imaginary supports of the foundation in turn.
From this we derive an equilibrium equation at each of the
(n + n* — 1) points of the foundation, and from these we
find the (n + n” — 1) contact pressures. This is shown below.

At first, the superstructure and foundation are considered
on an unyielding subsoil. The imagined supports of the
foundation are rigid in this case, and the reaction forces in
them are determined from the loads of the structure. These
reactions can be found for all possible forms of loading
according to the laws of statics. In the example given here,
we consider the loads of the structure to be concentrated
as single loads acting over the imaginary supports (Fig. 1a).
This means that the loads are transferred to the supports
without bending in the structure, and thus the reaction forces
in the supports are equal to the loads directly over them.
The equilibrium equation for the imaginary support 3, for
example, is

Py = Qs
and for the support i

P, = Q. (1)

Because of the settlement of the subsoil the structure has
a trough-shaped deformation (Fig. 2). These settlements
cause additional forces in the structure and also additional
reactions in the contact pressure forces. Because the settle-
ments and deformations are a function of the flexural rigidity
of the structure and the compressibility of the subsoil, it
follows that the additional contact pressure forces also
depend on them. The problem would be solved if the
settlement at each of the (n 4+ »* — 1) imaginary supports
could be found (Fig. 2). Because these settlements are
unknown, we apply at the imaginary supports, in turn, unit
settlement, i.e. 5, = 1 and keep the settlements at all other
points on the foundation zero. The deformed structure for
the unit settlement at the point X = 3 is shown in Fig. 3,
and this causes reaction forces Z;? in each support. Gener-
ally, the deformed structure due to a unit settlement at point
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FIG. 3. Deformed structure for the unit settlement
at support 3 (with positive reaction forces Z;/* and
the settlements at all other points equal to zero).

FIG. 4. Positive reaction forces Z;* - s, at
support 3 due to the real settlements s, (k
=1...nandn).

k causes reaction forces Z;* at each support, where the index
i indicates the position of the support. If at each support i
(i=1...nand 1 ... r) unit settlements s;, = 1 are
applied, then for each support i, k reaction forces Z;* (k =
1...nand 1 ... n) can be found. For the real, still
unknown settlements s, the magnitude of the reaction forces
is Z* - s, For an example, the reaction forces Zj* - s,
for the real settlements s, (k =1...nrand 1 ... n’) are
shown in Fig. 4 for support 3.

The final reaction force Q; can now be determined from
Q; = P; obtained for the structure when considered on an
unyielding subsoil and on rigid supports (Eq 1) plus the
sum of the reaction forces

k=n and n’
Z Z’;'Sk
k=1
due to the real, still unknown settlements s, (k =1 ... n
and 1 ... n’). Now the equilibrium equation for support
3 is given by
k=n and n’
Z Z§'5k+Pa= Qs
k=1
and for the support i
k=n and n’

> Zhsi+ Pi= Q. (2a)

k=1
In this way we find (n + n” — 1) equations in which the
(n + n* — 1) unknown contact pressure forces and (n +
n” — 1) unknown settlements are involved.



For a symmetrical structure with symmetrical loading it
is only necessary to have n equilibrium equations. In this
case, the equation for support 3 is

k=n
ZZ§'5k+P3= Qa
k=1

and for the support i

k=n

ZZ}S'Sk‘FPi: Qi- (2b)
k=1

In the following, for the Eqs 2b for the symmetrical structure
with symmetrical loading, we express the settlements sy
(k=1 ... n) as a function of the contact pressures g;
(i =1... n). The relation between the settlements and the
contact pressures for a homogeneous subsoil or for stratified
layers of subsoil are shown according to Figs. la to lc,
below:

[corq1 + 2¢1 G2t -+ 260 "qn)-a/Es
se=[eorqut (ot e gat oo+ (G2t o) @l-a/Es

$1 =

(3a)

Sn = o1 @1+ (Ca—2 + C2)
g2+ ....4+ (co+ c2a2)-q.]-a/E,.

¢c; (i=o0...2n — 2) are the values of the influence line for
the settlements for ¢ = 1, a = 1 and for the compressibility
modulus of the soil E; = 1. As the foundation cannot be
deformed in the direction B (Fig. 1b) since we consider only
deformations in one direction, the settlement analysis is
executed at the so-called “characteristic cross-section” (Fig.
1b) (Grasshoff, 1953).

The relation between the settlements and the contact
pressures shown in Eq 3a can now be expressed in the matrix
form as follows:

Q1 51
3= g—-fi -§, where § = ©)ands=1{" (3b)
8 q.n S'n

The elements a;;, of the matrix 4 result from the values ¢,
of the influence line of the settlements according to Eq 3a.

If we introduce the unknown contact pressures g; (i =
1 ... n) as a single column vector §, the settlements s; in
Eq 3a can be written as scalar products between the row
vector a* and the column vector g, as follows

si=a/E,-a-§g@e =1...n), (3¢c)

where

dG=anqitang@t.... .+ ang.

The reaction forces Z;* for the unit deformations accord-
ing to Fig. 3 are determined in the most suitable way with
the formula usually used in connection with the deforma-
tion method in statics. Details are given in the literature
(Ostenfeld, 1926). These reaction forces Z;* for the unit
settlements s, = 1 are determined now for the length a = 1
and for the flexural rigidity of the foundation (to which the
rigidities of the structure and the columns are referred)
EJ; = 1. If these reaction forces, which are calculated with

Elg =1 and a = 1, are Z;*¥, the real magnitude of Z} is
given by

Z5 = EJg/d* ZF. )
If we substitute the reaction forces Z;* according to Eq 4
and the settlements s, according to Eq 3c in Eq 2b, where

the contact pressure forces Q; = g; -+ a - B, the equilibrium
equation for the support i becomes:

EJg = ook = P, _ -
«*-B - E, ,; Zi-a q+a-B = e )

Substituting @ by L/¢, where L is the length of the slab and
¢ the number of elements with the length a, we have the
term

EJG _ EJG'E:] _ 3

& B-E, L BE, K;-e (©6)
where K, is the relative stiffness of the foundation to that
of the soil. With this relative stiffness K., Eq 5 becomes

=
I

n . Pi' _
Z5dq—q: = —L,BE @)

Varying i from 1 . . . n we now have n equations for the
n contact pressures g, In Eq 7 Z;** depends only on the
rigidity of the structure, that is, the geometrical dimensions,
the ratio of the rigidity of the superstructure to that of the
foundation, and the way in which the superstructure is con-
nected to the foundation. Since different compressibilities of
the subsoil can be taken into account by varying K,, we can
find the contact pressures as a function of both the rigidity
of the structure and the compressibility of the subsoil.

Eq 7 is now arranged in terms of the unknown contact
pressures g; and, to this purpose, the reaction forces Z;** are
expressed by the matrix

3
K,

>
Il
-

2= (Zuw) E=1...n
Then the equations for the contact pressures gq; are given
by

(Z-A—-D)-q=p. ®)
The matrix from equation system 8 is given by the product
of the two matrices Z and 4 minus the diagonal matrix D.

In this case, the elements of the diagonal matrix are:

di:=1/K,-€ G=1...n)

and

di.k = 0 (i * k).

The right-hand side of the equation, P, includes the reaction
forces P; in the imagined perfectly rigid supports of the
foundation slab due to the loads of the structure, so that

p=—P,/(K e L-B) G=1...n).

With the contact pressures g;, which are calculated from
Eq 8, we find according to Eq 3c the settlements at each
of the imaginary supports of the foundation. Superimposing
the separate deformation figures according to Fig. 3, using
the real settlements instead of unit settlements, we find the
bending moments of the structure by using the method
given by Ostenfeld.
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The superstructure is connected to the foundation

The superstructure is connected to the foundation
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FIG. 5. Influence of foundation and superstructure rigidity.
a Ratio of flexural rigidity of the structure EJp to flexural rigidity of foundation EJ; as a function of K. Curve a, results

obtained from relative settlements As between the centre line of

foundation and the foundation point under the external supports

of superstructure. Curve b, results obtained from relative settlements As between the foundation points under the internal and the

external supports of superstructure. K. = EJ;/EJL3B = relative
B Bending moment in the centre line of foundation slab for
a, z = 102 ~ «, ideal rigid superstructures; curve b, z = 1.0,

stiffness of foundation/soil. z = Jy/Jgi y = Jg/Jg-
different rigidities of the superstructure as a function of K. Curve
superstructure between rigid and flexible; curve ¢, z = 0.5, super-

structure between rigid and flexible; curve d, z = 0.1, superstructure between rigid and flexible; curve e, z = 10—5 ~ 0, ideal flexible
superstructure; curve f, z = 0; y = 0, the case if only the rigidity of the foundation is considered. For a foundation slab with a
flexural rigidity EJ, for a slab thickness of 1 m and with a length L = 18 m and width B = 90 m (L/B = 0.2) gives the relative
stiffness K, = 0.001 the compression modulus E;, = 3000 kg/sq.cm. (compact gravel), K = 0.01 compression modulus E; = 300
kg/sq.cm. (loose sand or preconsolidated clay), K. = 0.1 compression modulus E; = 30 kg/sq.cm. (soft clay).

APPLICATION OF THE METHOD

The method was programmed for the electronic computer
LLB.M. 650. The application of this method shows to what
extent the rigidity of the foundation and superstructure
can be expressed by the total flexural rigidity of the structure.
Furthermore, the influence of both the foundation and super-
structure rigidities on the bending moments in the foundation
can be investigated. For the investigation given here, a sym-
metrical superstructure on four columns with symmetrical
loading was considered (Fig. 5). The length/width ratio
(L/B) of the foundation was taken to be 0.2. These con-
ditions can be met in practice when investigations are made
for the conditions of a structure at its cross section.

The rigidity of the superstructure is introduced into the
method according to the ratio of the moments of inertia
z = Jn/Jg of the superstructure (Jy;) and the foundation
slab (Jg), and by the nature of the connections of the
columns or walls with the foundation. This latter condition
is included by the ratio of the moments of inertia y
Js¢/Jg of the columns or walls (Jg) and the foundation
(Jg). The chosen values for the parameters z and y are
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specified in Fig. 5. The parameter y = 2.10—3 was ascertained
from a newly erected structure, the superstructure of which
was supported on the foundation by columns. The parameter
y = 0.125 was derived for a structure with wall supports
50 cm thick on a 1-m-thick foundation slab. Normally in
practice y is not greater than this value.

Flexural Rigidity of the Structure

The flexural rigidity of the structure is defined here as the
rigidity of an imaginary foundation slab, which permits the
same relative settlement As as the total structure. To calculate
the rigidity of the structure, the difference in settlement of
the foundation slab, stiffened by the superstructure (z == 0,
y 5= 0), is compared with the difference in settlement for a
foundation slab, not stiffened by a superstructure (z = 0,
y = 0). To this purpose, the difference in settlement between
a the middle of the foundation slab and the point under
the external column, and 8 the point under the internal
column and the point under the external column were cal-
culated for both the real structure and the imaginary founda-
tion slab. In this way, the effect of the additional rigidity of



the foundation slab due to the superstructure was examined
in the middle and at the positions under the internal sup-
ports of the superstructure. Details of this analysis are
outside the scope of this paper, but the general results
obtained are indicated in diagram (a) (Fig. 5). In
these diagrams H represents the ratio of the flexural rigidity
of the complete structure to the flexural rigidity of the
foundation, i.e. H = EJy/Elg.

It follows from the results obtained:

1. The flexural rigidities of the structure in the middle
and under the internal supports are equal and independent
of K for values of K > K.

2. The flexural rigidity of the structure for values of
K, > K can be calculated without any consideration for the
properties of the subsoil, because for these cases the rigidity
is independent of K, Hence, the flexural rigidity can be
obtained by considering the complete structure rigidly sup-
ported under the external columns of the structure with free
deformation between the supports (like a beam on two
supports). This analysis can be made exactly according to
the laws of statics or approximately by using the formula
given by Meyerhof (1953).

3. For the relative stiffness K, > K the work involved in
the calculation of the contact pressure can be reduced, as
was done in the determination of the settlements, by avoid-
ing the highly statically indeterminate system and using
instead an imaginary foundation slab having a rigidity the
same as that of the entire structure. The contact pressures
and the resulting bending moments determined by this sim-
plified method deviate from the values obtained from the
exact method by up to 5 per cent.

4. For the relative stiffness K, < K the foundation slab
is so flexible that there is a tendency for the slab to vault
upwards between the columns. In this case, the rigidity of
the structure can no longer be derived from the differences
in settlement at the centre of the foundation slab. Because of
the tendency of the slab to vault upwards the difference in
settlement is reduced, and so the rigidity of the structure
appears to be greater than that in the previous case for
K, > Kg, as is shown by the dotted lines in Fig. 5a. This is
obviously wrong. Actually, the rigidity of the structure
reduces with the relative stiffness K,. This can be seen from
the results obtained for the difference in settlement between
the internal and external supports of the structure. The
conditions which allow the rigidity of the structure to be
expressed by an equivalent rigidity of a foundation slab are
no longer applicable for the relative stiffness K. < K. In this
case the foundation slab and the superstructure must be
regarded as one whole system.

The Relation of the Bending Moments in the Foundation
Slab to the Rigidity of Structure and the Stiffness of the
Subsoil

The moments in the centre of the slab are shown as a
function of the relative stiffness K, (Fig. 5b) for different
rigidity conditions of the structure. These diagrams show
that the bending moment increases with K, from zero for
a perfectly flexible foundation, to a maximum for a rigid
foundation, and they decrease as the rigidity of the super-
structure increases. The moments in the centre of the slab
are shown by curve f for the case when the superstructure is
perfectly flexible. If in the design of a foundation slab,
carrying a superstructure with some rigidity, the calculations
are made taking into account only the rigidity of the slab,
the dimensions will be greater than those actually necessary.

The influence of soil settlement and the creeping of con-
crete over the period of time has not been taken into con-
sideration in this paper, but it is reasonable to suppose that
the method outlined above can provide a theoretical solution
to such problems.
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