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A Method for the Calculation of Settlements, Contact 

Pressures, and Bending Moments in a Foundation Including 

the Influence of the Flexural Rigidity of the Superstructure

U n e  M éth o d e  p o u r  le calcul des tassem ents, des pressions su r sol et des m om ents fléchissants d ans une

3 / 4 2

fo n d a tio n  te n a n t co m p te  de l’influence de la  rig id ité  de

H. SOMMER, D R .IN G ., Mitarbeiter im Institut für Bodenm 
stadt, Darmstcdt, Cermany

S U M M A R Y

In this paper a method is developed for the analysis of founda­

tion beams and foundation slabs, which are flexible in only one 

direction, the rigidity of the superstructure being taken into 

account. Structures with various degrees of rigidity including the 

perfectly flexible and the perfectly rigid cases on any subsoil are 

investigated, using unit settlements and expressed in matrix form. 

The method gives the contact pressures and the settlements of 

the structure as well as the resulting bending moments in the 

foundation and the superstructure.

A symmetrical superstructure, supported on four columns is 

considered as an example, and the relation between the rigidity 

of the foundation and that of the superstructure is determined 

and expressed in terms of the flexural rigidity of the whole 

structure. The conditions are shown under which the calculation 

of settlements and contact pressures can be simplified by assum­

ing an imaginary foundation slab carrying no superstructure and 

having a flexural rigidity equal to that of the whole structure. 

Furtherm ore, the relationship of the bending moments in the 

foundation slab to the rigidity of structure and compressibility 

of subsoil is shown.

t h e  c o n t a c t  p r e s s u r e ,  the bending moments, and the 
settlements of a foundation beam and a foundation slab are 
dependent on the relative stiffness of the structure and the 
soil. The rigidity of the structure is a function of the rigidity 
of the superstructure and the foundation, and in the usual 

methods of calculation it is only the rigidity of the founda­
tion that is included (De Beer, 1948; De Beer and Krsmano- 
vitch, 1952; Grasshoff, 1955; Kany, 1959; Ohde, 1942). 

The rigidity of the superstructure cannot, with the given 
methods of calculation, be included if it is supported on the 
foundation slab by positional columns or walls, as is the 
case with modern framed structures (Fig. la ) . The super­
structure can be connected to the foundation through hinged, 
fixed-end flexible or fixed-end rigid columns and these sys­
tems are often statically indeterminate.

Solutions exist for special cases of the superstructure. 

Krsmanovitch (1955) has put forward an iteration method 
for hinged supports between the superstructure and founda­
tion, and Grasshoff (1957) has examined the influence of 
perfectly rigid and perfectly flexible superstructures sup­
ported on a foundation through hinged and fixed-end rigid 
columns. Generally, the superstructure is neither entirely 
flexible nor rigid. Furthermore, in most cases the structure 
is supported on the foundation, not by hinged or fixed-end

la sup erstru c tu re

echanik und Grundbau der Technischen Hochschule Darm-

S O M M A IR E

Cet article démontre une méthode pour l’analyse des radiers 

et des poutres de fondations qui se déforment dans une seule 

direction, en tenant compte de la rigidité de l’ossature de la 

superstructure. On étudie des structures de différentes rigidités, 

incluant celles infinement souples ou infinement rigides, posées 

sur n’importe quel type de sol. Ce procédé, basé sur la méthode 

des déformations et présenté sous forme de matrice, permet de 

déterminer les pressions sur le sol et les tassements, ainsi que 

les moments fléchissants dans la fondation et dans l’ossature.

Comme exemple, l’auteur analyse un bâtiment symétrique à 

quatre montants. En particulier on étudie la rigidité de l’en­

semble de la construction en fonction de celle du radier et de 

celle de l’ossature. On indique quand il est admissible dans le 

calcul des pressions sur le sol et des tassements de la con­

struction de remplacer celle-ci par un radier de même rigidité. 

En outre on détermine l’influence de l’action réciproque entre la 

construction et le sol sur les moments fléchissants dans le 

radier, lorsqu’on fait varier la rigidité de la première et la com- 
pressibilité du second.

rigid columns, but by fixed-end flexible columns. In this 
paper a method is given in which all possible cases of 
rigidity of the structure, including the extreme conditions, 
are considered.

D E V E L O P M E N T  O F  A G E N E R A L L Y  V A LID  M E T H O D  F O R  T H E  

A N A LY SIS O F  F O U N D A T IO N S  IN C L U D IN G  T H E  T O T A L  F L E X U R A L  

R IG ID IT Y  O F  A F R A M E D  S T R U C T U R E

This method is developed for foundation beams and for 
foundation slabs which are flexible in only one direction. 
It is based on the elastic theory for both structure and soil. 
In the derivation of the method the assumption of the iso­
tropic half-space is used for the calculation of the stress 
distribution in the subsoil. However, the method also allows 
any other settlement analysis of the soil to be considered.

This method is developed for any framed structure with 

any form of loading system (Fig. la ) . The superstructure 
is represented with an equivalent moment of inertia Ju , 
which can be calculated exactly from deflection considera­

tions of the superstructure or approximately from the 
formula of Meyerhof (1953). The columns and the founda­
tion have moments of inertia 7st and JG, respectively.

The foundation is considered to be divided into parts, in 
this case (n +  n' — 1 ) parts, and the middle of each part
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f ig . 1. Fram ed structure on an elastic continuous 

footing, (a ) Loading diagram; (b ) division of 

foundation; (c) Influence line for the settlements in 

the characteristic cross-section.

is taken to represent an imaginary support (Figs. la  and lb ). 

The problem is to specify the contact pressure at each of 
these supports, and the method shown in this paper to 
calculate them uses deformations. We introduce unit settle­
ments at the imaginary supports of the foundation in turn. 
From this we derive an equilibrium equation at each of the 
(n +  n' — 1 ) points of the foundation, and from these we 

find the (n + n' — 1) contact pressures. This is shown below.
At first, the superstructure and foundation are considered 

on an unyielding subsoil. The imagined supports of the 
foundation are rigid in this case, and the reaction forces in 
them are determined from the loads of the structure. These 
reactions can be found for all possible forms of loading 

according to the laws of statics. In the example given here, 
we consider the loads of the structure to be concentrated 
as single loads acting over the imaginary supports (Fig. la ) . 
This means that the loads are transferred to the supports 
without bending in the structure, and thus the reaction forces 
in the supports are equal to the loads directly over them. 

The equilibrium equation for the imaginary support 3, for 
example, is

P  z =  Qz

and for the support i

P i  =  Qi. (1 )

Because of the settlement of the subsoil the structure has 
a trough-shaped deformation (Fig. 2). These settlements 
cause additional forces in the structure and also additional 
reactions in the contact pressure forces. Because the settle­
ments and deformations are a function of the flexural rigidity 
of the structure and the compressibility of the subsoil, it 
follows that the additional contact pressure forces also 
depend on them. The problem would be solved if the 
settlement at each of the (n +  n' — 1 ) imaginary supports 

could be found (Fig. 2). Because these settlements are 
unknown, we apply at the imaginary supports, in turn, unit 
settlement, i.e. sk =  1 and keep the settlements at all other 
points on the foundation zero. The deformed structure for 
the unit settlement at the point k = 3 is shown in Fig. 3, 
and this causes reaction forces Zp  in each support. Gener­
ally, the deformed structure due to a unit settlement at point

fig . 3. Deformed structure for the unit settlement 

at support 3 (with positive reaction forces Z *  and 

the settlements at all other points equal to zero).

fig . 4. Positive reaction forces Ztk • sk at 

support 3 due to the real settlements sk (k 
= 1 . . .  n and n').

k causes reaction forces Z f  at each support, where the index 
i indicates the position of the support. If at each support i 
(i = 1 . . . n and 1 . . .  n') unit settlements sk =  1 are 
applied, then for each support i, k reaction forces Z f  (k =

I . . .  n and 1 . . .  n')  can be found. For the real, still 
unknown settlements sk, the magnitude of the reaction forces 
is Z / : • sk. For an example, the reaction forces Z f  ■ sk 
for the real settlements sk (k =  1 . . . n and \ . . .  n') are 
shown in Fig. 4 for support 3.

The final reaction force Qt can now be determined from 
Qi =  Pi obtained for the structure when considered on an 
unyielding subsoil and on rigid supports (Eq 1) plus the 
sum of the reaction forces

k=n and n‘

r  Z*rsk 
k - 1

due to the real, still unknown settlements sk (k  =  1 . . . n 
and 1 . . .  n ' ) . Now the equilibrium equation for support 
3 is given by

k=n and n'

S  Zl'S/c +  P  3 =  Q3
*=1

and for the support i

k=n and n'

E  Z \ - s k ^r P i = Q l. ( 2 a )

In this way we find (« +  « ' — 1) equations in which the 
(n +  n '  — 1) unknown contact pressure forces and (n +  

n '  — 1 ) unknown settlements are involved.
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For a symmetrical structure with symmetrical loading it 
is only necessary to have n equilibrium equations. In this 
case, the equation for support 3 is

£  Z \ 'S k +  P i  — (?3

and for the support i

£  Z \ - s k + P t =  Qi - (2b)

(3a)

s = A -q ,  where q = ( .̂2 ) and § = (3b)

where

Si = a/ Es-a-q( i  = 1 . . . n),

a 1 • q — a a -S i +  a-a'qi +  • • • • +  a in'Qu­

i te )

EJg  =  1 and a — 1, are Zf*k, the real magnitude of Z is 
given by

Z \  =  E J G/a  ■ Z i  . (4)

If we substitute the reaction forces Z *  according to Eq 4 
and the settlements s,c according to Eq 3c in Eq 2b, where 
the contact pressure forces • a ■ B, the equilibrium

equation for the support i becomes:

E J a  V  -t -
2_ Z i  -a -q

P i

a -B
In the following, for the Eqs 2b for the symmetrical structure 
with symmetrical loading, we express the settlements sk 
( t  =  1 . . . k) as a function of the contact pressures qt 
(i =  I . . .  n). The relation between the settlements and the 

contact pressures for a homogeneous subsoil or for stratified 
layers of subsoil are shown according to Figs. la  to lc, 
below:

■Si =  [co'ffi +  2ci -32 +  ■ ■ . • +  2ck_i -q^-a /E n  

s 2 =  [ci-gi +  (c0 +  c2) -<72 +  • ■ • • +  (c„—2 +  cn) -g„] - a /E s

 ̂ T> Tf t—l “  ! “ '1 ' r. T> ?*■ (5)
Cl * JD ' Il>A > t= l CL '1 5

Substituting a by L/e,  where L is the length of the slab and 
€ the number of elements with the length a, we have the 
term

E J c EJc,

a 3 ■ B  ■ L - B - K
= K t - (6 )

where K r is the relative stiffness of the foundation to that 
of the soil. With this relative stiffness K T, Eq 5 becomes

K t -£3 £  Z*ï-àk-q - q t =
P c *

L - B
(7)

•?2 +  • ■ • •+  (Co +  C2n-i) -q,i] 'Cl/Es.

c{ (i =  o . . . 2n — 2) are the values of the influence line for 
the settlements for q =  1 , a =  1 and for the compressibility 
modulus of the soil E s — 1. As the foundation cannot be 

deformed in the direction B (Fig. lb ) since we consider only 
deformations in one direction, the settlement analysis is 
executed at the so-called “characteristic cross-section” (Fig. 

lb )  (Grasshoff, 1953).
The relation between the settlements and the contact 

pressures shown in Eq 3a can now be expressed in the matrix 

form as follows:

Varying i from 1 . . .  n we now have n equations for the 

n contact pressures qt. In Eq 7 Z i*k depends only on the 
rigidity of the structure, that is, the geometrical dimensions, 

the ratio of the rigidity of the superstructure to that of the 
foundation, and the way in which the superstructure is con­
nected to the foundation. Since different compressibilities of 
the subsoil can be taken into account by varying K r, we can 
find the contact pressures as a function of both the rigidity 

of the structure and the compressibility of the subsoil.
Eq 7 is now arranged in terms of the unknown contact 

pressures qj and, to this purpose, the reaction forces Z * k are 
expressed by the matrix

Z  =  (Zi. ,)
i = 1 . . . n, 

k = 1 . . .  n.

The elements aik of the matrix A  result from the values c( 

of the influence line of the settlements according to Eq 3a.
If we introduce the unknown contact pressures qt (i =

1 . . .  n) as a single column vector q, the settlements in 
Eq 3a can be written as scalar products between the row 

vector a} and the column vector as follows

Then the equations for the contact pressures qt are given 
by

( Z - A - D ) - q  = p. (8 )

The matrix from equation system 8 is given by the product 

of the two matrices Z and A  minus the diagonal matrix D. 
In this case, the elements of the diagonal matrix are:

3

and

d if i = l / K T-e (i = 1 . . .  n)

di.k = 0 (i 7* k ).

The reaction forces Z f  for the unit deformations accord­
ing to Fig. 3 are determined in the most suitable way with 
the formula usually used in connection with the deforma­
tion method in statics. Details are given in the literature 

(Ostenfeld, 1926). These reaction forces Z4fc for the unit 
settlements sk =  1 are determined now for the length a =  1 

and for the flexural rigidity of the foundation (to which the 
rigidities of the structure and the columns are referred) 
EJg  =  1. If these reaction forces, which are calculated with

The right-hand side of the equation, p, includes the reaction 
forces Pt in the imagined perfectly rigid supports of the 

foundation slab due to the loads of the structure, so that

p  =  -  P i / ( K r-e2-L -B )  ( i = l . . . n ) .

With the contact pressures qt, which are calculated from 
Eq 8, we find according to Eq 3c the settlements at each 
of the imaginary supports of the foundation. Superimposing 
the separate deformation figures according to Fig. 3, using 
the real settlements instead of unit settlements, we find the 
bending moments of the structure by using the method 
given by Ostenfeld.
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The superstructure is connected to the foundation The superstructure is connected to the foundation
slab by very f lexible columns , in which case they slab by flexible walls (y  = 0 .1 2 5 )
can be considered pin- ended (y  = 2 • I0 '3 )

Relat ive st i f f n ess , f o u n d at io n / so i l  Re la t i v e  st i f f n ess , f o u n d at io n / so i l

f i g .  5. Influence of foundation and superstructure rigidity. 

a Ratio of flexural rigidity of the structure EJB to flexural rigidity of foundation EJG as a function of K r. Curve a, results 
obtained from relative settlements As between the centre line of foundation and the foundation point under the external supports 
of superstructure. Curve b, results obtained from relative settlements As between the foundation points under the internal and the 
external supports of superstructure. K r = EJg/E bLzB =  relative stiffness of foundation/soil, z

p Bending moment in the centre line of foundation slab for different rigidities of the superstructure as a function of K r. Curve
a, z =  102 ~  oo, ideal rigid superstructures; curve b, z — 1.0, superstructure between rigid and flexible; curve c, z — 0.5, super­
structure between rigid and flexible; curve d, z =  0.1, superstructure between rigid and flexible; curve e, z =  10—5 ~  0, ideal flexible 
superstructure; curve f, z =  0; y — 0, the case if only the rigidity of the foundation is considered. For a foundation slab with a 
flexural rigidity EJG for a slab thickness of 1 m and with a length L =  18 m and width B =  90 m (L/B = 0.2) gives the relative 
stiffness K t =  0.001 the compression modulus Es =  3000 kg/sq.cm. (compact gravel), K T — 0.01 compression modulus Es = 300 
kg/sq.cm. (loose sand or preconsolidated clay), K r =  0.1 compression modulus Es =  30 kg/sq.cm. (soft clay).

APPLICATION OF THE METHOD

The method was programmed for the electronic computer
I.B.M. 650. The application of this method shows to what 
extent the rigidity of the foundation and superstructure 
can be expressed by the total flexural rigidity of the structure. 
Furthermore, the influence of both the foundation and super­
structure rigidities on the bending moments in the foundation 
can be investigated. For the investigation given here, a sym­
metrical superstructure on four columns with symmetrical 
loading was considered (Fig. 5). The length/width ratio 
(L /B )  of the foundation was taken to be 0.2. These con­
ditions can be met in practice when investigations are made 

for the conditions of a structure at its cross section.
The rigidity of the superstructure is introduced into the 

method according to the ratio of the moments of inertia 
z =  Ju/J(i of the superstructure ( / n ) and the foundation 
slab (/ G), and by the nature of the connections of the 
columns or walls with the foundation. This latter condition 
is included by the ratio of the moments of inertia y = 
Jut/Jo of the columns or walls ( / s t) and the foundation 

(JG). The chosen values for the parameters z and y are

specified in Fig. 5. The parameter y =  2.10—3 was ascertained 

from a newly erected structure, the superstructure of which 
was supported on the foundation by columns. The parameter 
y =  0.125 was derived for a structure with wall supports 

50 cm thick on a 1-m-thick foundation slab. Normally in 
practice y is not greater than this value.

Flexural Rigidity of the Structure

The flexural rigidity of the structure is defined here as the 
rigidity of an imaginary foundation slab, which permits the 
same relative settlement As as the total structure. To calculate 
the rigidity of the structure, the difference in settlement of 
the foundation slab, stiffened by the superstructure (z ¥= 0, 
y =7̂= 0), is compared with the difference in settlement for a 
foundation slab, not stiffened by a superstructure (z =  0, 

y =  0). To this purpose, the difference in settlement between 
a the middle of the foundation slab and the point under 
the external column, and /3 the point under the internal 
column and the point under the external column were cal­
culated for both the real structure and the imaginary founda­
tion slab. In this way, the effect of the additional rigidity of
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the foundation slab due to the superstructure was examined 
in the middle and at the positions under the internal sup­

ports of the superstructure. Details of this analysis are 
outside the scope of this paper, but the general results 
obtained are indicated in diagram (a) (Fig. 5). In 

these diagrams H  represents the ratio of the flexural rigidity 
of the complete structure to the flexural rigidity of the 

foundation, i.e. H  =  EJe /E J g.

It follows from the results obtained:

1. The flexural rigidities of the structure in the middle 
and under the internal supports are equal and independent 
of K  for values of K  >  K G.

2. The flexural rigidity of the structure for values of 
K r >  K G can be calculated without any consideration for the 
properties of the subsoil, because for these cases the rigidity 
is independent of K r. Hence, the flexural rigidity can be 
obtained by considering the complete structure rigidly sup­
ported under the external columns of the structure with free 
deformation between the supports (like a beam on two 
supports). This analysis can be made exactly according to 
the laws of statics or approximately by using the formula 
given by Meyerhof (1953).

3. For the relative stiffness K r >  K G the work involved in 
the calculation of the contact pressure can be reduced, as 
was done in the determination of the settlements, by avoid­
ing the highly statically indeterminate system and using 
instead an imaginary foundation slab having a rigidity the 
same as that of the entire structure. The contact pressures 
and the resulting bending moments determined by this sim­
plified method deviate from the values obtained from the 
exact method by up to 5 per cent.

4. For the relative stiffness K r <  K G the foundation slab 
is so flexible that there is a tendency for the slab to vault 
upwards between the columns. In this case, the rigidity of 
the structure can no longer be derived from the differences 
in settlement at the centre of the foundation slab. Because of 
the tendency of the slab to vault upwards the difference in 
settlement is reduced, and so the rigidity of the structure 
appears to be greater than that in the previous case for 
K r >  K G, as is shown by the dotted lines in Fig. 5a. This is 
obviously wrong. Actually, the rigidity of the structure 
reduces with the relative stiffness K r. This can be seen from 
the results obtained for the difference in settlement between 
the internal and external supports of the structure. The 
conditions which allow the rigidity of the structure to be 
expressed by an equivalent rigidity of a foundation slab are 
no longer applicable for the relative stiffness K T <  K G. In this 
case the foundation slab and the superstructure must be 
regarded as one whole system.

The Relation oj the Bending Moments in the Foundation 
Slab to the Rigidity of Structure and the Stiffness of the 
Subsoil

The moments in the centre of the slab are shown as a 
function of the relative stiffness K T (Fig. 5b) for different 
rigidity conditions of the structure. These diagrams show 
that the bending moment increases with K„  from zero for 
a perfectly flexible foundation, to a maximum for a rigid 
foundation, and they decrease as the rigidity of the super­
structure increases. The moments in the centre of the slab 
are shown by curve f for the case when the superstructure is 
perfectly flexible. If in the design of a foundation slab, 
carrying a superstructure with some rigidity, the calculations 
are made taking into account only the rigidity of the slab, 
the dimensions will be greater than those actually necessary.

The influence of soil settlement and the creeping of con­
crete over the period of time has not been taken into con­
sideration in this paper, but it is reasonable to suppose that 

the method outlined above can provide a theoretical solution 

to such problems.
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