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S U M M A R Y

This report considers problems connected with the distribution 
of reactive pressures along the foot of rigid plates pressed into 
a non linearly strained and heterogeneous base with plane strain. 
As a result of the investigations it is concluded that the real 
base soil properties result in a significant change in the curve 
of reactive pressures, which in a number of cases facilitates the 
performance of the bases.

S O M M A IR E

Cet article traite problèmes relatifs à la distribution des 
pressions réactives sous des plaques rigides enfoncées dans une 
base non-linéairement déformée et héterogéne avec un déforma
tion plane. Comme résultat de ces études une conclusion im
portante est obtenue, indiquant que les propriétés réelles du sol 
de la base amènent un changement considérable de la courbe des 
pressions réactives, ce qui facilite en nombre de cas le fonc
tionnement des bases.

T H E  P R O B L E M  O F  S T R E S S E S  A N D  S T R A IN S  Of a half-Space 
which is continuously inhomogeneous in depth was first 
raised by Klein (1948, 1949) without taking into con
sideration creep and non-linear deformation of the soil. 
However, as is clear from the relevant experiments (Tsyto- 
vich, 1963), for cohesive, especially for viscous clay soils, 
as well as for frozen soils (Vyalov, 1959) and for all kinds 
of soils under significant loads, the non-linear creep of the 
soil skeleton is of great importance.

In the mathematical description of the creep of soils at 
the present stage of technical development, soils are con
sidered as one-component bodies, and the peculiarities of 
their deformation as multi-phase disperse systems are not 
taken into consideration, though such problems are already 
posed (Tsytovich, 1964). The performance of a soil as a 
one-phase system has been well described, proceeding from 
the plasticity theory (Prager, 1958) and associated non-linear 
creep (Rabotnov, 1948). This theory is used as the basis 
of the present investigation. Described below are the results 
of some analytical solutions, obtained by Yu. K. Zaretsky 
(1963) with the advice and general supervision of N. A. 
Tsytovich.

C A L C U L A T IO N  O F  R IG ID  F O U N D A T IO N S

The calculation of rigid foundations consists firstly in the 
determination of the curve of reactive pressures originating 
along their foot. The relationship to which the shifts of the 
points of the contact region should comply in the case of 
plane strain will be

u(x,  I) +  r ( x )  =  c(t) +  y ( t ) - x ,  (1)

where u(x,t) is the vertical shift in time of the base boundary 
as a result of its deformation; r (x ), the equation of the 
rigid stamp surface; c(t) ,  the approach in time of the stamp 
to the base in the direction of the y axis due to reciprocating 
movement; y(t)  ■x , the approach in time of the stamp to the

base due to the turn of the stamp relative to the origin of the 
co-ordinates.

The vertical shifts in time of the base boundary as result 
of its deformation will be (Zaretsky, 1963):

u(x,  t) =

z?{ J  [(i +  L ) { i^ ( 5 ,o n 1/v[ i / k - x n (i ^  (2 )

Here the integral operator

L { y ( t ) \  =  f x ( / , r ) y ( r ) d r ,
o

is introduced where K (t,r ) is the kernel of creep soils. Para
meter a equals

a  =  1 — (1 — jj) jv.

The stress-strain state of a base obeys the following invariant 
deformation regularities:

e t = o ' / A  ;

c =  ex Cy =  0;

v >  1 ; (3)
where A — A 0 y ’ ; et is the intensity of shear strain; is the 
intensity of shear stress; and e is the volumetric change.

By substituting in Eq 1 the expression for the shift of 
a non linearly strained base, Eq 2, we obtain an equation 
including the desired function of distribution of contact 
pressures, p(x,t).  This equation is then replaced with a 
system of integral equations:

1 /" Xg('5’

=  [c(0 +  y ( l ) x  -  r i x ) } 11'’ (4) 

(1 +  L ) \ p \ s ,  I ) | =  g { s , t) (4a)
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Eq 4 is the Volterra equation of the second order and its 
solution is given in the form:

P (s , t )  =  [(1 — N ){p"(s ,  t ) }\ ll\  

where N  {y(0} denotes the integral operator

(5)

■)y(j)dT.

J"  p(x , t)dx  =  P ( t ) \  J p ( x ,  t)xdx = M (t) ,

X1

{
CO

H ( Ir -  =  F (!) .
-o n

Here

/ • co

* (Ì )  =  G ( |r  -  i |)F ( i)d £ ,
« /—m

(9)

theorem of multiplication of representations reduce integral 
Eq 8 to an algebraic form:

= pF *(p ) /H * (p )

or

**(P)  =  (1 / p )[p V h *(p )]f *(p ).

Here R (t , t )  is the resolvent of the Kernel K(t,r) . To finally 
determine the curve of contact pressures p(x ,t) the solution 
of Eq 4 must be obtained. Constants c(f) and y (t)  are 
found from the static conditions:

(10 )

A solution in the form of Eq 10 is possible if representa
tions p2/H * ( p ) and F*(p)  have common zones of con
vergence. It is then easy to see that Eq 9, written in the 
representations, coincides with Eq 10 if it is assumed that

G*(p) = p -/H *{p). (1 1 )

(6 )

where P(t)  is the external load acting on the base, and 
M ( t ) the external moment of forces.

With a <  1 Eq 4 is the integral equation of Fredholm of 
the first order with a weak singularity. A solution of this 
equation which is free from singular integrals taken in the 
meaning of Cauchy can be obtained with the method sug
gested by Krein (1955). The present work employs another 
method reducing Eq 4 with finite limits to an equation with 
infinite limits and a Kernel depending upon the difference 
of the arguments, which permits effective use for its solu
tion of the bilateral Laplace transform. This method sug
gested by Zaretsky is simple enough and gives a closed 
solution.

The representation of the Kernel H (^)  is found with the 
help of the following expression:

H *(p) = (2“/ cos v a /2 )  

X p  cos 7r p [ r ( a /2  +  p ) T ( a /2  -  p ) /T ( a ) ]  (12) 

R e(a/2  — p)  >  0;

R c( 1 — a) >_0 .

In accordance with Eq 11, and taking into consideration 
Eq 12, the representation of the resolvent Kernel will be 
given in the form:

G*(P) =
p T (a  +  p )T (a  — p)

[2 cos irp
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Let us consider the solution of the integral equation

<j>(x)[l/\ y -  x \a]dx =  f ( y ) .  (7)

First of all replace variables x =  th(ij/2) and y =  th(X/2). 
After elementary transformations Eq 7 will be written as 
follows:

(8)

F t t )  =  2/ ( f ) M “( r / 2 ); 

H (f -  £) =  [sh\{Ç -  o r .

The kernel of integral Eq 8 depends upon the difference of 
the arguments and at a <  1 belongs to space U2. Suppose 
that function F(£) also belongs to class U2 (to be integrated 
with a square), and try to find a solution to Eq 8 in the 
following form:

2ir sin (7 ra /2 ) r ( l  — a)

— (1 +  cos 7ra ) / cos 7rp], (13)

where a =  1 — a/2.  Functions cos irp and sec -n-p should be 
represented in the form of power rows in p:

CO /  -I \ k  -fi OO -k  I T7 I

cos Tp = S  ~i2k)TP ’sec *p = S  ~i2kjrp ’
-  1 /2  <  R e p <  1 /2 . (14)

Hereinafter E21c are Euler’s numbers; r(;t)  is the gamma 
function.

The existence of representation is determined by the 
conditions i i0( l  — a) >  0 and max( —’2, — R ea ) <  R^p <  
min(/2, R^a).

On the other hand, we have seen that the representation 
of the Kernel of integral Eq 8 exists at i?0( l  — a) >  0 
and R 0 (a/2  — p) >  0. Fulfilment of the above limitations 
imposed on the Kernel //([£  — f |)  shows that parameter a 
should be within the limits — 1 <  a <  1 .

By using these correlations, and on the basis of the 
theorem of multiplication of representations and differentia
tion of originals, the desired solution <£(£) will be repre
sented in the final form:

</>(?) =  - [ ( 1  -  

x [ f
where G(|£ — £|) is the resolvent kernel of Eq 8. To obtain 
a solution to Eq 9 use the bilateral Laplace transform:

/* CD

Z*(p)  =  p I exp (—pT)-Z(r)dT
—CO

to integral Eq 8. With the help of this transform and the

a) ch " “ (£ /2 ) ] / 47t sin ( ira /2 )

* ( — 2 ) t + 1 +  (1 +  c o s  7T a)j£ ..2 k
(2*)!

ch“( r / 2 )[ch_i ( f  -  o r

d t

(15)

After function d>(€) is found, the change to old variable jc is 
accomplished with the help of reverse replacement of vari
able f  =  ln[( 1 +  x) / (1  — x)  ].
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Let us now consider the solution of Eq 7 for some special 
case of the term on its right-hand side

f n i y )  =  C„yn. (16)

By substituting /„(£) =  cnl" in Eq 15 and by making the 
corresponding calculations, we shall obtain the desired 
solution. But in this case it is expedient to follow another 
procedure using Eq 10.

Representation <E’n*(p) will be written as follows:

$n*(p)  =  [2cn cos ( r a /2 ) / i r ] - F (  — n, a /2

+  p \ a ; 2) • [irp /cos irp], (17)

The hypergeometric function included in Eq 17 can be 
represented as the finite series:

F ( - n ,  a /2  +  p ; a ; 2) =  A n +  £  B n,mp m, (18)
TO—1

where factors A n and B,l m equal, respectively:
n  n

■An 1 ^  s ,s  > Bn .m  ^  1 fin r a .s ,
s=  1 s=m

The factors aiJc equal 

k

flo =  1; a ilk =  ^  (a / 2  +  j  — i ) ( a / 2  j — i  +  1)
}—i

. . . (a/2  +  j  -  1 )

and factors j8n.fc equal

ffn.k =  ( — 2 ) Kn { n  — 1) . . . (n  — k  +  1 ) / a ( a  +  1) . . .

(a +  k  -  1) •&!

Now, with the help of Eq 18 it is easy to change over 
to the originals in Eq 17.

CONTACT PRESSURES ALONG THE FOOT OF A RIGID 
RECTANGULAR PLATE

Let us consider firstly the particular problem of the dis
tribution of contact pressures along the foot of a rigid 
rectangular plate of a width 2a under the effect of a central 
force P(t).  In this case the region of the contact is con
stant and is given at section — a ^  x  ^  a while in the 
right-hand side of Eq 4 it should be supposed that y (/) =  0; 
r(x)  =  0. On the basis of the results obtained above with 
f{y )  =  c0 =  const, and also taking into account Eq 4a we 
shall have:

p ( x , t )  = (1 /* - ) - c o s ( to /2)[1  / ( a  - x 2) a~a)/2]

X [(1 - A O { c o ( / ) } r .  (19)

As value c0(t) generally is not known, we shall determine 
it on the basis of static condition, Eq 6. From this condition 
we find:

[(1 -  A 0 { C; ( / ) ) ] 1/V =  { r ( a / 2 ) r [ ( l  -  a ) / 2 ]  j

[1/2  aaV * ] P ( 0 -  (20)

Further, introducing Eq 20 again into Eq 19 we finally 
obtain

p(x , t) =
r [ ( l  -  q ) / 2 ] r ( l  +  a /2 )  co s( ira/2)

\ /  TT

P ( t ) / a

7r[l — {x /  n ) '\
TT—a)/2

where r(*) is still a gamma function, and a  =  1 — (1 — -q)/v. 
Supposing -r) =  0, the solution will coincide with one made 
by Arutyanyan (1959).

The effect of the non-linearity of the deformation law 
v =  1/n  and of the heterogeneity of the mechanical proper
ties of the base ij on the distribution of contact pressures 
is illustrated in Fig. 1. The comparison of these curves shows

a) P(t )

P N J  > A
© - n  =1 ;i7= 0  

® - n  =03-,tj=-Q5 

® -n  =03-,t7 = 0 

®-n=0.3-,T)=+Q5

(2 1 )

fig . 1. Curves of contact pressures under rigid 
plate affected by central force.

that although the peculiarity at the plate edges x  =  ±  a is 
preserved, the distribution of pressures becomes more uni
form with an increase in a =  1 — n ( l  — 17) (here n =  \ /v )  
from zero to unity.

Thus, taking into account real properties of the base soils 
results in a reduction in the bending moment, which acts on 
the base, i.e. enables the lightening of the base structure.

Let us consider secondly the problem of a rigid rec
tangular plate of a width 2a pressed into a heterogeneous 
base (characterized by parameter A  =  A 0 y'1) with a non- 
linearity value v =  1. Force P(t)  is applied with eccentri
city e.

The distribution of reactive pressures along the plate 
foot is found from the solution of integral Eq 4. In this 
case a = 7), the region of contact — a ^  x  SC a, and in the 
right-hand side of Eq 4 r (x ) =  0 should be assumed. On 
the basis of the obtained results it is easy to find:

p ( x , t )  =  (1 /ir)  •cos(7T7?/2)[l/(a2 — x 2) (1_,,)/2]

X [ ( l  — N ) { c 0(t) +  (x/ri)ci{t)}}. (22)
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M ( t)  — P(t) ■e, we shall finally obtain:

X  ( a 2

dx
2^(1- ,  )/2 — 2

1 1 + 7 ? '

p (x ,  I) =
y j  7r

tt[1 -  (x/a)'-}
2-l(l—7J )/2 1 +  (1 +  1?/2 ) ~ ( ~

iz Viz-.
(23)

fig . 2. Curves of contact pressures under rigid plate affected 
by force applied eccentrically.

The constants c0(t) and Cj(/) will be determined from the 
static conditions of Eq 6.

By using the values of integrals

-0 ( a -  x j y

2 P _____x j l x ____  _  3 1_
Jo (a2 - *a)(1-,>/2 \2’

where B(u,v ) is the beta function, and by assuming that

Fig. 2 illustrates curves of reactive pressures under effect 
of point force P ( t ) applied at a distance of a quarter of 
the width from the base centre with three values of the 
heterogeneity factor tj — — 0.5, -q — 0, and tj =  0.5.

The analysis of Eq 23 obtained shows that tensile 
stresses do not appear under the plate if the eccentricity of 
the force applied does not exceed e =  a /  (2 +  ij). In this 
case, when parameter ij -*■ 1, eccentricity approaches !s of 
the structure foot width. With -q -» — 1 extreme eccentricity 
tends to a half-width of the bed, a, and if r/ =  0, to a quarter 
of the bed width, a/2.
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