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Session 4 — Division 3

Shallow Foundations and Pavements
Fondations peu profondes et chaussées

Chairman/Président: A. C r o c e  (Italy)
Deputy Chairman/Président adjoint: J. E. H u r t u b i s e  

(Canada)
General Reporter/Rapporteur général: E. E. d e  B e e r  

( B e lg iu m )

Panel M embers/Membres du Groupe de discussion

H. B o r o w i c k a  (Austria)
Y. K o i z u m i  (Japan)
R. L ’H e r m i n i e r  (France)
J. A. J. Sa l a s  (Spain)

Chairman'. A. C r o c e  (Italy)
Ladies and Gentlemen. To open this session, I would like 

to introduce Mr. J. Hode Keyser, of the Department of 
Public Works of the City of Montreal who will speak on 
Engineering Geology and Public Works in Montreal. Mr. 
Hode Keyser.

{Mr. Hode Keyser’s lecture appears on pp. 114—33.)

C h a i r m a n  C r o c e

I would like to express our gratitude to Mr. J. Hode 
Keyser for his fine and very interesting lecture. I would like 
to take this opportunity to stress the interest of such lectures, 
and I think that we have to be grateful to our Canadian 
colleagues of the Organizing Committee who have made 
them available. I propose now to adjourn for two minutes.

( There followed a brief intermission.)

C h a i r m a n  C r o c e

The General Reporter for this session is Professor de Beer. 
Professor de Beer’s outstanding contributions to the field of 
soil mechanics are well known to all of us. We have read his 
General Report and now Professor de Beer will summarize 
the parts of this report which deal with the subjects to be 
discussed this morning. Professor de Beer.

Rapporteur général: E. E. d e  B e e r  (Belgique)
Les organisateurs du Congrès ont prévu deux sessions 

pour la Division 3 qui groupe les problèmes se rapportant 
aux fondations directes et aux revêtements. A première vue 
une répartition logique semblait être de consacrer la session 
du matin aux problèmes de fondation et celle de l’après-midi 
aux revêtements. Toutefois des 48 rapports introduits, 33 se 
rapportent aux problèmes de fondation et 15 aux problèmes 
de revêtement. On pouvait donc craindre un certain déséqui­
libré entre les deux sessions.

Les problèmes de fondation directe peuvent être groupés 
essentiellement sous trois rubriques: 1) ceux concernant la 
capacité portante limite; 2 ) ceux concernant les tassements; 
3) ceux concernant la répartition des réactions du sol sous 
la semelle de fondation. Afin de tâcher d’obtenir une meil­
leure répartition entre les deux sessions, il a été finalement 
convenu que la session du matin serait consacrée aux pro­
blèmes de la capacité portante limite et de la répartition des 
réactions sol-fondation, tandis que celle de l’après-midi 
traiterait des problèmes de tassements et de celui des revête­
ments.

Dans la séance de ce matin je dois dès lors vous présenter 
un bref aperçu de la partie de mon Rapport général traitant 
des problèmes de capacité portante limite et de la répartition 
des réactions sol-fondation.

CAPACITÉ PORTANTE LIM ITE

De tous les rapports introduits il n’y a qu’un seul qui traite 
du problème de la capacité portante limite de sols purement 
cohérents. Bent Hansen (3/15) présente une méthode ap­
prochée pour des problèmes en déformation plane et qui 
tient simultanément compte des conditions statiques et 
cinématiques. Tous les autres rapports traitent des problèmes 
de capacité portante limite des sols pulvérulents.

Il est su que des essais sur semelles filantes de petites 
dimensions posées à la surface d’un sable donnent pour le 
facteur de portance N y des valeurs nettement supérieures 
aux valeurs théoriques. Différentes explications ont été 
avancées pour cette divergence. Lors d’une conférence à 
Essen, le professeur Meyerhof a conclu en disant que si on 
introduit dans les formules exactes les valeurs exactes des 
paramètres caractéristiques du matériau, on obtient la ré­
ponse exacte. On peut dès lors classer les explications avan­
cées en deux catégories.

1) Une première catégorie part de l’hypothèse que les 
formules ou déductions théoriques obtenues pour des maté­
riaux rigido-plastiques à volume invariant restent valables, 
à condition d’y introduire les paramètres caractéristiques du 
sol: (a) Une première explication donnée est alors que 
l’angle de cisaillement en déformation plane aurait une 
valeur environ 10  pour-cent supérieure à celle en déforma­
tion triaxiale. C’est l’explication de Brinch Hansen et de 
Meyerhof. (b ) Une autre explication est que pour une 
compacité donnée d’un sol pulvérulent la courbe intrinsèque 
n’est pas une droite caractérisée par des valeurs constantes 
de c et de <ï>, mais bien une courbe tournant sa concavité 
vers l’axe des contraintes normales, (c) Une troisième 
explication introduit les phénomènes de dilatance dont l’in­
fluence n’est pas nécessairement la même dans un essai 
triaxial, un essai de cisaillement direct, et dans les phéno­
mènes de refoulement sous une semelle. Cette influence est 
notamment étudiée dans le rapport de Feda and Pruska 
(3/10). Ce point mérite certainement une plus ample 
attention.

2) Une deuxième catégorie abandonne les résultats de la 
théorie des milieux rigido-plastiques à volume invariant, et 
part de l’adoption de surfaces de glissement jugées corre­
spondre aux formes expérimentales. Depuis le Congrès de
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Paris ont paru les contributions de Balla et de Hu. Dans la 
même catégorie on peut ranger la contribution de Gorbunov- 
Possadov (3/11) présentée au présent congrès. Une remarque 
générale concernant les méthodes se rapportant à cette 21' 
catégorie est qu’elles ne sont en général pas statiquement 
correctes, et que d’autre part les résultats que l’on obtient à 
partir d’une surface de glissement plus ou moins arbitraire 
sont fortement influencés par des variations même fort 
légères de la surface, de sorte que l’on ignore en fait où ils 
se situent par rapport à la réalité.

En définitive il existe pour l’instant des méthodes fort 
différentes pour déterminer la capacité portante limite. Il me 
paraît dès lors du plus haut intérêt de discuter au cours de 
cette séance des différentes méthodes, afin de clarifier les 
idées à ce sujet. Pour ma part je voudrais attirer l’attention 
sur les points suivants:

1) Les essais décrits dans le rapport de L ’Herminier, et al. 
(3/25) montrent que la différence entre les valeurs expéri­
mentales et théoriques du facteur de portance N q est de loin 
moins importante que celle entre les valeurs expérimentales 
et théoriques du facteur de portance N y. Or si les différences 
constatées étaient dues à une différence entre les angles de 
cisaillement de déformation plane et triaxiale, on dévrait 
s’attendre à un même ordre de grandeur pour la différence 
des valeurs expérimentales et théoriques de N q et JVv Les 
résultats des essais français semblent donc infirmer l’explica­
tion basée sur la différence des angles en déformation plane 
et triaxiale.

2) Les essais décrits par Milovic (3/30) indiquent que les 
valeurs obtenues par la méthode de Balla s’écartent pour 
certains sols de la réalité.

3) Les différences trouvées pour des semelles de petites 
dimensions ne sont pas nécessairement valables pour les 
semelles réelles. Une des raisons est que le phénomène de 
rupture progressive, lié d’ailleurs aux phénomènes de varia­
tion de volume (dilatance positive ou négative) n’est pas 
reproduisible à l’échelle. A ce sujet je puis renvoyer aux 
essais effectués par le Dr Muhs à Berlin, et aussi à la 
contribution de Lee (3/23) qui décrit des essais sur plaques 
de dimensions relativement grandes.

En dehors du problème de semelles soumises à des charges 
statiques se pose aussi de plus en plus le problème de 
semelles soumises à des charges dynamiques. Deux contribu­
tions importantes ont été introduites à ce sujet, celle de 
Triandafilidis (3/44) qui s’occupe du cas de sols purement 
cohérents et celle de Vesic et al. (3/45) qui s’occupent des 
sols pulvérulents. Dans le dernier cas les essais effectués 
montrent que la capacité portante limite de sable est fonction 
de la vitesse de chargement, et qu’à vitesse de chargement 
croissante la capacité portante limite décroît d’abord, pour 
remonter ensuite et atteindre un maximum sous des mises en 
charge quasi instantanées. Le problème de la capacité por­
tante limite sous des actions dynamiques, vu son intérêt 
pratique croissant, me semble dès lors être aussi un point 
intéressant de discussion.

Deux contributions, notamment celles de Mandel (3/27) 
et de West and Stuart (3/46), traitent de l’influence de la 
présence de semelles avoisinantes sur la capacité portante 
limite. Pour autant que la superstructure permet de re­
prendre les moments et les efforts tangentiels, les coefficients 
de majoration peuvent être importants lorsque l’entredistance 
des semelles devient relativement faible. Dans certains cas 
particuliers la prise en considération de cette influence peut 
dès lors amener à une économie appréciable. Ce raffinement 
pourrait alors être introduit dans la méthode décrite par Kany 
(3/20), indiquant, comment à partir des normes allemandes,

on peut déterminer la solution la plus économique pour une 
fondation directe sur semelles multiples.

Certains rapporteurs, notamment L’Herminier, et al. 
(3/25) et Livneh (3/26) traitent du problème de la capacité 
portante limite au cas d’un sous-sol composé de couches 
multiples, dont un cas particulier est celui d’une couche 
portante d’épaisseur limitée, et terminée inférieurement par 
un interface où l’adhésion est nulle. Kany (3/20), dans son 
mémoire, décrit aussi une façon empirique pour déterminer 
la capacité portante limite au cas où celle-ci est influencée 
par des couches de caractéristiques différentes. Comme de 
tels problèmes se présentent assez fréquemment aux practi- 
ciens, ils constituent sans aucun doute un sujet intéressant de 
discussion.

D ’autres problèmes ont été encore traités par les rappor­
teurs; ainsi Feda and Pruska (3/10) ont considéré l’influence 
des pressions hydrodynamiques sur l’apparition d’une pre­
mière zone plastique, Mintskovsky (3/31) détermine la 
capacité portante limite de fondations terminées inférieure­
ment en forme de cône, Granger (3/12) s’occupe de l’équi­
libre des parois de réservoirs d’eau, tandis que Penman and 
Watson (3/36), ainsi que Mehra and Natarajan (3/29) trai­
tent de l’application de la méthode de préconsolidation par 
surcharges temporaires et de l’emploi de drains de sable pour 
accroître la résistance au cisaillement et assurer ainsi une 
sécurité suffisante par rapport à la capacité portante limite. 
Ce sont là certes aussi tous des sujets très intéressants.

Eu égard au temps disponible, je puis en définitive propo­
ser comme sujets principaux de discussion, se rapportant à 
la capacité portante limite, les sujets suivants.

1) Validité des différentes méthodes de calcul théoriques 
pour la détermination de la capacité portante limite sous des 
fondations directes. Comparaison des valeurs calculées par 
les différentes méthodes et les données expérimentales ob­
tenues par des essais à l’échelle réduite et en vraie grandeur.

2) Capacité portante limite au cas d’un sous-sol composé 
de couches multiples ou de sols anisotropes.

3) Influence de la vitesse de chargement sur la capacité 
portante limite, incluant donc les chargements dynamiques.

4) Influence de semelles avoisinantes sur la capacité por­
tante limite.

RÉPARTITION DES RÉACTIONS DU SOL SOUS LES SEM ELLES DE 

FONDATION

En dehors des problèmes de la capacité portante limite et 
des tassements, se pose souvent au cas de semelles de grandes 
dimensions et de radiers généraux celui de la détermination 
de la répartition des réactions du sol sous le massif de 
chargement.

Les méthodes de calcul peuvent être classées en deux 
catégories: la première groupe les méthodes basées sur 
l’introduction d’un coefficient de raideur, constant ou 
variable; la deuxième celles qui assimilent le sol a un maté­
riau caractérisé par un module d’élasticité constant ou 
variable.

On ne peut se dissimiler que chacune des deux catégories 
est basée sur une simplification des propriétés du sol. Cela 
ressort e.a. clairement des résultats des essais décrits par 
Lee (3/23). Les modèles mathématiques dont on dispose 
(coefficient de raideur ou module d’élasticité constant) 
s’écartent donc plus ou moins fortement des propriétés 
réelles des sols.

Dans une étude remarquable Zaretsky and Tsytovich 
(3/48) établissent les équations générales du problème plan 
permettant de trouver la répartition des constraintes sous une 
semelle infiniment rigide et chargée de charges quelconques,
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posée sur un terrain à volume invariant et dont la loi de 
déformabilité est non linéaire et continûment variable avec 
la profondeur. Cette contribution montre elle aussi que les 
répartitions obtenues à partir d’une loi de déformabilité 
linéaire et d’un module de compressibilité constant peuvent 
dans certains cas s’écarter notablement de la réalité.

Une autre contribution fort intéressante est celle d’Egorov 
(3/9) qui traite du problème des tassements, du déversement 
et de la répartition des réactions sous une semelle en forme 
de couronne, considérée comme infiniment rigide et établie 
sur un massif semi-infini à module d’élasticité constant. Le 
cas des semelles circulaires pleines et des semelles filantes 
constituent des cas particuliers du problème traité.

La répartition de réactions ne dépend d’ailleurs pas uni­
quement de la raideur de la semelle, et des propriétés de 
déformabilité du sol de fondation, mais aussi de la raideur 
de la superstructure et de celle des liaisons entre le radier et 
la superstructure. Une méthode fort élégante et qui est en 
principe applicable quelle que soit la loi de déformabilité du 
sol de fondation, pourvu qu’elle soit linéaire, est donnée par 
Sommer (3/42).

Enfin Chae, et al. (3/5) traitent de l’influence de la vitesse 
d’application des charges sur la loi de répartition des réac­
tions du sol.

Il apparaît que les méthodes du coefficient de raideur sont 
de plus en plus abandonnées en faveur de celles basées sur 
un module de déformabilité.

Cependant pour obtenir des méthodes de calcul définitive­
ment valables, il est indispensable de connaître plus exacte­
ment les paramètres caractérisant la déformabilité des sols. 
A cet effet il est nécessaire de passer à une confrontation des 
résultats des différentes méthodes de calcul de la répartition 
des réactions du sol avec les résultats de mesures.

Je vous propose dès lors cette confrontation comme der­
nier point de discussion de la session de ce matin.

(Professor de Beer’s General Report appears on pp. 242—55.)

C h a i r m a n  C r o c e

I thank the General Reporter, on your behalf, for his very 
fine and excellent summary. Now we can pass on to the 
panel discussions.

Panelist: H. B o r o w i c k a  (Austria)
As time is short I won’t go into too much detail, but will 

consider the ultimate bearing capacity of shallow footings 
from a more general and practical point of view. Actually 
we have to deal with two questions closely related to each 
other: the method of computation to be applied in a special 
case and the magnitude of the shear parameters to be 
introduced into the computation. As the computation is very 
sensitive to the magnitude of the shear parameters, the two 
questions cannot be dealt with separately.

As far as shear strength is concerned we must always have 
in mind that stresses in soils are only fictitious average values 
and do not exist in reality. Therefore, the failure condition 
we use in soil mechanics can never have the meaning of an 
exact physical law but must be considered as a relationship 
based on the principle of probability. Taking this fact into 
account, we realize clearly that the shear parameters are 
seldom exact and constant values. Apart from scattering, 
which cannot be eliminated, the type of shear test and even 
the test procedure has a certain influence on the test result. 
In addition, I should like to point out that the shear para­
meters might change in nature as time passes. Since a 
relatively small deviation in the magnitude of the shear

parameters has a considerable influence on the result of 
computation, the computed bearing capacity is only a rough 
estimate.

As far as the method of computing the bearing capacity 
itself is concerned, there are two basic cases with simple and 
clear conditions: (1) Sudden loading of a fine-grained soft 
and fully saturated soil having such a low permeability that 
pore water pressures cannot dissipate; and (2) loading of a 
soil in such away that no pore water pressures have to be 
taken into account.

The first case refers particularly to soft saturated clays. 
The shear strength is to be assumed as one-half of the uncon­
fined compressive strength of the clay. The apparent angle of 
internal friction determined by quick undrained triaxial tests 
equals zero. The pore water pressures which are caused by 
quick loading are already considered by the assumption made 
on the shear strength. From many failures which have 
actually occurred with soft saturated clays, results show that 
this method is fairly correct. The method was extended by 
Dr. Skempton to partly saturated clays by introducing 
apparent shear parameters determined by quick undrained 
triaxial tests. In the case of stiff or hard clays the method 
becomes somewhat doubtful. In these cases, conditions are 
similar to those in hard rocks in which the average shear 
strength cannot be determined by tests using small samples. 
In the case of foundations on clay prone to slippage we must 
be very careful, particularly if horizontal forces are involved.

The second case refers to coarse-grained soils such as 
gravel and sand, and also to fine-grained soils after the dissi­
pation of pore water pressures. There are several formulae 
to compute the ultimate bearing capacity. In principle, these 
methods do not differ very much. They all use two shear 
parameters and obtain the ultimate bearing capacity as the 
sum of three terms, but there are great differences in the 
results of the computations. As these methods have been 
compared and discussed several times, there is no need to do 
so now.

We should never forget that all these formulae are based 
on small-scale tests frequently of very small dimensions. So 
far, we do not know whether extrapolation of these tests to 
prototype dimensions is permissible and, if so, to what extent. 
Because of this uncertainty it might be better to pay more 
attention not to the discrepancy of the results from various 
formulae but to the limit of validity of each individual 
formula and to the shear parameters to be introduced.

As long as we do not have a more positive proof or 
justification it would be wise to consider the computed 
bearing capacity a fictitious value which ideally should be 
the correct one but which in fact may deviate considerably. 
In spite of this, the computation of the bearing capacity is 
not useless; it should be done and is actually very helpful. 
But the work of the expert or engineer does not terminate 
with this computation. Based on his personal experience he 
has to judge whether in the case under consideration the real 
bearing capacity might be higher or even lower than the 
computed one.

In dense soils we do not have an opportunity to check the 
computed bearing capacity because, unfortunately, failures 
will not occur. But then we should not worry too much that 
we do not know the true safety factor in such a case.

I wish to call attention, however, to foundations on loose 
and extremely loose soils. Professor Terzaghi pointed out that 
no general shear failure will occur in such a case but that 
the footing will sink into the ground without a well-defined 
break in the load-settlement curve. He proposed to reduce 
the shear parameters to two-thirds in the case of a loose
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soil. But he did not tell us where the limit is at which the 
reduction must be made. There should also be a transition 
zone in which the reduction factor decreases from one- to 
two-thirds. In addition, we should ask whether the proposed 
reduction is sufficient in the case of an extremely loose sand. 
Tests carried out by Dr. Bjerrum showed that the angle of 
internal friction of very loose sand may drop considerably. 
These tests suggest that the reduction to two-thirds taken 
from the angle of internal friction of loose sand under 
normal conditions might not be enough in some cases.

I know at least one case in which a small bridge abutment 
was sinking continuously into the ground at a rate of one cm 
per month at a load which was one-half the bearing capacity 
value computed by Terzaghi’s local shear failure formula for 
loose sand. This sinking was accompanied by heaving of the 
ground surface 20 to 150 m away. (This shows that heaving 
can take place at very great distances from the footing.) 
Immediately adjacent to the bridge the soil surface settled. 
This is an effect that usually cannot be observed in small- 
scale tests.

In conclusion I wish to summarize the main points of this 
discussion.

1. The shear parameters with which we have to work are 
not absolute and true, but only probable values with a cer­
tain confidence limit.

2. On fine-grained soft saturated soils, the bearing capacity 
values for sudden loading are usually reliable.

3. On coarse-grained soil, on the other hand, various 
formulae yield differing results. Even more important than 
these discrepancies are the limits within which these formulae 
are valid and the magnitude of the shear parameters to be 
introduced.

4. These methods cannot be applied in loose and ex­
tremely loose soils. Here another phenomenon appears which 
Terzaghi called local shear failure or sinking into the ground. 
He gave some hints how to handle this problem but further 
studies are still necessary.

Panelist: R. L ’H e r m i n i e r  (France)

Dans son Rapport général, Monsieur le Professeur de Beer 
a mis en évidence la grande dispersion des valeurs de N T 
obtenues suivant les auteurs. C’est ainsi que pour un angle 
de frottement interne <p =  40°, N y varie de 38 (Sokolovsky) 
à 192 (Gorbunov-Possadov). De telles différences provien­
nent d’un certain nombre de facteurs. (1) Les fondations 
sont considérées comme lisses ou rugueuses, souples ou 
rigides. (2) Les auteurs se sont efforcés d’obtenir des schémas 
d’écoulement statiquement valables ou bien ont mis l’accent 
sur la détermination des lignes de glissement à partir des 
données expérimentales, c’est-à-dire à partir des trajectoires 
décrites par les grains du milieu sableux. (3) Enfin les limites 
du noyau élastique, qui se forme sous la semelle, ont un tracé 
différent suivant les auteurs— soit rectiligne, soit curviligne; 
certains préfèrent la simplicité du calcul à l’exactitude 
mathématique. Pour éclairer ces différent aspects du pro­
blème, nous allons examiner le schéma classique d’une 
semelle rugueuse, et le comparer au schéma d’écoulement 
obtenu par la méthode des caractéristiques.

FONDATIONS RUGUEUSES : SCHÉMA CLASSIQUE ET 

SCHÉMA RÉSULTANT DE L ’EM PLOI DE LA MÉTHODE 

DES CARACTÉRISTIQUES

Dans le schéma classique (voir la fig. 1) les lignes de 
glissement inférieures de la première famille limitant le 
domaine plastique sont tangentes en A suivant l’axe vertical 
de la semelle. Un dièdre de sol compacté d’arêt A, dont les

31-SCHEMA LUNDGREN. MORTENSEN

f i g . 1 . F o n d a tio n s  ru g u e u se s : sc h ém a  c la ss iq u e  et 
sc h é m a  ré su lta n t  de  l ’em p lo i de  la  m é th o d e  des 

c h a ra c té r is tiq u e s .

plans extrêmes passent par les bords de la fondation, a une 
ouverture égale à 7r — 2<p. Ce sol compacté comporte un 
noyau central élastique limité par les lignes de glissement 
inférieures de la première famille prolongées du point A à la 
surface de la fondation. Le surplus du dièdre est un équilibre 
plastique. Sur les bords du dièdre, les contraintes sont verti­
cales et tangentes aux lignes de glissement de la première 
famille. Sur un élément plan vertical centré sur A, les 
contraintes cr1 situées de part et d’autre de cet élément sont 
inclinées de l’angle >p sur l’horizontale et symétriques par 
rapport à l’axe vertical de la semelle (fig. la ) .  Il en résulte 
que la décomposition des deux contraintes cr, en contraintes 
normales et contraintes tangentielles donne le schéma “b” 
sur les faces verticales d’un petit cube élémentaire centré sur 
A. Les contraintes tangentielles sont toutes les deux dirigées 
verticalement vers le bas— ce qui est en contradiction avec 
le schéma “c” d’équilibre des forces, qui exige que les 
contraintes tangentielles forment deux couples égaux et de 
sens contraire. Le schéma classique n ’est donc pas statique­
ment valable dans la zone du point A.

Au contraire dans le schéma d’écoulement déterminé par 
la méthode des caractéristiques, ces lignes de glissement 
inférieures de la première famille ne sont pas tangentes en A, 
mais forment entre elles un angle égal à tt/ 2 — <p, c’est-à-dire 
un angle (77-/4 — <p/2) avec la verticale. Les contraintes 
principales en A sont l’une horizontale, l’autre verticale de 
telle sorte que l’objection présentée pour le schéma classique 
tombe d’elle-même. D ’ailleurs les caractéristiques limitant le 
domaine plastique ont été précisément choisies de telle sort 
qu’elles soient inclinées sur la verticale de l’angle (t t/4  — 
<p/2) à leur point d’intersection avec l’axe de la semelle— ce 
qui fixe la position du point A.

En ce qui concerne l’aspect cinématique du problème, 
l’étude expérimentale des trajectoires décrites par les parti­
cules de sol montre que ces trajectoires sont verticales sur le 
pourtour du noyau élastique. Si l’on admet— et ce n’est 
qu’une hypothèse-—que les caractéristiques des contraintes et 
les trajectoires des grains sont confondues, le schéma clas­
sique répond bien aux données expérimentales, alors que le
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f i g . 2. Sable de Loire sec, tamisé 0.5 à 2 mm. L’angle de frotte­
ment interne tp en fonction de la densité 7a.

schéma résultant de l’emploi de la méthode des caractéristi­
ques prêts à discussion puisque les lignes de glissement de la 
première famille ne sont pas dirigées suivant la verticale à 
leur point de rencontre avec le noyau élastique.

Toutefois, il est bon de rappeler que l’on ne connaît pas 
les conditions cinématiques générales à satisfaire pour mettre 
un milieu pulvérulent en état d’équilibre limite. Elles doivent 
résulter de la relation entre contraintes et déformations dans 
un tel milieu lorsque l’état d’équilibre est atteint. Mais cette 
relation est inconnue à l’heure actuelle.

Gorbunov-Possadov (3/11) donne un nouveau schéma 
d’écoulement en système plan basé sur les résultats expéri­
mentaux, c’est-à-dire sur les trajectoires verticales des grains 
de sable aux abords de la semelle.

L’auteur définit successivement à partir de la fondation et 
en s’éloignant progressivement de cette dernière: (a) Un 
dièdre de sable compacté sous la semelle. Ce dièdre se sub­
divise en un noyau élastique lié à la semelle et en une zone

f i g . 3. Valeurs expérimentales et théoriques de Ny 
en fonction de la densité 7a pour une semelle fi­

lante de 6 cm de largeur.

constituant le surplus du dièdre, mais en équilibre plastique. 
La totalité du dièdre délimite l’ensemble de la zone com­
pactée. (b) Une zone de transition, également en équilibre 
plastique, comprise entre le dièdre de sable compacté et la 
zone terminale des lignes de glissement (partie en équilibre 
de Rankine et partie calculée suivant la méthode des caracté­
ristiques). L’auteur a établi ce schéma d’écoulement avec le 
souci constant de rester dans le cadre des données expéri­
mentales.

Au sujet de ce schéma, le Rapporteur général formule les 
remarques suivantes: (1) Les vitesses dans les zones plas­
tiques sont dirigées suivant les lignes de glissement actives. 
Mais cette hypothèse peut être controversée. (2) Dans la 
partie plastique du dièdre, l’axe vertical constitue une enve­
loppe des lignes de glissement de la première famille. 
L’auteur s’est efforcé de rendre la solution statiquement 
valable “mais certaines singularités notamment le long de 
l’axe de symétrie en font douter.” On retrouve ici les objec­
tions présentées au sujet du schéma classique.

Nous serions heureux de connaître le point de vue de 
l’auteur. Quoi qu’il en soit, Gorbunov-Possadov fournit les 
valeurs les plus élevées du terme N y.

VALEUR DE L’ANGLE DE FROTTEM ENT À PRENDRE 

EN CONSIDERATION

Le sable utilisé à Paris au Centre expérimental de la rue 
Brandon est à l’heure actuelle du sable sec tamisé de Loire 
(dimensions des grains 0,5 mm à 2 mm).

Ce sable vient de faire l’objet d’essais de cisaillement 
systématiques en fonction de sa densité, soit par cisaillement 
rectiligne, soit par cisaillement triaxial (fig. 2). Il ressort des 
résultats obtenus, qu’à densité égale, l’angle de frottement 
interne est, dans la gamme des densités expérimentées plus 
élevé d’environ 3° pour le cisaillement rectiligne. Comme le 
précise le Rapporteur général, les auteurs dans leur ensemble 
seraient d’accord pour estimer que le cisaillement rectiligne 
fournit des angles, supérieurs d’environ 10 pour-cent à ceux 
résultant du cisaillement triaxial normal. (Avec le sable de 
Loire, nous avons obtenu 8 pour-cent.)

Il ressort de ce qui précède qu’à chaque densité correspond 
deux angles de frottement, et par conséquent deux valeurs 
théoriques de N7 par application d’un des schémas d’écoule­
ment. Nous avons pris la moyenne des valeurs, d’ailleurs 
très voisines, fournies par les schémas d’écoulement Terzaghi 
et Caquot (fig. 3).

D ’autre part, nous avons représenté sur la même figure, 
les valeurs expérimentales de N Y obtenues en laboratoire à 
l’aide d’une semelle filante de 6 cm de largeur. Le tracé des 
courbes montre que, sous réserve d’adopter l’angle de frotte­
ment obtenu par essai rectiligne, il y a une bonne concor­
dance entre les résultats expérimentaux et les résultats 
théoriques.

Toutefois, il ne semble pas que cette conclusion puisse 
faire l’objet d’une certaine généralisation.

En effet, les différents auteurs qui se sont intéressés à ce 
problème ont constaté que les résultats expérimentaux four­
nissent pour N y des valeurs égales à plusieurs fois la valeur 
de N y théorique.

En adoptant 10 pour-cent de majoration sur l’angle de 
frottement déterminé au triaxial, on obtient pour N y les 
pourcentages d’augmentation suivants: 57 (*p triaxial, 30°);
79 (ip triaxial, 35°); 115 (>p triaxial 40°). Ces pourcentages 
apparaissent faibles par rapport à ceux résultant de l’expé­
rience sauf pour <p =  40°. En effet nous avons obtenu avec 
du sable de Leucate trois fois la valeur théorique de N y pour
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<p compris entre 30° et 35°, et deux fois seulement cette 
valeur pour <p =  40°.

Certains chercheurs ont exprimé la crainte que la courbe 
intrinsèque des sables ne présente une concavité marquée 
vers l’axe des contraintes normales, et que de ce fait la 
résistance au cisaillement soit plus faible pour des contraintes 
élevées que celles résultant de la droite de Coulomb, géné­
ralement déterminée pour des contraintes normales infé­
rieures à 10 kg/cm.ca. Nous donnons (fig. 4) la courbe

T R IA X IA L  SUR SABLE DE LOIRE

f i g . 4. Courbe intrinsèque du sable de Loire.

In f lu e n c e  de CTZ su r la va leur de y>

intrinsèque du sable de Loire (pour une densité de 1,65-1,68 
tonnes m.cu.) jusqu’à des valeurs de la contrainte normale de 
l’ordre de 80 kg/cm.ca. Cette courbe montre que pour les 
valeurs habituelles des contraintes, concernant les fondations 
superficielles ou semi-profondes, et compte tenu du coefficient 
de sécurité généralement admis, on peut considérer que la 
droite de Coulomb reste applicable.

SEM ELLE UTILISÉE PAR LE CENTRE EXPÉRIMENTAL DE PARIS 

POUR L’ÉTUDE DES FONDATIONS SUPERFICIELLES

Le modèle (fig. 5) a été conçu pour étudier le problème de 
la portance des semelles filantes superficielles verticales ou 
inclinées avec un ancrage pouvant atteindre quatre fois la 
largeur de la semelle, dans une cuve à faces parallèles dont 
elle occupe toute la largeur.

La semelle est rigide, encastrée et ne possède qu’un seul 
degré de liberté suivent l’axe de déplacement du modèle. 
Elle est divisée en trois parties: deux parties extérieures de 
garde et une partie centrale de mesure. Ceci pour éviter de 
prendre en compte les perturbations dues aux parois. La 
partie centrale sensible de mesure à 3 cm de longueur pour 
une longueur totale du modèle égale à 20 cm.

Cette partie sensible libre par rapport aux parties de 
garde est équipée de deux micro-dynamomètres dont la 
déformation maximale est de 2 /100ème de mm. Ces dynamo­
mètres de même capacité de charge sont disposés symétrique­
ment par rapport à l’axe de la semelle, normalement à son 
plan. Ils permettent de déterminer le point d’application de la 
composante normale et sa valeur. De plus, l’un des deux 
anneaux dynamométriques est équipé de lames de flexion 
qui permettent de mesurer le moment résultant de toute force 
horizontale appliquée dans le plan inférieur de la semelle.

Enfin la hauteur et la nature de matière des parties de 
garde ont été choisies de façon qu’elles présentent le même 
module de déformabilité que la partie centrale. On peut

f ig .  5. Sem elle utilisée pa r le C entre  expérim ental de Paris pour 
l’étude des fondations superficielles.

assurer que parties de garde et partie sensible constituent, au 
point de vue déformation, un ensemble homogène et que 
toutes trois subissent le même déplacement.

CONCLUSIONS

La détermination théorique du term N y (suivant un 
schéma à la fois statiquement valable et cinématiquement 
possible demeure un problème posé. En l’état actuel de la 
question, seul un schéma du type Lundgren-Mortensen (fig. 
1 ) est à retenir.

En adoptant une majoration de 10 pour-cent sur l’essais 
triaxial normal on obtient des valeurs de N y qui se rappro­
chent des valeurs expérimentales surtout pour des angles de 
frottement voisins de 40°. Il n’en est pas de même pour des 
angles plus faibles comme nous l’avons vu. Mais il s’agit de 
petites semelles expérimentées en laboratoire. Il faut de­
meurer prudent pour les semelles de dimensions normales.
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Panelist: Y. K o i z u m i  (Japan)

I should like to start my discussion by considering the 
problem of the progressive failure of multi-layered soils. The 
actual soil which we encounter is neither homogeneous nor 
isotropic; it is anisotropic or multi-layered. Thus, when 
applying the bearing capacity theory established for homo­
geneous soils to such a soil, the foundation engineer must

f i g . 6. R e su lts  o f  sh e a r  b o x  tes ts  w ith  sensitive  
clays.

rely, to a greater or lesser extent, upon his judgment. The 
ultimate bearing capacity of multi-layered soils is commonly 
estimated using the average shear parameters of soils within 
the failure zone, if their soil properties are not widely dif­
ferent. The depth of the failure zone is usually taken as 
equal to or about twice the foundation width. Such design 
practice may occasionally lead to overestimation of the 
ultimate bearing capacity of multi-layered soils, especially in 
cases involving overconsolidated or sensitive clays.

Fig. 6 shows the results of shear box tests with several 
highly sensitive clays (ST =  20 to 60). As the clay is 
strained, it builds up an increasing resistance. But, under a 
given effective pressure, there is a definite limit to the resis­
tance the clay can offer, and this is the peak point strength 
i p. If the test is continued, then we find that as the displace­
ment increases the resistance decreases gradually to the 
ultimate strength j u. The difference between these two values 
is also considerable for overconsolidated clays and dense 
sands.

Even in a homogeneous soil, a failure surface under a 
foundation would not occur simultaneously throughout its 
entire length, but would start at points of maximum strain 
and develop progressively. In practice this progressive effect 
may be unimportant if the soil is uniform. But when the 
ground consists of different soils with different stress-strain 
relationships, failure occurs much more progressively or it 
proceeds in one soil layer after another. The ultimate bearing 
capacity of layered soils may thus be overestimated if the 
shear parameters are taken from the peak point strength for 
each of the layered soils. The degree of overestimation 
depends on the difference in shear and deformation para­
meters among the layered soils, and also on the thickness 
and sequence of the layers.

As an example of the simplest case, we performed plate 
loading tests with two layered clays whose shearing charac­

teristics are shown in Fig. 6. Undisturbed soil blocks were 
taken at several excavations by means of steel tubes 40 cm 
in diameter, and two-layered specimens were made by 
combining these clays. Great care was taken to avoid dis­
turbance. Loading tests were also made with the individual 
clays. The loading plate was 5 cm in diameter. The observed 
ultimate bearing capacity values of the two-layered soils 
were considerably lower in Cases B and C than those 
obtained from Button’s method (Button, 1953), and much 
lower than those calculated by the conventional practical 
method. The discrepancy seems to vary according to the 
method of calculation and the sequence of soil layers. The 
progressive effect would appear to contribute, at least par­
tially, to lowering the bearing capacity of the layered soils.

Another contributing factor influencing the overestimation 
of the ultimate bearing capacity of layered soils is the sliding 
surface. Sliding surfaces which occur in a layered soil may 
be not single or continuous but composite or discontinuous. 
Actual failure will take place along one of the potential 
sliding surfaces which has a minimum bearing capacity.

When the ground consists of soils with widely different 
properties, the effects of these factors affecting the ultimate 
bearing capacity are more pronounced. Consider a case in 
which a sand layer is underlain by a soft clay deposit. When 
load is applied, the sand layer certainly contributes to 
spreading it onto the underlying clay as long as both layers 
remain in an elastic state. When the shearing stress at any 
point in the layers reaches a yielding stress, the sand layer 
will be punched down and rupture will take place in the 
underlying clay. Tcheng (1957) observed that punching 
occurred vertically when loose cohesionless material with a 
thickness less than 1.5S (B =  width of footing) is placed on 
a very soft cohesive material. In general, the angle of punch­
ing surface depends largely upon the thickness and density of 
the sand layer, and the deformability and shearing strength 
of the clay. In a case of two-layer clays in which the upper 
layer is about six times as strong as the lower layer (Fig. 7 c ), 
it has been found that the punching occurred exactly vertical 
through the upper layer.

Since the sliding surfaces in stratified soils with widely 
different properties are affected by so many factors, further 
studies in this area should be made on the basis of observa­
tions of sliding surfaces in model tests.

I would now like to draw your attention to the fact that 
the bearing capacity of layered clays can decrease on both 
sides of a foundation some time after application of load, as 
already pointed out by Bishop and Bjerrum (1960) and 
Kenney (1964). In the case of layered clays, which occa­
sionally have a much larger permeability in the horizontal 
direction than in the vertical, pore water tends to move from 
the centre of the foundation towards the edges. Such water 
movement can cause pore pressure increases and swelling in 
zones near the edges of the foundation. Therefore, in this 
case the most unstable condition can occur some time after 
loading, whereas in isotropic soils a critical condition occurs 
always immediately after loading. Several examples of the 
failure have been shown for large foundations by some 
investigators.

I would like to mention the bearing capacity of soils 
involving thin sand layers or sand lenses, when they are 
subjected to a vibrating load such as earthquake or machine 
vibration. Since the sands contained in a clay deposit are 
usually in a loose state, they can liquefy due to vibration and 
cause serious disturbance in the surrounding clay. This has 
been explained by Professor Seed as the cause of landslides 
during the Alaskan earthquake of 1964. I observed similar
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phenomena in the Niigata earthquake of 1964. Two days 
after the earthquake we made a boring to take soil samples 
by a thin-wall tube sampler with a fixed piston. A sample 
taken from a depth of 5 m was silty clay with sand seams. 
When the sample was extruded from the sampler, clear 
water spouted out of the sand seams and the clay around

them was found completely disturbed. The sensitivity of the 
clay is about 10. When sampling was repeated 3 months 
later, no more excess pore water pressure was found in the 
sands, and the clay had regained some of its structural 
strength, although it had not returned to its undisturbed 
strength.
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Lastly, I would like to add some brief words with respect 
to the stratifying condition of sand layers for liquefaction. 
A large-scale liquefaction of sand layers occurred during the 
Niigata earthquake of 1964. The city of Niigata is situated 
on a thick sand deposit. Severe damage was concentrated in 
the region in which loose saturated sand layers extended 
from near the ground surface to great depths. Except in the 
top 5 m, liquefaction, in my opinion, resulted when the loose

---------= - N c r

f i g . 8. R e la tio n  b e tw e e n  c ritic a l 
v o id  ra t io  (iVer) a n d  d e p th  b e lo w  

su rfa c e  ( z ) .

saturated sands with void ratios higher than the critical void 
ratio were subjected to vibration and the escape of pore 
water pressure was prevented. In order to obtain the critical 
void ratio with depth, the standard penetration tests were 
made about two weeks after the earthquake at about 20 loca­
tions in the city where the same tests had been conducted 
before. A comparison was made between the penetration 
resistances, N  values, as measured at the same points before 
and after the earthquake. An intermediate N  value which 
did not change during the earthquake was determined as the 
N er which corresponds to the critical void ratio at that depth 
(Koizumi, 1964). The critical N  value is plotted against 
depth in Fig. 8. It appears that the distribution of damage to 
buildings could be fairly well explained by this curve. Sur­
charge with any material can certainly reduce damage to 
structures due to liquefaction. According to the investigation 
of the relationship between damage and N  value distribution 
connected with the N cr curve, it seems that when the top 
6 m or so does not liquefy during the earthquake, this con­
tributes very much to a decrease in damage, even when the 
underlying sands are very loose. The thickness of the top 
layer required to prevent damage due to liquefaction might 
depend, to some degree, on the thickness of the zone of 
liquefaction (Ohsaki, 1965).
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Panelist: J. A. J. S a l a s  (Spain)
Very often we judge the results of soil mechanics in a 

hypercritical way, probably because all of us who have felt 
the appeal of soil mechanics have hypercritical minds. We 
have followed the lure of a realm in which all mathematical 
reasoning has to be immediately followed by close experi­
mental checking. This school of thought for the treatment of 
the problems set before us by the soil, we have come to call 
soil mechanics. This hypercritical attitude is sound, provided 
that it does not lead to a lack of spirit inducing us to fall 
into empiricism, with the inaccurate slogan of “Nature does 
not know Mathematics.” But the fact is that nature is 
Mathematics itself: Mathematics materialized in the spin of 
the most elemental among its particles. We can be sure that 
whatever efforts we make to better the abstractions by which 
we try to represent the soil will be rewarding.

In this respect, we cannot forget that soil is anisotropic. If 
it is a sedimentary soil, it is anisotropic because of the 
seasonal variations in deposition. If it is an intrusive rock, it 
will probably be jointed. If of metamorphic origin, then 
anisotropy results from a combination of both causes. When 
we consider seepage we never forget anisotropy. We also 
have to take it into account when considering failure matters. 
It is impossible to ignore it in some types of soils and rocks. 
The study of the failure of anisotropic soils is not far ad­
vanced. This is especially true when considering the influence 
of anisotropy on plastic failure lines, bearing capacity, and 
the general safety factor.

I cannot, of course, present here a thorough treatment, nor 
even a decisive contribution. Nevertheless, a few months 
ago, we had to solve a special problem: a small dam, 25 m. 
high, which had to be founded on very suspicious ground 
formed by thin layers of marl and sandstone. I am going to 
tell you how the problem was solved by Dr. Uriel, the 
engineer in my laboratory who was put in charge of the 
problem.

The soil was considered as a “homogeneous jointed 
medium,” that is, a medium consisting of a homogeneous 
matrix with cohesion and internal friction defined by <j> and 
c, but one in which there is a single system of joints or 
diaclases along which the strength is defined by <£n and cD. 
In such a medium, failure occurs along surfaces that cut the 
layers constituted by the matrix, or along the joints according 
to the direction of the principal stresses. In this last case the 
failure will be called orthoplastic and the region in which 
this type of failure occurs, the orthoplastic region.

Fig. 9 shows, in a polar representation, that the apparent 
variation of the internal friction angle of a jointed medium 
is a function of the a angle that the major principal stress 
forms with the direction of the joints. If the a angle is con­
tained between the said limits, orthoplastic failure occurs. 
Beyond these limits, the slide lines cut the less resistant planes 
obliquely. This result, which had been deduced by theoreti­
cal considerations, is now confirmed by the experimental 
results shown to us yesterday by Mr. Armand Mayer in his 
lecture on rock mechanics.

Eq 5 of Fig. 10 indicates in a general way the limiting
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f i g .  9. Polar diagram of the angle of 
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condition for which failure does not distinctly occur in either 
of these two ways.

In a study of the failure of a ground wedge undergoing 
the application of external forces p and q, by the method of 
the characteristic lines, regions have been found in which 
failure occurs through the layer, and we call them isotropic 
regions. There also exist orthoplastic regions in which the 
condition of plasticity is determined by Eq 3 which expresses 
in an analytical way the condition graphically represented in 
Mohr’s plane; a line, drawn through the pole, parallel to the 
joint plane, cuts Mohr’s circle on the very line of intrinsic 
resistance of the joints. These regions can be studied using, 
for instance, Sokolovsky’s theories.

Eq 3, together with Eqs 1 and 2 which concern stress 
equilibrium, determines two systems of differential equations, 
the solution of which is direct, leading to Eq 4. If, at a 
boundary, the functions f x and / 2 which appear in these 
equations are known, the complete solution of the stress 
distribution in an orthoplastic region can be obtained.

Dr. Uriel has solved the failure problem for a special case 
by assuming the following three conditions:

1. The H  and H ' magnitudes are equal. This condition 
may seem arbitrary, but the fact is that for rocks with defects 
a tendency has been observed for the tangent of <j> and the 
cohesion to vary roughly proportionally to the matrix and to 
the defects. In another respect, the information relating to 
these constants will probably be so reduced that the adapta­
tion of the line of intrinsic resistance can be made without 
any supplementary error.

2. The ground of the sliding wedges is weightless. Con­
trary to what one would think, this simplification is not very 
important in rock mechanics and in many other cases (deep 
foundations, abutments, etc.) where the stress level is very
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f i g .  11. Isotropic and orthoplastic regions of failure, (a) Case I, 
(b) Case II, (c) Case III, (d) Case IV.



f i g . 12. Types of failures in a dam foundation, (a) Hypothesis I, (b) Hypothesis II, (c) Hypothesis III.
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high or where the movement occurs nearly in a horizontal 
plane.

3. Having used the method of characteristics, it is implicit 
that the ground is supposed to constitute a rigido-plastic solid. 
This limitation is not so important in the case of rock as in 
the case of clay or of granular materials.

In this way failure occurs in different ways for different 
cases. Presented in Fig. 11a is the case in which there are live 
regions, four of them being isotropic and one orthoplastic. 
Indicated in the same figure are the conditions which must 
be fulfilled for this to occur. In Figs. l ib  and 11c two iso­
tropic regions have disappeared, and finally, in Fig. l i d  the 
orthoplastic region remains alone.

But we were talking of a dam. Where is this dam? Here 
it is in Fig. 12. What type of failure threatens it? The in­
teresting point I want to make is that the expected type of 
failure depends on the definition adopted for the safety 
factor, and then, the expected ultimate load also depends on 
this same definition.

We can take as the safety factor the inverse of the ratio 
between the real force (sum of the weight of the dam, the 
pressure of water, and the uplift) and the force with the 
same direction and application point which would produce 
the failure. This is hypothesis I (Fig. 12a) which leads, in 
our case, to a safety factor of 47. We can assume that only 
horizontal forces increase, following the concept of the 
“shear friction factor” introduced by the U.S. Bureau of 
Reclamation. This is hypothesis II (Fig. 12b) with a safety 
factor of 5.02. Finally, we can take as safety factor the 
number by which one has to divide the parameters which 
define the lines of intrinsic resistance. In the present case, 
since there are two lines of intrinsic resistance, there are four 
parameters. It would not be reasonable to have the same 
safety factor for the four parameters, since knowledge about 
their safe value is very different for the four of them. The 
safety in regard to the friction in the matrix material, for 
instance, cannot be compared to the cohesion in the joints 
which can be so much affected by the action of water. The 
problem, as can be seen, has an infinite number of solutions, 
but in the present case, the answer given was that with a 
safety factor of two as regards friction, the safety factor for 
cohesion was 4.6, which seemed sufficient. The actual failure 
in this case was practically within the limit between the two 
possible ones drawn in Fig. 12c. This shows how the defini­
tion of the safety factor, already very important in the case of 
homogeneous ground, is much more important in the case 
of anisotropic ground, where forms of failure as varied as 
the ones here described, can be met.

I want to introduce a second point of discussion, the 
pressure distribution under foundations. It is very well 
known, and yesterday it was confirmed, that settlements in 
stiff clays are several times smaller than the ones calculated 
with the classical theories and the help of the oedometer. 
This is true even if we apply successively the Schmertmann 
and the Skempton and Bjerrum corrections. (In some regions 
of Spain, and particularly in Madrid, stiff clays are the 
general rule, and the classical methods nearly useless for the 
calculation of possible settlements.) In our opinion these 
discrepancies depend to a great extent on dilatancy. This 
includes not only the considerations on stress paths that we 
have been shown yesterday, but also the aspect of pressure 
distribution in the interface between soil and foundation.

Dilatancy depends on shearing stresses, and it is necessary 
to recall how little we know about correlation between calcu­
lated and actual shearing stresses under foundations. We 
very often forget to consider the rigidity of the foundation

when calculating settlement. For instance, it is usual to 
calculate the settlement of the “characteristic points” without 
taking account of the same. These practices are based on the 
fact that mean settlements do not differ very much between 
a rigid foundation and in a uniformly loaded area, if they 
are placed on a hypothetical Boussinesq half-space. But this 
cannot be true in the case of a half-space of a dilatant 
material. In other words, at the time of calculating the 
pressure distribution, how rigid is a foundation?

In many foundation designs we look on the one hand at 
the calculations of bending moments and stresses that the 
structural engineer has made on the hypothesis that the 
structure behaves as an elastic continuum. On the other 
hand, the soils engineer admits the possibility of differential 
settlements say of 0.3 or 0.5 per cent of the distance between 
columns. In most cases these are high enough to produce the 
failure of the structure as calculated by elastic methods. 
Fortunately structures behave plastically. It seems that the 
time has come to begin openly to take into account this fact 
and not to calculate foundation beams and rafts in an elastic 
way, while admitting that they can support deformations that 
are several times those that they could withstand if behaving 
elastically. (This does not apply in principle to structures that 
support predominantly live loads, as for instance crane 
beams, where it seems convenient to secure an elastic state 
of deformation.)

C h a i r m a n  C r o c e

Thank you gentlemen. We will now have a short recess.

( There followed a brief intermission.)

C h a i r m a n  C r o c e

The oral discussors who have been chosen are Bent Han­
sen (Denmark), H. Muhs (Germany), A. Rabinovici 
(Switzerland), B. Prange (Germ any), T. Tassios (Greece), 
H. Militzer (Germany), R. A. Ashbee (Great Britain),
A. P. Sinitzyn (U.S.S.R.).

B e n t  H a n s e n  (Denmark)
Professor Gorbunov-Possadov (3/11) has given an in­

genious calculation of the boundary to the rigid body of sand 
beneath a strip foundation loaded to failure by a vertical and 
central load.

The basic assumptions seem to be incorrect, however. 
Because of the symmetry there cannot be shear stresses along 
the axis AB in Fig. 3 of the paper, and the stresses can 
hardly be assumed to be zero at the point A; at least this is

f i g . 13. Displacement field under a strip foundation. Photo­
graphed in a pin model (<p — 23°).
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incompatible with the stress calculation along the slip line 
connecting A with the surface OE.

Also, the stress distribution is only used to determine the 
shape of the boundary to the rigid body. Outside this boun­
dary, the stress distribution is calculated by means of the 
classical theory of plasticity. The boundary to the rigid body 
acts in this calculation as a perfectly rough wall. It will 
therefore be an envelope of slip lines. This calculation would 
be correct if the rigid body was made of concrete. Being a 
sand body, it will not be stable against the stresses acting 
along its boundaries. The stress distribution used to find the 
shape of the body is not relevant in this respect, because it 
does not give the same stresses along the boundary as does 
the stress distribution from the slip line field outside the 
body.

Therefore, the bearing capacity calculated from this latter 
stress distribution will be too high. I believe that the Lund- 
gren-Mortensen stress distribution, presented to the Zurich 
Conference in 1953, which is at least statically possible, 
gives the best approximation presented as yet to the theo­
retical bearing capacity of a strip foundation.

In a Master’s thesis presented by Damgaard to the Techni­
cal University of Denmark in 1951, in which this solution 
was calculated for the first time under the guidance of 
Professor Lundgren, the field of strain characteristics was 
also roughly indicated, assuming coinciding principal stress 
and strain directions and constant volume. A calculation on 
the basis of the displacement field seems to show that the 
Lundgren-Mortensen solution is in fact also kinematically 
possible, at least when there is no surface loading.

Fig. 13 shows a field of displacement observed in the pin 
model of the Danish Geotechnical Institute. It corresponds 
closely to the theoretical field when the angle of internal 
friction for the pin material, which is 23°, is introduced in 
the calculation. In this picture the rigid body is clearly 
distinguished from the radial and surface zones. In the latter 
zones the particle movements form an angle with the horizon 
which is very nearly 45°.

Incidentally, the lines one can see on the picture, that is 
the trajectories of particle movements, are neither slip lines 
(stress characteristics) nor strain characteristics, except in 
part of the surface zones. The field of displacements does 
not even cover the whole rupture figure. This figure contains 
zones, in the rigid body beneath the foundation as well as in 
the rigid body outside the moving sand mass, that are stressed 
until failure but are not deformed after the final state of 
failure has been reached.

In conclusion, it seems that the Lundgren-Mortensen solu­
tion is both statically and kinematically possible. It is there­
fore a mathematically correct solution. Discrepancies be­
tween theoretical and observed bearing capacities are not, 
therefore, a result of the theory, but rather to the determina­
tion of friction angles in the laboratory. This fact has been 
recognized by the new Danish Code of Practice for Founda­
tion Engineering, in which it is specified that the friction 
angle measured by triaxial tests should be increased by 10 
per cent before it is used in full-scale problems of plane 
strain.

H. M u h s  (Germany)
The General Reporter, Professor de Beer, has given in his 

contribution to this conference a report about the influence 
of the phenomenon of progressive rupture on the bearing 
capacity and the equations for its numerical determination. 
He treated this problem in connection with our tests in Berlin

to investigate the failure behaviour of sand under footings 
with a flat foundation. I think it will be of interest to you 
to hear something more about our observations of this 
phenomenon.

Performing large-scale model tests with footings, 0.5-1 m 
wide and 0.5-2 m long, embedded at a shallow depth (maxi­
mum 0.5 m) into fine to medium sand varying in density 
from rather low to very high, we found that considerable 
settlements of the footings and corresponding movements in 
the surrounding stratum were needed to reach the state of 
rupture, particularly the real failure load. Fig. 14, for
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f i g .  14. Settlement and heave o f  sand.

example, shows in the first part of the loading test the settle­
ments of the surface around the footing, in the second part 
how the settlements change over into a heave, and in the 
third part failure has occurred and the sliding mass is now 
moving very steeply upward.

In the second part of the loading what we call the failure 
of the soil occurs. But there is generally no distinct load at 
which the bearing capacity of the stratum is overcome. This 
is especially true of the general case where the footing has 
a circular or square shape and is not directly on the surface. 
The second part of the test—the part between the first heav­
ing movements at the surface and evident failure—extends 
over a rather long period.

Progressive heaving of the surface around a test footing 
is shown in Fig. 15A. In this test the water level at the start 
was exactly at the surface and was not changed; therefore 
the zone with the upward movements is easily recognized. 
Fig. 15B shows the same footing after the total failure was 
reached and there is an obvious difference compared with 
Fig. 15A. It is nevertheless difficult to say what is really the 
bearing capacity in such cases: the load causing the first 
upward movements will be too low and the load causing the 
final movement, the outpressing of the sliding mass, will be 
too high.
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f i g .  15. Progressive failure as evidenced by increasing heave of 
sand around footing.

But there is another difficulty. With regard to the move­
ments in the sand mass before failure, we have to consider 
that these displacements in a non-constant-volume soil will 
cause a change of porosity and therefore of the original 
shear strength. Furthermore we cannot expect that these 
displacements will take place at the same time and to the 
same extent at all points. With the gradual increase of the 
load, the bearing capacity is not immediately mobilized at 
all points of the sliding area, but at first only where the 
shearing forces are the largest, from which points the 
alteration of the soil properties extends to other points. This 
gradual progression causes modifications of the original 
strength of the sand along the sliding surface and is known 
as the phenomenon of progressive rupture. In our first test 
report in 1954 we pointed out that because of this pheno­
menon we cannot expect a uniform shearing resistance along 
the total sliding surface. Furthermore, equations which have 
to work necessarily with a constant shear value must not be 
expected to yield good agreement with test results or with 
reality where this phenomenon takes place (for instance, in 
sand, or generally in non-constant-volume soils).

Last year we repeated a test to demonstrate that the pro­
gressive rupture really does exist and how it functions. A 
series of long vertical glass tubes each with a diameter of
6 mm were inserted in the sand on both sides of a rectangular

The line of sliding (Fig. 17), easily distinguished by the 
vertical cylinders of dark sand which were inserted into the 
sand strata before the test and cut out after the test, shows 
the size of the deformations in the same vertical plane in 
which the glass tubes stood during another test. The hori­
zontal displacements are rather large. They amount to 9 cm 
and are due to the total settlement of the footing of 14 cm, 
whereas the settlement at failure was only approximately
2 cm. It is evident, that a real shear zone with very marked 
relative displacements in the sand mass was produced by the 
test, and furthermore that in this shear zone the phenomenon 
of progressive rupture took place. That means that the void 
ratio and hence the effective shearing resistance of the sand 
was changed in a progressive way in this zone during the 
test beginning in the vicinity of the footing. All of you know 
that shear deformation alters the density of sand by dilata­
tion in a dense sand and compaction in a loose sand, and

f i g .  17. S ec tio n  sh o w in g  lin e  o f  fa ilu re  b e n e a th  fo o tin g .

footing. The tubes were closed at the lower end and filled 
with coloured water, which could be observed on the surface 
(Fig. 16). During the first period of the test the water level 
did not change in any of the tubes. That means that under 
the first loads the lateral displacements were limited and so 
small that no tube was broken by the moving and then 
sliding part of the soil mass. In a later stage of the test the 
water in the first tube near the footing disappeared, as the 
soil movement of the sliding part was so large that the glass 
tube was broken by shearing or bending forces in the sand, 
but the other tubes at this stage were still stable. They were 
broken one after another in a progressive manner as the 
load was gradually increased.

idenced by loss of liquid in glassf i g .  16. Progressive failu:
tubes.
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that there is a very strong relation between the density and 
the angle of internal friction, which can lie between 30° and 
about 45°, according to the original void ratio.

It is obvious that under these circumstances no equation 
based on a constant shear value along the total sliding area 
can meet the real conditions where progressive rupture is 
acting. Its influence depends on the deformation before the 
failure and will be larger when the settlement of the footing 
is relatively large. As the settlement of a footing is larger 
under big footings, and also larger when the footing is not 
founded directly on the surface but is embedded in the 
stratum, the influence of progressive rupture will be much 
greater under large than under small footings. Most model 
tests in the past were performed at the surface of a test 
box with small or even small model footings (some­
times of a size of a cigarette packet). Under these test 
conditions only very small settlements took place before 
failure which may explain why the influence of progressive 
rupture has been neglected so far.

I believe that it will be nearly impossible to introduce this 
influence in the equations for the bearing capacity, and it is 
my opinion therefore that these equations cannot be solved 
on a purely theoretical basis but that they need data yielded 
by experiments with larger footings so that the effects of this 
theoretically insurmountable problem are contained in the 
results.

A. R a b i n o v i c i  (Switzerland)

La présente participation à la discussion consiste dans un 
bref exposé d’une étude expérimentale concernant les plaques 
sur sol élastique.

En suivant les derniers développements des méthodes 
élaborées dans le calcul des dalles appuyées sur le sol, on se 
rend compte que les chercheurs ont adopté l’hypothèse de 
Boussinesq comme base de calcul plutôt proche de la réalité 
du sol. Le traitement qui en découle reste cependant difficile 
et, jusqu’à présent, beaucoup de problèmes n’ont pas trouvé 
de solution. Pour cette raison, les méthodes d’approche 
offrent dans certains cas des solutions satisfaisantes et acces­
sibles à l’ingénieur praticien.

C’est ainsi que nous connaissons les méthodes du Dr. 
Grasshoff, Jemoschkin, et Gorbunov-Possadov qui se sont 
proposés de remplacer le diagramme continu de la charge de 
réaction par un polygone étagé (dalles circulaires) ou bien 
d’exprimer la ligne de déformation par une loi mathématique 
(dalles circulaires et rectangulaires). Les résultats ont toute­
fois montré que, tout en se basant sur la même hypothèse du 
semi-espace élastique, des divergences apparaissent dans les 
résultats obtenus. D ’autre part, ainsi que le Dr. von Guten 
l’a montré, les moments de fléxion, pour les dalles circulaires 
et carrées, symétriquement sollicitées, sont peu sensibles à la 
variation de la charge de réaction. Si on admet une charge 
de réaction uniformément répartie pour une dalle circulaire 
chargée au milieu, au lieu du diagramme classique corre­
spondant à la dalle infiniment rigide, on obtient une diffé­
rence de 10 pour-cent de la valeur du moment de fléxion 
maximum.

II paraît donc utile de confronter les résultats théoriques 
par des essais sur modèles. Nous avons essayé de réaliser une 
étude expérimentale sur modèles réduits en appliquant la 
méthode Moiré. Cette méthode semblait adéquate à ce 
propos, car elle offre la possibilité de calculer le moment de 
flexion, grandeur utile dans la pratique. Voilà brièvement 
l’idée de cette méthode (fig. 18).

Un modèle réduit de l’élément à étudier (A) est fait de 
perspex noir miroité et appuyé en position verticale sur une

o
C h a r g e

F

Bas« rigide

Couche é lastique  

M odèle miroite'

Ecran couvert de lignes 
blanches et nores

Apare il photogr

f ig . 18. Montage expérimental.

couche élastique de caoutchouc (B). Sur l’écran (D) est 
déssiné un réseau régulier de lignes équidistantes blanches et 
noires, qui se reflète sur le modèle. Par l’application des poids 
(F) ,  sa surface se déforme, l’image du réseau se distord et 
elle est prise sur le même négatif. L’interférence du réseau 
déformé avec l’original crée des franges qui représentent des 
lignes d’égale pente dans une direction choisie, donc des 
lignes dw/dx — constant. Le calcul de la variation de ces 
lignes offre les valeurs de la courbure des points considérés à 
l’aide desquelles on calcule les moments de fléxion:

„ / a w  , d ~w 

*  -  - %  +  *  d ?  

où w =  déflexion de la dalle.
L’object du présent mémoire était d’étudier la relation 

entre les moments de flexion et la rigidité des dalles pour les 
charges concentrées disposées au centre, la couche élastique 
restant toujours la même. D ’autre part, on a comparé les 
résultats obtenus pour les dalles circulaires et carrées de 
même rigidité et dimensions. Finalement, un essai a été fait 
pour observer le comportement des dalles rectangulaires.

d e s c r i p t i o n  d e s  e s s a i s  e t  r é s u l t a t s  

Trois dalles circulaires de diamètre d — 20 cm et trois 
dalles carrées de côté b — 20 cm ont été étudiées. Leurs 
moments d’inertie ont été choisis de sorte qu’elles puissent 
représenter les rigidités souvent rencontrées. La couche 
élastique d’épaisseur 50 mm est identique pour tous les essais 
et son module d’élasticité E s =  12 kg/cm.ca. De même, la 
surface de répartition de la charge concentrée appliquée au
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centre est de 1.0 cm.ca. Les données concernant les modèles 
sont résumées dans le tableau I. Afin d’accorder aux résultats 
un caractère général et pour faciliter la délimitation entre les 
différentes catégories de fondation, l’indice de rigidité rela­
tive a été employé K s.

Reprenons le dans la forme introduite par Schultze: K s =  
1/12 X E / E ^ h / R ) ' - ' ,  où E , E a =  module d’élasticité du 
matériau de la dalle et du sol, h =  épaisseur de la dalle, d,b 
=  diamètre ou côté de la dalle, R  =  rayon de la dalle. A 
cause de l’espace limité, deux essais uniquement sont repré­
sentés ici: No 2 et No 5 (figs. 19 et 20).

f ig . 19. Résultat type.

f ig . 20. Résultat type.

CONCLUSIONS

1. L’examen des franges Moiré pour tous les essais révèle 
des contours fermés. Ce fait indique un changement de signe 
de la pente qui se situe sur un cercle concentrique à la charge 
sous forme d’onde. La ligne de déformation présente une 
courbure concave sous la charge et une courbure convexe 
plus loin. En effet, les moments M r et M x calculés le long 
d’un diamètre à travers la charge (fig. 2 1) passent des 
valeurs positives autour de la charge, aux valeurs négatives. 
Cette observation sera importante dans l’accumulation des 
influences provenant de plusieurs charges en un point donné.

2. La notion de la longueur caractéristique joue un rôle 
important dans la définition de la rigidité des dalles. Elle est 
donnée par l’expression: L =  3\ / (2 D /K ) ,  D — E h* /12(1 — 
¡i)2, K  =  £¡5 /( 1 — ¡j-o2), où ¡x =  coefficient de Poisson. En 
effet, on constate que pour les dalles rigides, cette valeur 
approchée est d’environ 0,7R  tandis que pour les dalles 
fléxibles elle est d’environ i t /3 . On pourrait donc, à l’aide de 
la longueur caractéristique, estimer le dégré de rigidité et par 
conséquent le comportement statique de la dalle.

3. Les diagrammes du moment radial obtenu et la corré­
lation établie entre ces moments et la longueur caractéristique 
suggère l’idée d’assimiler chacune des dalles circulaires étu­
diées aux dalles de grande étendue de même rigidité cylin­
drique D. En effet, admettons les dalles de rayon donné 
comme étant des dalles de grande étendue et calculons les 
diagrammes du moment radial en fonction de l’abscisse 
relative x /L  (L variable); nous observons une concordance 
entre les valeurs théoriques et expérimentales ainsi que entre 
les régions de moments positifs et négatifs. D ’autre part, le 
calcul des mêmes dalles, d’après les méthodes mentionnées 
plus haut comme étant des dalles de diamètre déterminé, 
amène des écarts. Ce fait laisse entrevoir la possibilité de 
simplifier le calcul des moments de flexion.

4. Le comportement des dalles circulaires et carrées de 
même rigidité et dimensions ne présente pas de différence. 
Ce fait apparaît comme une conséquence de la discussion sur 
les moments de flexion. C’est ainsi que nous retrouvons la 
concordance avec les résultats obtenus par le Dr. von Guten 
dans les dalles circulaires et carrées de mêmes dimensions 
et chargées uniformément.

5. Une tentative a été faite pour comparer le comporte­
ment des dalles dont les rapports des côtés sont 1/1, 1/1,5, 
1/ 2  et chargées par une charge concentrée disposée au 
milieu. On constate que pour le rapport 1/2 les dalles rigides 
se comportent comme des poutres, donc se déforment dans 
la direction longitudinale uniquement, tandis que les dalles 
flexibles maintiennent l’effet des dalles dans le même rapport. 
Ceci provient également de la signification de la longueur 
caractéristique.

B. P r a n g e  (Germany)
I would like to make a few comments on the problem of 

pressure distribution underneath shallow foundations. Most
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approaches to the solution of the problem of pressure dis­
tribution in a half-space are based on the theory of elasticity 
and especially on the assumption of a shear-stress-free 
surface, thus involving perfect lubrication of the contact 
zone. This, of course, is not true with most foundations. 
However, only a few contributions to this Conference deal 
with the problem of shear stress distribution underneath 
foundations due to friction or interaction of foundation and 
subsoil. It was pointed out very early by Froehlich that the 
stress distribution in the half-space is very much affected by 
shear stresses in the contact zone. Recent tests by different 
authors, which obviously showed the effect mentioned, 
had often been considered incorrect due to false test con­
ditions. There was, however, until now no exact explanation 
for the remarkable stress concentration under foundations 
found in many tests. Since the design of a foundation 
depends on the pressure distribution, but also on the shear 
stress distribution in the contact zone, it is of importance, 
from an engineering point of view, to know the influence 
of surface friction, as Professor Salas pointed out during the 
Panel Discussion.

During our studies concerning bearing capacity and stress 
distribution underneath shallow foundations on sand we 
found that the bearing capacity and the stress distribution 
were very much influenced by the shear stresses in the contact 
zone. The investigation of the stress distribution in the half­
space was done by means of telemetric pressure cells 
operating on the same principle as the telemetric pore pres­
sure cells mentioned in paper (2 /33 )  of these proceedings. 
The evaluation of the theoretical calculations and the test 
results are shown in Fig. 22 (see Prange, 1965). It may be 
noticed that the stress concentration around the load axis 
reaches values about twice the stresses calculated on the 
assumption of a shear-stress-free contact zone. The problem 
of stress redistribution due to shear stresses is similar to the 
one connected with end restraint of triaxial test samples

constant pressure distribution rigid foundation

i,o j—:—1—!----i t t t i  1.0

f i g . 22. Pressure distribution underneath circular 
foundations.

due to end-cap friction. This problem is recognized by many 
authors and has led to the application of lubricants between 
the sample and the end cap to perform triaxial tests in cor­
respondence with the theory. The problem was theoretically 
investigated by Egger (1965), whilst Prange (1965) dealt 
with the similar problem of foundations. For further investi­
gation of both problems, tests will be performed in our 
institute to measure the stress distribution within the triaxial 
test sample, in addition to the end-cap friction, as well as 
the shear stresses underneath foundations on sand.

I want to point out, however, that the problem of shear- 
stress distributions must gain our interest and further research 
should be done theoretically, as well as by testing. Refined 
theories and sophisticated tests lead to correct results only 
when all parameters involved are taken into consideration.
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T . T a s s i o s  (Greece)
I would like to comment on Dr. Sommer’s most valuable 

contribution, paper 3/42, concerning the exact solution of 
the problem of the participation of the superstructure’s 
rigidity in the behaviour of foundation beams.

There is an increasing need among practising engineers 
for a better understanding of the function of foundation 
beams. Three aspects of the problem have been considered 
to date: (a) soil stress distribution underneath a foundation 
beam; (b) participation of the superstructure; (c) distri­
bution of loads into two directions in the case of a grid of 
beams in a raft foundation. As this last problem will not be 
the subject of actual discussion, I would simply like to remind 
you that relatively little work has been done on this theme 
and that a symposium dealing with it would be very helpful 
for engineers.

As far as the first problem is concerned there exists many 
solutions based on different assumptions about the law of 
soil reactions, but the problem of how to choose the appro­
priate law of soil reactions in each specific case still remains. 
In this connection it is opportune to remember that in cases 
of thin soft layers on rock, the Winkler theory, in spite of 
its non-scientific conception, is much more realistic than the 
methods based on the theory of the elastic half-space.

Looking now at the problem of the superstructure’s par­
ticipation, I would like to say how much I have appreciated 
the exact and precise solution presented by Dr. Sommer. 
Unfortunately, in everyday practice we cannot afford similar 
numerical work, in spite of the use of electronic computers. 
Also, the well-known uncertainties about the correct evalua­
tion of many other factors of the problem ask, in my 
opinion, for a rather rough estimation of the role that the 
superstructure’s rigidity can play.

In this connection a very rapid method would be to con­
sider an average value of the initial deflection ( Y 0) of a 
characteristic point of the foundation beam, considered in 
isolation, and to suppose the superstructure to be reacting 
to that deflection by developing an unknown system of forces
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f i g . 23. Analysis of bending moments and deflections of a foundation beam.

“X ” (Fig. 23). For X  =  1, one can find the corresponding 
deflections Sx and Ux of the superstructure and the founda­
tion beam respectively. Expressions for these deflections can 
readily be found on the basis of tabulated values for a certain 
law of soil reaction. Now, as the final deflections (Y 0 — X U x) 
of the beam and (X Ss ) of the superstructure will be equal, 
one can find the leading value of the load X  induced by the 
superstructure to the foundation beam. Finally, a closed 
formula for the corresponding maximum bending moment 
M 0 is given; and this is the moment which is opposed to the 
initial moment in the centre of the beam.

For reasons of discussion only, we have used here the 
easily tabulated, but generally incorrect, theory of subgrade 
reaction but the same can be applied with any other tabu­
lated law of soil reactions. In Fig. 24 typical numerical 
coefficients for use in the above formula of Fig. 23 can be 
found.

Finally, Fig. 25 shows in full lines the values of this 
bending moment, M 0, as a function of the relative stiffness, 
K, between foundation and soil, and the ratio, Z, of rigidities 
between the superstructure and the foundation. For the trans­
lation of K  to /3L of the Winkler theory the following rela­
tion has been used: C =  (cr/y) =  E J L ,  where L is the 
smallest dimension of the building. Appropriate evaluation 
of this relationship in other cases should lead to some dif­
ferent figures.

From Fig. 25 a number of conclusions can be drawn. 
First of all, Dr. Sommer’s values of moments are positive, 
but the moments derived from the theory of subgrade 
reaction are in this case negative. Thus, the error committed 
from the use of an improper method would be catastrophic. 
However, from the point of view of the superstructure, the 
general trend of the curves is quite the same, and the same 
holds, for the percentage of the alleviating moments. Never-
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f i g . 24. Graphical presentation of numerical coefficients.
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f i g .  25. Final bending moments in the middle of the foundation 
beam according to two different methods of analysis: (a) elastic 

half-space (£s); (b) subgrade reaction (C).

I ft P

f i g .  26. Bending moment diagrams.

theless, one will probably think that this kind of computation 
refinement is not very realistic when the errors due to the 
adopted method of analysis itself can be much greater. On 
the other hand, it is well known that elastic solutions are 
extremely sensitive to small variations of any one of the un­
certain parameters entering the problem. From this point 
of view, ultimate methods of design yield more reliable and 
realistic solutions.

As the first plastic hinges appear at the supports, both in 
the superstructure and the foundation beam (Fig. 26), the 
superstructure’s rigidity will not be able to react to a further 
increase of differential settlements in the foundation. At that 
stage of the plastic behaviour of the structure and the soil, 
elastic deflections of the foundation beam could be ignored 
and the settlement curve could be considered as formed of 
linear parts, and an approximately linear soil stress distri­
bution can be accepted, properly adjusted to every specific 
case by means of a shape factor, v. Although this shape 
factor will largely depend on the actual soil conditions, its 
maximum possible value (v =  oo or v' =  oo, see Fig. 27) 
corresponds to certain limit values of bending moments

which are indicated on the diagram of Fig. 27. As a matter 
of fact, the form of soil stress concentration will gradually 
change during the soil plastification process from the v to 
the V  type of distribution, a self-stopping phenomenon 
which contributes to a larger factor of safety. This is the 
reason why extreme values of moments will not result (see 
shadowed area in Fig. 27). The order of magnitude of the 
expected maximum moments will be approximately equal 
to ±  0.10 PL, however, or in terms of Fig. 25 ±  0.03qmBL2. 
This moment has to be equal to the ultimate moment 
capacity of the reinforced concrete section of the foundation 
beam, in which symmetrical reinforcement has always to 
be provided.

A further development of such a method will contribute, 
in my opinion, to a better, simpler, and more realistic ana­
lysis of foundation structures.

l/ 2 

( - 0,09 PL)

f i g .  27. Details of bending moments in a foundation 
beam.

Area o f the most 
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H. M i l i t z e r  (Germany)

In order to determine the homogeneity of the pavement of 
roads and runways of airfields, the thickness and physical 
characteristics of those pavements, and also the same charac­
teristics for the subgrade, we developed a vibratory technique 
in the Institut fiir angewandte Geophysik of the Berg- 
akademie Freiberg (German Democratic Republic). The 
instruments are also able to locate cracks inside concrete 
structures.

f i g .  28. Vibrator. G, box; F, spring; Sp, spider; M, magnet; 
S, coil; V, peg for connection; O, subject under investigation.

The left-hand side of Fig. 28 shows the schematic sec­
tions of the vibrator when used in the vertical and in the 
horizontal positions. The right hand side of Fig. 28 shows a 
photograph of the instrument. At this time I will not describe 
the instrument in detail; its basic principle is an electro­
dynamic exciter. The frequency range of the vibrator is 
between 20 and 10,000 cycles per second. If the thickness of 
the subject under investigation is small in comparison to the 
length of the excited elastic waves— for example, in the case 
of road and airfield pavements or spread foundations of a 
building—so-called flexure waves are always obtained. 
Flexure waves in every instance show normal dispersion; 
that means the propagation velocity of the flexure waves 
increases with the frequency. If we know the dispersion 
curve we are able to determine for example the thickness, 
provided the density, Poisson’s ratio, and the elastic 
modulus of the material have been previously established by

f i g .  29. Dispersion curve for a concrete pavement. 
(V =  propagation velocity of flexure waves.)

some other method. Obviously it is possible to obtain one 
of the other physical characteristics in a similar manner if 
the thickness and the other remaining values are known.

Fig. 29 shows a dispersion curve obtained for a concrete 
pavement. The curve drawn represents the theoretical curve, 
and the points marked are the values obtained by measure­
ment.

f r e q u e n c y  !n k i lo c y c le s  per sec

f i g .  30. Dispersion curve for road consisting of different layers. 
(V =  propagation velocity of flexure waves.)

f r e q u e n cy  in c y c l e s  per  sec 

f i g .  31. Resonance curve.

It is also possible to obtain information on the thickness 
or the elastic modulus of the different layers of the road. For 
example, Fig. 30 shows the result of such a measurement 
obtained on a road built with the layers shown on the right- 
hand side of the figure. The evaluation of results is more 
complex in this case. The dispersion curve may possess two 
or more single branches, as is represented in Fig. 30 by the 
continuous and broken line.

In the case shown in Fig. 31 the object was to determine 
the thickness of wall built of bricks. The wall was excited 
periodically and the resonant frequencies were measured. 
The lower curve represents such frequencies. If the velocity 
of elastic waves is known the thickness or the distance to 
cracks inside the concrete structure can be obtained with 
the help of the measured resonant frequency values.

We believe the methods and the instruments developed 
by our Institute are a good contribution to the solution of 
some of the engineering problems discussed here to-day.
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R. A . A s h b e e  (Great Britain)
I would like to extend the use of “progressive failure” and 

“residual shear strength” to rigid foundations. In doing this
I may be guilty of some gross oversimplifications; the results, 
however, do lead to some interesting conclusions.

Professor Skempton has shown how the shear strength 
of a soil drops after failure to a residual value. The shear 
strength is, of course, the maximum stress that can be sup­
ported at a particular strain.

We assume that a clay bank fails eventually because the 
soil strength has been falling with time. The shear stress 
in a bank is not uniform. When stress and strength become 
equal, local shear failure takes place, the ability of the soil 
to support stress drops, and redistribution of shear stress 
follows. The shape of the new curve will depend on the 
stress-strain characteristics of the soil, but there can be a 
fall to the residual value. Failure of the bank occurs when 
the soil can no longer accommodate the redistribution of 
stress.

An important point is that the loss of strength will be 
most serious with those soils which are most sensitive to 
disturbance. We conclude from this that a cutting slope 
through virgin clay will eventually undergo a more rapid 
type of failure than an embankment made of remoulded, less 
sensitive soil. We must expect an exactly similar loss of 
strength with a rotational failure of a foundation. Here the 
local shear failure will be initiated by the building since 
maximum soil strain will always be closest to the driving 
force. Another feature which encourages local shear failure 
is differential consolidation. The building surcharge is on 
one side of the shear surface only, tending to cause con­
solidation mainly on that side.

This local shear failure associated with differential con­
solidation is, I think, an important mechanism with many 
applications. First, consider the shear box test. Local shear

and consolidation will take place at every rigid contact 
surface! On these sheared surfaces only the residual shear 
strength of the soil can be mobilized. The peak shear strength 
is only being realized at a number of isolated points of 
impending failure. This test can never measure the full shear 
strength of a clay; it is of course ideally suited to the 
measurement of residual shear strength. Rate of loading will 
also influence this test result, consolidation being encouraged 
by slow loading. Another point; with a soft clay there is 
probably adhesion on the exposed shear box surfaces, thus 
the effective area is increasing instead of decreasing as 
usually assumed. I think this combined action of local shear 
and consolidation plays some part in the settlement of any 
foundation on a compressible soil.

To obtain a mathematical answer calls for a simple model, 
and in Fig. 33 I have assumed a circular foundation genera­
ting a cylindrical shear failure surface. The thickness of 
material D, is compressed to D 2, and the shear failure 
extends to the full depth of differential movement. Lateral 
soil displacements have been ignored. Because of the high 
edge stresses under a rigid footing, this failure surface can be 
initiated at very low foundation loads. For calculation pur­
poses we use average pressure, starting at the average 
foundation bearing pressure w. This decreases as load is 
taken by shear on the cylinder. At the limit of shear penetra­
tion an average residual pressure q remains which maintains 
the sheer stresses below that level. This is a considerable 
oversimplification but I think on the face of it that the 
Leaning Tower of Pisa is an example of this mechanism, 
the symptoms being settlement with little or no surface 
distortion.

The consolidation process involved is time dependent and 
so a rigid solution must also be time dependent. On the basis 
of a simple model, a circular base generating a cylindrical 
failure surface, two approximate limiting solutions are 
possible (Fig. 34). The first solution assumes that all the
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f i g .  3 2 .  Possible shear stress distribution in the 
shear box.
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f i g . 34. Limiting solutions for circular base generating a 
cylindrical failure surface.
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f i g .  35. Example of transition to an alternative failure 
mechanism, (a) Uplift foundation; (b) punching shear 

test.
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f i g .  36. Field test on an undercut foundation.

foundation load is supported by shear on the cylindrical 
failure surface. That is, there is no residual pressure at the 
limit of shear penetration. This approach must give an over­
estimate of penetration, because there must in fact be a 
residual pressure. The second solution makes use of the 
elastic bulbs of vertical pressure to determine residual 
pressure at the limit of shear penetration. The average 
pressure q is taken over the projected area of the foundation 
at the required depth. The balance of forces provides a 
solution which must give an underestimate of penetration, 
since the effect of introducing a cylindrical surface of weak-

f i g .  37. Passive pressure.

ness is to increase the vertical stresses at any depth below 
the actual footing. This mechanism shows how foundation 
movement can be dependent on both shear strength and 
compressibility. It may, however, only form part of a general 
mode of failure.

Sometimes a transition to an alternative failure mechanism 
takes place. An example of this transition is an uplift founda­
tion in a clay soil (Fig. 35). Local shear failure is generated 
by the foundation, but the build-up of stress beyond the 
limit of shear penetration is restricted by the presence of 
the free surface at ground level. The transition is to a tensile 
mode of soil failure near ground level.

We have been able to study this type of behaviour in the 
laboratory using a “punching shear” soil test. In this test a 
plunger is thrust upwards through a disc of clay. The two 
types of soil failure can be seen on the 2-inch-thick punch­
ing shear sample, true shear in the lower part of the sample 
changing to tensile failure above. This tensile failure can be 
inhibited by using air pressure to simulate overburden.

Fig. 36 shows a field test on an undercut foundation. A 
trench has been cut into the zone of failure. The failure 
surface can be seen; it reaches ground level at 45°, which 
corresponds well with the angle found in the punching 
shear test.

The same logic can be applied to the calculation of pas­
sive pressures (Fig. 37). It would seem that if passive 
pressure is controlled by a free surface, there is a possibility 
of a progressive mode of failure. In such a case the residual 
shear strength will be the controlling soil property. If no 
free surface is involved the conventional value is used.

In these examples it is the linear translatory strain after 
failure which governs the drop of strength to the residual, 
and it is this actual translation on each slip surface which 
must be considered in any application.

A. P. S i n i t z y n  ( U .S .S .R .)

In the U.S.S.R. the design of a plate based on an elastic 
half-space has been developed on an extensive scale by
B. N. Gemochkin, M. M. Filonenko-Borodich, M. I. Gor- 
bunov-Possadov, and others. In this discussion the problem 
of determining the collapse load of the plate is dealt with. 
The elastic foundation is specified as a two-layered model.



The upper layer is of limited thickness and follows the 
Winkler hypothesis; it is supported by an elastic half-space. 
The vertical reactions developed between the plate and the 
foundation are taken into consideration. For design purposes 
the plate is considered to be separate from the foundation 
and the reactions, represented by generalized or discrete 
groups are applied on the contact plane.

These generalized forces are calculated by means of the 
system of linear equations obtained under contact conditions 
between the plate and foundation. The equation coefficients 
are determined as generalized deflections of the plate and 
the settlements of the foundation due to single group forces. 
The solution of continuous equations is carried out by means 
of an electronic computer and as a result the reactions on 
the contact area of the plate and foundation are estimated. 
The bending moments in the plate are calculated on the 
assumption that the plate is separated from the foundation 
and loaded with external forces and reactions of the 
foundation in the contact area. If a region of plastic deforma­
tions arises in the plate, the rigidity of the plate will decrease 
and the reactions and bending moments will change their 
values. Beyond the elastic limit the deflections of the plate 
are studied step by step.

At first investigations are made in the elastic field; this 
helps to determine the position of the linear plastic hinges in 
the plate. The next step consists of a new design of the basic 
system, in which the plate is considered to contain plastic 
hinges. The deflections of the plate are now determined for 
this rearranged system. New reaction forces and bending 
moments are calculated in the elasto-plastic plate by solving 
the general equation.

The meaning of the term ultimate load-carrying capacity 
in this problem differs from the usual one. The develop­
ment of one or many linear plastic hinges in the plate will 
not realize the whole load-carrying capacity of the structure 
because the elastic foundation will support the plate. Now 
the collapse load will be determined by standardization of 
the maximum structural deflection. When plastic hinges 
develop, the deflection of the rigid plate increases rapidly. 
This increase depends upon the geometrical dimensions of 
the plate and the elastic properties of the plate and the 
foundation. In a flexible plate the development of the first 
plastic hinge does not involve any substantial increase of 
deflection. The elastic layer between the plate and the 
elastic half-space will affect the distribution of reactions in 
the elastic foundation and cause the decrease of reactions 
concentrated at the end of the plate. When the elastic limit 
is exceeded, the plate deflections will increase due to the 
layer deformation. The collapse load of the infinite plate 
acted upon by a concentrated force can be approximately 
determined by the assumption that the plate deflections are 
in the form of a conical shell with linear plastic hinges on 
its surface and a circular plastic hinge on its base.

Setting the work of external force P lim equal to the total 
work of the moments in the hinges and reactions of the 
foundation we obtain:

+  Mj

dd

r -  p

The minimum rate of the collapse load Plim is obtained when 
the first two integrals in Eq (1) are equal to 4.

[ P | l m ] m l n  4 7 r i l / j , i  | . j  7T^” ( i m a x  ^7r )  I ^  ( 2 )

where M,,,. — plastic moment per unit length of hinge, 
r =  distance from load P lim to circumferential hinge, qmax =  
intensity of foundation reactions under the load, qr =  
intensity of foundation reactions at a distance r. The strip 
acted upon by the concentrated load in the middle of the 
span will be investigated, and the rate of PUm computed for 
various values of the limiting deflections Ylim. In dimension- 
less form it was presented by means of the deflection Y 0 and 
the load P{) corresponding to the elastic limit. The non-linear 
relation between P lim and Ylim will be obtained, which 
depends on the physical properties of the strip and the 
foundation, and which is expressed in terms of the parameter:

a =  E o /E ll/b i l /h flQ - (3)

where £ 0 =  deformation modulus of foundation, E — elastic 
modulus of strip, I, b, and h =  span, width, and thickness 
respectively of strip.

1.2\ T/* (2—a)
-P L  =  Pum /Po =  (0.14 +  O.SOa 1-)F,T 

valid under the following conditions:

2 <  Yf,m <  5 and 0 <  a  <  1.

(4)

(5)

After developing the first plastic hinge a change of position 
and magnitude of subgrade reactions will take place. 
These reactions will depend on the rigidity of the plate and 
the foundation and on the applied load. The problem will 
become non-linear. The subgrade reactions and the deflections 
increase rapidly at the acting point of the load. The deflec­
tions of a rigid plate (a =  0) beyond the elastic limit 
increase faster than the applied load does. The collapse load 
PMn, depends on a given maximum deflection F lim and on 
the rigidity of the plate as it is shown in Fig. 38.

One can see in this figure that the rigid plate has a smaller 
load-carrying capacitv when the deflection Ylinl is large. It 
is important to note that the load-carrying capacity of the
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f i g . 39 . V a r i a t io n  o f  s u b g r a d e  r e a c t io n s  b e n e a th  a  s q u a r e  r ig id  

p la te :  ( a )  w i th in  th e  e la s t ic  r a n g e ;  ( b )  b e y o n d  th e  e la s t ic  l im it .

plate can increase, while its rigidity decreases or the sub- 
grade modulus increases. The optimum value of the para­
meter, a, corresponding to the plate with higher collapse 
load can be determined. Beyond the elastic limit the sub- 
grade reactions change their value all over the surface of 
the plate. This is shown in Fig. 39 (a, within elastic range; 
b, beyond elastic limit), for a square rigid plate acted upon 
by a concentrated load in the middle of the span. If four 
linear plastic hinges occur, the subgrade reactions at the 
centre of the plate will be six times larger than in the elastic 
range. These theoretical results are in good agreement with 
the test data.

R a p p o r t e u r  G é n é r a l  d e  B e e r

Des discussions de ce matin je dois tâcher de tirer certaines 
conclusions. 11 me semble qu’une première conclusion est 
que le problème de la capacité portante limite des sols n’a 
jusqu’ici pas reçu de solution définitive. La limitation de la 
signification des méthodes actuellement disponibles a été 
clairement indiqué par le professeur Borowicka. Il a surtout 
attiré notre attention sur la non validité des formules au cas 
de sables très peu compacts. le  voudrais relier ce problème 
à celui de la compacité critique; en effet un sable, saturé 
d’eau, ayant une compacité inférieure à la valeur critique 
doit être considéré comme étant en équilibre instable et est 
donc en principe impropre à servir de base pour une fonda­
tion. La limitation de la signification des formules ne doit 
pas nous étonner. D ’une part les propriétés mécaniques des 
sols sont beacoup plus complexes que la loi simple de Cou­
lomb ne laisse supposer; d’autre part les théories disponibles 
sont basées sur un certain nombre d’hypothèses simplifica­
trices qui s’écartent plus ou moins profondément de la réalité.

Il nous faut tâcher d’obtenir des solutions qui sont sta­
tiquement et cinématiquement admissibles et le Dr Bent 
Hansen nous a clairement montré que certaines solutions 
présentées ne répondent pas à cette double condition.

Vu la complexité du problème il faut nécessairement faire 
intervenir certaines données expérimentales si l’on désire 
aboutir à une solution. M. L’Herminier nous a décrit certains 
essais de laboratoire qui apportent des données intéressantes 
pour mieux circonscrire le problème.

Toutefois on ne peut se dissimuler que les essais effectués 
sur semelles de petites dimensions doivent être transposés 
avec prudence au cas des semelles réelles. Cela a été claire­
ment souligné aussi par le professeur Borowicka.

C’est pourquoi je suis d’avis qu’il faut multiplier les essais 
en vraie grandeur, pour autant qu’ils soient exécutés avec

toutes les garanties voulues et de telle façon qu’on puisse 
sérier les paramètres. Les essais effectués par la Degebo à 
Berlin avec des semelles de 1 m.ca de surface constituent un 
apport fort intéressant dans le problème de la capacité por­
tante limite. Dans son intervention, le Dr Muhs a clairement 
indiqué le phénomène de progressivité de la rupture. Ce 
phénomène est intimement lié aux phénomènes de dilatance 
positive et négative. La question est de savoir si ce phé­
nomène est indépendant de l’échelle.

Le Dr Muhs nous a d’autre part présenté certaines autres 
déductions intéressantes de ses essais, notamment en ce qui 
concerne les coefficients de forme. De ses essais il déduit que 
le coefficient de forme pour des semelles carrées, pour le 
facteur de portance N v  est une fonction de la densité rela­
tive et est rapidement supérieur à 1,5. Des essais qui sont 
en cours au laboratoire à Gand confirment ces valeurs 
élevées.

D ’autre part les essais fragmentaires dont nous disposons 
semblent aussi indiquer que le facteur de profondeur dans 
le terme de N q est généralement sousestimé.

Si on veut interpréter correctement les résultats expéri­
mentaux, il est absolument nécessaire de pouvoir sérier les 
variables; dès lors des essais systématiques à échelle réelle 
devraient être effectués en ce sens. Au lieu de dépenser des 
sommes importantes en répétant dans divers laboratoires des 
essais à petite échelle, ou des essais en vraie grandeur mais 
dans des conditions non idéales, il faudrait pouvoir aboutir 
à une conjugaison des efforts pour réaliser un programme 
d’essais en vraie grandeur conçu de telle façon que l’on 
puisse sérier les variables.

Il est d’ailleurs évident qu’entretemps les praticiens 
doivent pouvoir disposer d’un outil leur permettant de fixer 
une valeur située du côté de la sécurité pour la capacité por­
tante limite. Il semble bieu qu’une telle limite puisse être 
actuellement trouvée pour les fondations directes courantes 
en utilisant les formules classiques, dans lesquelles on intro­
duit pour le facteur de portance N y la valeur obtenue en 
adoptant un angle de frottement de 10 pour-cent supérieur à 
la valeur obtenue dans un essai triaxial normal et une valeur 
de N q correspondant à un angle non majoré, tout en mainte­
nant provisoirement les coefficients de forme et de pro­
fondeur, tels que définis par Brinch Hansen. Il est par ailleurs 
quasi certain que l’analyse d’essais en cours et encore à 
réaliser amèneront à une importante modification de certains 
de ces coefficients.

Le praticien se trouve souvent confronté avec le problème 
de fondations établies sur des sols composés de couches 
multiples et de sols anisotropes. Koizumi et Salas nous ont 
apportés certaines données nouvelles à ce sujet notamment 
par l’application de la méthode des caractéristiques à des 
problèmes comportant des couches ortho-plastiques. Ici aussi 
le praticien ne peut attendre qu’on lui ait apporté la solution 
exacte. Dans l’état actuel de nos connaissances il devra 
laisser travailler son bon jugement. Il se verra obligé de 
simplifier grandement le problème en introduisant des hypo­
thèses de travail situées du côté de la sécurité. Les inter­
ventions très intéressantes de Koizumi et de Salas pourront 
utilement le guider dans le choix de ces hypothèses.

Le problème de la répartition des réactions sol-fondation 
a donné lieu à des interventions très intéressantes. Là aussi 
seules des données expérimentales sont à même de faire 
avancer nos connaissances. Je regrette que la limitation du 
temps n’a pas permis au Dr Leussink d’exposer les résultats 
qu’il a obtenus en couvrant pratiquement toute la surface 
d’une semelle avec des cellules de mesure des pressions et 
qui font apparaître les fortes concentrations de pressions aux
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bords que l’on obtient dans des sables avec des semelles 
faiblement enterrées notamment lorsque la compacité est 
forte, et la charge notablement inférieure à la capacité 
portante limite.

D ’autre part sous des déformations lentes le module de 
déformation du béton dont est constitué le radier et la 
superstructure peut être de loin inférieur à la valeur déduite 
d’essais normaux sur éprouvettes en laboratoire. Une ten­
dance se dégage aussi pour calculer les radiers en plasticité.

Enfin se posent de plus en plus les problèmes de la capa­
cité portante limite sous des charges dynamiques et vibra­
toires. Ce problème a d’ailleurs déjà été abordé dans la 
division précédente, consacrée à la détermination de la 
résistance au cisaillement. D ’une façon assez surprenante a 
priori, il semble bien que ce problème, en ce qui concerne 
les sols pulvérulents, soit plus facilement abordable d’une 
façon théorique, que le problème de la capacité portante

sous des charges statiques. Dans ce domaine un pas impor­
tant a été réalisé, grâce aux sommes importantes et aux 
recherches systématiques effectuées dans les grands pays 
directement intéressés à ce problème. Il ne laisse pas de 
doute que si un même recherche systématique était con­
centré dans le domaine de la capacité portante limite sous 
des charges statiques, on pourrait aboutir à un même résultat 
positif.

C h a i r m a n  C r o c e

I wish to extend our thanks to the members of the panel, 
the General Reporter, and to the oral discussors for their 
excellent presentations. This session is over.

(The remarks of the General Reporter for Session 4 
presented to the Closing Session appear on pp. 593—4.)

WRITTEN CONTRIBUTIONS

A. I. D e m e n t i e v  (U.S.S.R.)

The paper by Kiselev, et al. (3 /21) is devoted to the 
determination of the extent of a foundation’s ultimate settle­
ment on permafrost, since this value is one of the main 
factors influencing the stability of buildings being erected.

Foundation settlements are caused by the thawing of 
permafrost as a result of the heat emission of the building 
over the entire period of its maintenance. However, the 
extent to which this heat emission influences the settlement 
and the nature of soil changes due to its influence are not 
constant; they change with time. To determine the pattern 
of this process it is necessary to study a model of it for a 
long period of time.

The information presented herein reports observations 
made over many years of settlements on thawing permafrost. 
Several buildings in Zabaikalie were under observation over 
a period of 21 years, from 1941 to 1962. The buildings are 
situated on a soil formed by quaternary pebble-gravel 
deposits of 3.5 m thickness and with a sandy loam and loam 
stratum underlain by Jurassic clays. Beginning with the upper 
surface of the clays the soils were in a permanently frozen 
state down to 20-25 m. The buildings observed are brick,
80 m long, and with tape type rubble foundations laid 1.80 m 
deep, that is the foundations were laid in the active layer, 
above the permanently frozen strata.

Observations made over many years made it possible to 
determine not only the extent and rate of building settle­
ment, but the pattern of the process as well. Fig. 40 shows 
the settlement of two of these buildings, curves 1 and 2 
corresponding to the settlement of the opposite sides of the 
two-storey administration building and curve 3 to the settle­
ment of the industrial building. The larger settlement of one 
side of the administration building (curve 1) is explained 
by a higher ice formation in the soils under that founda­
tion. The settlement of the industrial building was not as 
great as it was constructed on more favourable conditions of 
permanently frozen soil.

However, in all cases the same pattern in the character 
of the building settlements was observed, the only difference 
being in the magnitude of the settlement. During the first 
years after construction of the buildings a markedly seasonal 
periodicity of settlements was observed: in the first half of a 
year the settlement decreased due to winter freezing of the 
soils; in the second half of the year the settlement increased
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f ig . 40. Development of settlement as a result of soils thawing 
under the foundation of (1), eastern part of the administration 
building; (2), western part of the same building; (3), industrial 

building.

because of summer thawing of the soils. In the course of 
time the rate of settlement slowly decreased and approached 
complete stabilization.

The highest settlement rate was observed during the 
first year of the administration building’s existence, and in 
some places it amounted to 27 cm per year (curve 1); from 
1945 to 1950 the average settlement of the same part of the 
building amounted to 9 cm per year; and from 1950 to 1962 
it amounted to 0.4 cm. per year. Thus the average annual 
rate of building settlement had decreased by approximately 
70 times, as compared with the initial period, and during the 
very last years it became infinitesimal. It should be noted 
that the settlement of this part of the building was greatest in 
the region of objects observed: in a period of 21 years it 
amounted to 129 cm, 124 cm or 96 per cent of the total 
settlement occurring in the first ten years.

The settlements of the opposite side of the administration 
building (curve 2) and of the industrial building (curve 3) 
were considerably less, amounting to 37 and 21 cm respec­
tively for the 21 years. However, in these cases the same 
regularity of settlement rate with subsequent stabilization 
is observed. In the first case complete stabilization of the 
settlement took place in 12 years, in the second case in 10 
years, and in the third case in 6 years.
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The results of the observations show that when calculating 
the settlements of foundations on thawing permanently 
frozen soils, not only the ultimate settlement should be 
taken into consideration but also the settlement rate which 
can achieve a very high value during the initial period of 
the building’s existence. The actual information on founda­
tion settlements can be used to determine the limits of 
deformation required of a building’s constructive elements 
and to check the methods of calculating foundation settle­
ment on thawing permafrost.

L. J. G o o d m a n  (U.S.A.)
This discussion is occasioned by the papers in Division 3 

concerning storage tank foundations— Jappelli (3/19) and 
Penman and Watson (3/36). The specific purpose of this 
discussion is to summarize the results of preloading a site 
underlain with highly compressible glacial lake deposits of 
varying thickness to permit the use of shallow foundation 
pads for oil storage tanks. Some brief attention is then 
devoted to preloading a site underlain with peat to support 
a light metal structure on shallow footing foundations. 
Included are post-construction settlement records for each 
case history.

c a s e  h i s t o r y  1

This case record illustrates the preloading of a site prior 
to construction of 4 fuel oil storage tanks. The original tank 
design called for a height of 48 ft and diameters from 70 
to 125 ft. These dimensions were changed during the initial 
stages of the subsurface investigation programme in order 
to reduce the loading. The final design called for a tank 
height of 32 ft and diameters from 67 to 134 ft. The loading 
from each tank is approximately 2000 lb/sq.ft. which 
includes the weight of the tank and the storage of fuel. Each 
tank is enclosed by a fire dike and is connected to the truck 
loading station by piping. A minimum clearance of 50 ft is 
required between tanks.

The site is situated on a gentle sloping hillside, with the 
ground surface dipping to the south. Existing site grades 
varied from approximately El. 30.0 at the northern end to 
El. 14.0 at the southern limit of the tank installations. This 
necessitated a fairly extensive excavation programme in the 
northern half since the finished site grade varied between 
El. 15.0 and El. 14.0.

During the terminal part of the ice age, a glacial lake 
covered a considerable portion of the area. The lake basin 
accumulated silts and clays which covered the bottom to 
considerable depth. The inundation of the lowland was 
followed by successive lowering of lake levels with changes 
in the drainage pattern resulting in a layer of largely loose 
granular material— silts, sands, and gravel. A marshy 
environment followed the deposition of granular material 
adding some peat and marl which are overlain by present 
fill material. The natural material below the miscellaneous 
fill in this location forms a wedge-shaped deposit which has 
a thickness of approximately 74 ft at the southern end of the 
site and disappears before reaching the northern end. Water 
was encountered on the site at depths varying from 10 to 
17 ft.

The preload decision was based on previous experience 
with field load-time-settlement relationships in similar soil 
deposits and cost comparisons with a short pile installation. 
It was estimated that a preload of 2000 lb/sq.ft. would 
require less than six months to develop expected settlement 
for the most severe case which was Tank 4’s location. No 
attempt was made to secure undisturbed samples in this

location for laboratory consolidation and shear tests in view 
of the erratic deposition of compressible materials.

The estimated cost of the preloading operation and select 
materials indicated for both frost wall and foundation pad 
requirements and additional site preparation for the tanks 
was less than $50,000 for all four tanks. The estimated cost 
of piling, including reinforced concrete pile caps was 
approximately $210,000. These cost data were based on the 
use of 20-ton short piles that would average 25 ft in length 
over the site.

A full preloading programme was followed for Tanks 2, 3, 
and 4 and a large-scale field load test was conducted in the 
southwest quadrant of Tank 1 to establish the need for any 
partial preload treatment for this tank location. Site prepara­
tion included compaction of the subgrade and the overlying 
gravel fill prior to placement of preload. The fill in Tank 
— 4’s location was obtained from Tank l ’s excavation and 
placed in increments to the specified 17 ft in fourteen days. 
The load remained for approximately 2 weeks beyond 
October 30 on which date the settlements reached equi­
librium. Four settlement plates were used to monitor the 
preload operation as shown in Fig. 41. A similar procedure 
was used for the remaining two tanks, 2 and 3.

Settlements for all tanks conformed closely to the thick­
ness of compressible materials underlying the particular tank. 
All time limits for the settlements were less than the 
estimates.

Following the preloading programme, final site preparation 
for the oil storage tanks was carried out. This included a 
compacted granular base to serve as a foundation pad for 
each tank, with a clean sand and gravel frost wall along 
the perimeter of the tank.

Four settlement observation points were established around 
the exterior of each tank. Tanks 2, 3, and 4 were test-filled 
with water before they were used to store the fuel oil and 
gasoline. Four feet of fuel oil were stored in Tank 1 for six 
months, at which time the storage was increased to 30 ft ± . 
Settlement records since tank erection during the spring of 
1961 indicated a maximum settlement of 1 in., which is well 
within tolerable limits.

CASE HISTORY 2
This case record illustrates the preloading of a site under­

lain with 3 to 5 ft of amorphous peat to permit the use of 
shallow footing foundations for support of a relatively light 
metal structure. The structure has plan dimensions of 40 by 
60 ft and a foundation loading of 1000 lb/sq.ft., including 
a floor slab independently supported on grade.

The site lies in a lowland area, underlain with loose sedi­
ments of considerable thickness deposited in an eroded 
bedrock trough created by glacial action. The deposits are 
quite similar to those reported in Case History 1 with the 
exception of more uniform deposition in lateral directions 
and the peat layer commencing at contemplated foundation 
grade.

A limited construction budget precluded the use of either 
short piles driven into an intermediate zone of compact 
materials or removal and replacement of the peat. It was 
therefore decided to secure 5-in.-diam. Shelby tube samples 
of the peat for laboratory consolidation and shear testing 
to establish the feasibility of preloading.

Laboratory results yielded ranges of 2.58 to 2.84 for com­
pression index, 5.23 to 5.48 for initial void ratio, 319 to 
403 per cent for natural water content, 1.51 to 1.62 for 
specific gravity, and 42.5 to 75.2 per cent for organic con­
tent. Theoretical time-settlement studies indicated approxi-
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f i g . 41. Field time-settlement curves (Tank 4).
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f i g . 42. Field time-settlement curves, Case History 2.
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mately 6 months would be required to develop expected 
settlements due to the building loading of 1000 lb/sq.ft. if a 
surcharge of 500 lb/sq.ft. were placed over the simulated 
building preload. Computations for the subsoil stresses due 
to the building loads were made on the basis of the Bous- 
sinesq equations. The earth material used to develop expected 
settlements was end-dumped and spread by a bulldozer in 
essentially two 6-ft stages approximately 3 weeks apart.

Provisions for monitoring the settlement under this load 
were provided by 5 settlement plates which were located at 
the corners and at the centre of the building location. 
Vertical movement of the plates was observed at regular 
intervals and recorded as shown in Fig. 42 to evaluate actual 
time-settlement conditions. Fig. 42 also includes rebound 
data during and after the removal of the preload. It is noted 
that the actual settlement curves levelled off in a range vary­
ing from 5 to 11 in. after 3 months of loading in contrast to 
the theoretical predictions of 9)i in. in 5Va months. This range 
of field recorded settlements is explained in part by the fact 
that the front of the site has a past history of some pre- 
loading. The rebound from the field settlements amounted

to approximately 10 to 25 per cent. The higher percentage 
of rebound recorded for plates 1 and 2 was apparently due 
to some reported disturbance to these plates during removal 
of the preload.

Arrangements were made with the owner to make settle­
ment observations both during and after construction. This 
was accomplished by placing settlement pins in both the 
columns and in the floor. As of this writing, no settlement 
due to a recompression of the peat has been noted. Con­
struction was started in November, 1959. Maximum founda­
tion loads have been in effect for 5/2 years (October, 1965). 
Loading includes 1 ft of compacted granular fill to satisfy 
grade requirements.
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f i g . 43. Test results.

H. G r a s s h o f f  (Germany)
In paper (3 /45) Vesic, el al. describe loading tests on dry 

and submerged sand bringing up the model footing at 
different velocities. The purpose of the tests was to show the 
dependence of the bearing capacity of sand on the loading 
rate. The tests have shown that in the case of very small 
loading rates (from about 10-3  to 10-2  in/sec) the bearing 
capacity at the beginning decreases, but in the case of grow­
ing velocities it increases to values which are larger than the 
static bearing capacity. As the tests were performed at a 
loading rate of only about 12 in/sec it may be assumed that 
the loading resistance is mainly caused by the static failure 
zone of the classic earth pressure theory. At greater loading 
rates— as obviously occur with problems of missile launching 
and blast resistant structures— the failure zone in sand can 
probably not be registered by means of the formulae of the 
earth pressure theory. The model footing will penetrate like 
a punch into the soil and the soil surrounding the penetrat­
ing object will show a zone of disturbance, possibly corre­
sponding to the laws of rheology.

In 1944 I performed similar tests in which projectiles 
were catapulted into sandy soil with velocities between 1000 
and 5000 in/sec (Grasshoff, 1947 and 1953). The penetrat­
ing projectile was photographed by means of a high-speed 
motion picture camera. The double differentiation of the 
penetration-time diagram led to the penetration-resistance 
curve. High values of resistance were measured. The main 
reason is to be seen in the acceleration resistance of the 
grains of sand. The measured resistance factors in dry sand 
are shown in Fig. 43. Also shown are the test values obtained 
by Vesic, et al. The test points follow a steeply rising curve.

The resistance factors of a ramming test by Hoffmann 
(1948) and of a falling test by Feldtkellar and Keul (1943) 
in dry sand are also shown in Fig. 43. The test points coin­
cide with the course of the curve.

Excavation of the projectile in the penetration test very 
distinctly shows the punching effect and the quasi-liquid 
flow in the vicinity of the penetrated object (Fig. 44).

In the above-mentioned publications (Grasshoff, 1947 and 
1953) I have tried to develop a law of dynamic resistance in

f i g . 44. Photograph showing projectile embedded in resisting 
medium.

the case of high velocities in which each part is dependent 
on a certain soil characteristic.
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A. K. J a m a l  (U.S.A.)
This is a discussion of paper 3 /3  by E. E. de Beer.
The phenomenon of progressive rupture also occurs in the 

laboratory testing of sand in the conventional triaxial test. 
Observations similar to those of different degrees of settle­
ment in the bearing capacity tests with different plate sizes, 
described by the author, have been made in triaxial tests 
performed on sand specimens of varying geometry.

Fig. 45a shows the maximum principal strain ez at failure, 
corresponding to peak deviator stress, plotted against initial

f i g . 45. Results of laboratory triaxial tests performed on loose to 
dense sand specimens.

specimen porosity, obtained from conventional drained tri­
axial tests'on 4-in.-diam. specimens. The failure points shown 
are those for specimens 8 in. long and 10 in. long. It can be 
seen that for medium to dense sand specimens, the axial 
strain ez required to induce a plastic failure in the 8-in.-long 
specimens is higher than that required for the 10-in.-long 
specimens. On the other hand, for loose sand, the strain for 
10-in. specimens is higher than that for 8-in. specimens. If 
the specimen diameter to length ratios of 0.5 (8 in. long) 
and 0.4 (10 in. long) are thought to correspond to different 
plate sizes in the bearing capacity tests, these results are very 
similar to those given by the author in his Fig. 3. The other 
shear parameters at failure obtained from the triaxial test, 
namely those of volumetric strain and the dilatation, Figs. 
45b and 45c, show that for the shorter (8 in. long) speci­
mens, a larger mass of sand is set in motion in reaching a 
limiting equilibrium state and the lateral strains induced are 
higher. Thus the deformations of these samples are charac­
terized by extensive bulging.

It is a common observation that the characteristic failure 
plane at the periphery of the triaxial sample appears at a 
strain value which is higher than the strain corresponding to 
the peak deviator stress. Further, at this higher strain no 
further volume changes in the specimen take place and the 
sand mass flows as an ideal plastic body. The explanation of 
these observations is as follows.

From the state of isotropic, homogeneous mass which 
exists in a triaxial specimen consolidated under an ambient 
pressure, the application of a deviator stress results in an 
anisotropic condition being set up in the specimen. Non- 
uniform strains and stresses occur throughout the radial 
planes of the triaxial specimen, and there is a continual 
re-distribution of the strains and the stresses during the entire 
shearing process (Broms and Jamal, 2 /9 ) . A plastic state of 
failure, for the limiting condition of Coulomb’s law, first 
occurs at the axis of the specimen and this plastic domain 
then progresses throughout the radial plane, reaching the 
outer periphery of the specimen last. Thus progressive rup­
ture is occurring during the triaxial test, and the rate of 
advance of the plastic domain, or rupture is strongly 
influenced by test specimen geometry.

These and similar conclusions have been made from tests 
performed at Cornell University on hollow cylindrical speci­
mens of sand. Papers for publication of these results are in 
the course of preparation.

L . L a p i d u s  a n d  W . S t o r o j e n k o  ( U .S .S .R .)

At present the mechanical behaviour of cohesive soils 
under pulsating loading is receiving insufficient study. The 
investigations carried out by Seed, Chan, and McNeill 
(1961) are widely known but many questions connected 
with this problem are not clear, particularly that of soil 
strength. That is why a special apparatus for dynamic load­
ing was designed in our laboratory. By means of this appara­
tus (Fig. 46) it was possible to carry out unconfined triaxial 
tests. In this apparatus electrical impulses are transformed 
into mechanical pulsating loads by means of a magnet. The 
amplitude, frequency, and duration of pulsating load can be 
regulated over a wide range. The stress was measured by 
means of a membrane gauge and registered by means of an 
oscillograph.

Disturbed samples of red-brown loam were compressed 
without lateral confinement. Their properties were as follows: 
y =  1.92 grams/cu.cm., w =  22.5 per cent, wL =  32.6 per 
cent, /„. =  8.9 per cent, Sr =  0.72. Special investigations 
showed that this soil does not possess thixotropic properties.
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f i g . 46. Apparatus used for the study of the effect of dynamic 
loads on soil strength.

The dependence of the maximum load value on the num­
ber of cycles until failure of the sample was found experi­
mentally. At first the breaking point under the action of 
static loading <rs was found. Then some samples were sub­
jected to dynamic loading with amplitude values less than 
the corresponding crs. The frequency of pulsation was equal 
to 1-Hz and the duration of each pulsation was equal to
0.1 sec. A good analogy was found between the fatigue 
strength of the red-brown loam and those of other materials 
(Fig. 47, and Freedman, 1952).
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f i g . 47. Results of tests on red-brown loam.

The effect of the frequency of pulsation on the strength 
of the loam was also investigated. The maximum value of 
the pulsating stress was equal to 1.3 kg/sq.cm., the frequen­
cies being 1 -Hz and 4 -Hz. The number of the cycles until 
failure was 5950 and 6000 respectively. Thus the effect of the 
frequency of pulsation on the loam strength in the frequency 
range 1-4 Hz is practically insignificant.

In order to study the effect of the interval between the 
action of the pulsating load on the strength some tests were 
carried out with loams which had different static strengths. 
The action of the pulsating load lasted one minute, and the 
duration of the interval was equal to 3 minutes. The maxi­
mum values of the pulsating stress were 0.8 kg/sq.cm. and 
1.3 kg/sq.cm. If we assume the relation of the number of 
cycles until failure with intervals to that without intervals 
to be k =  Nj/TVo, then, k =  1.55 when o-max =  0.8 kg / 
sq.cm., and k — 1.91 when crmax =  1.3 kg/sq.cm.

A series of tests was carried out in which the samples 
were subjected to the action of the pulsating loading until 
visible cracks appeared, after which dynamic tests were 
interrupted and the samples were tested statically to failure. 
Very good agreement between the strength of these samples

f i g . 48. Multi-surface sliding failure 
of a sample tested under dynamic 

loading.

and the static strength of the samples that had not been 
subjected to the pulsating loading was obtained.

It was found that the character of the failure was different 
under static and dynamic loading. Under static loading only 
one slide plane inclined at an angle of 58° to the horizontal 
was found. In the case of dynamic loading failure occurred 
in the form of multi-surface sliding (Fig. 48).
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H. Mu h s  (Germany)
In his paper to this conference Gorbunov-Posscidov (3 /11)  

has established theoretically the vertical and tangential reac­
tion forces of the soil in the compacted core under a rigid 
rough footing. I want to inform you of some experimental 
data which were obtained by measuring these forces with a 
newly developed gauge.

In 1955-56 we performed some large-scale loading tests 
to determine the size and the distribution of the stresses 
within footings of non-reinforced concrete. While measuring 
the stresses in the footings we also measured the pressure at 
the base, that is the soil reaction in the vertical and horizon­
tal planes. For this purpose we used existing Maihak gauges 
for the measurement of the vertical stresses, but we had to 
develop a gauge for the measurement of the horizontal 
stresses. The gauge and the results gained by these investiga­
tions are described by Bub (1963).

Because we had two kinds of gauges, which of course 
had to be fitted one beside the other, the vertical and hori-

436



f i g .  49. Gauge developed to measure 

horizontal and vertical stresses.

zontal stresses could not be measured at the same point, 
which proved a disadvantage in evaluating these tests. The 
evaluation was made rather difficult by the inevitable dis­
crepancies in the results and by the fact that the friction- 
measuring gauge gives the product of F¡j. and not single 
values of F  and ¡x. Nevertheless, we did find that consider­
able shear forces were acting at the base.

This problem is of importance not only for the bearing 
capacity but also for the stress distribution in the footings 
and even in the subsoil— for example, as regards the concen­

tration factor of Fröhlich. Therefore in 1964 we performed 
a new series of tests avoiding the main disadvantage of the 
earlier investigations with two kinds of gauges for the 
measurement of the vertical and horizontal stresses. For this 
purpose we had to develop a new gauge allowing the com­
bined measurement of these stresses (Fig. 49). Such a gauge 
must be able to separate a three-dimension force into its 
three components and to determine the size of each com­
ponent.

The construction and the workings of the gauge will now 
be briefly described (Fig. 50). The three-dimensional force 
F  acts on the circular plate (1 ), the roughness of which can 
be suited to that of the base of the footing. Plate (1) is 
placed in the gauge so as to be completely movable; it is 
connected to a very thin measuring cylinder (2) which on 
the other end is fixed to a rigid plate (3). All this forms the 
inner system. This inner system is linked by a ball bearing 
(4) to the base plate (5) so that displacements of the inner 
system in the x -y  planes are possible and only the vertical 
component Fz is carried through the measuring cylinder (2) 
from the plate (1) to the base plate (5).

Now we come to the second system, measuring the hori­
zontal components of F. For this purpose four rectangular 
beams (6) arranged vertically and at 90° to one another are 
built in under pre-stress into the base plate (5 ). These four 
beams transmit the horizontal components Fx and Fv of F  
again by a ball-bearing system (7) which lies on four even 
planes directly behind plate (1). Thus movements of the 
inner system (3) in the z direction are possible and only the 
horizontal components of F (Fx and Fy) are transmitted by 
the four beams. That means that three components Fz, Fx, 
and Fy are measured independently.

For the measurement of the vertical and horizontal forces, 
strain gauges are fixed to the cylinder and the four beams. In 
the cylinder only vertical stresses can be measured in the 
usual way, whereas in the beams bending stresses are acting 
and are measured by strain gauges on both sides of the

6

3-

I

T Circular-plale

2 Cylinder

3 Base-plate of the cylinder

4 Ball-bearings for normal stresses

5 Base-plate of Ihe gage

6 Beams

7 Ball-bearings for tangential stresses

f i g . 50. Schematic details of interior of gauge.
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beams. Fig. 51 shows the interior of the gauge, the inner 
cylinder and the four beams. After having calibrated the 
gauge under different conditions in a direct shear machine, 
four of these gauges were placed into the base of a footing
0.6 m wide and 1.2 m long (Fig. 52) and loading tests were 
performed with this footing in loose, medium dense, and 
dense sand (Fig. 53). The footing was either at the surface 
or 0.3 m deep in the three different fills and the water level 
was always at the surface to prevent any apparent cohesion 
in the sand. Thus the gauges were underwater during the 
investigations; they proved watertight for the two months 
which were needed for the performance of the tests.

a full, but unsymmetrical parabola, showing the lower pres­
sure on the side where the failure occurred, which is quite 
understandable, because here the grains are moving and 
therefore unable to take over higher pressure.

The tangential stresses, for example the shear stresses, 
show an approximately uniform trend under all loads. They 
are always greater towards the outer regions of the footing 
and smaller towards the inner, which fits in with the dis­
placement of the grains that takes place mainly near the 
edges of the footing where the slip surfaces are formed. The 
shear stresses were directed almost completely in the plus or 
minus x  axis, particularly under higher loads.

By dividing the corresponding values of r by cr the effec­
tive friction angles at the base can be calculated. They are 
given for the points A and D in the table in the right bottom 
corner of Fig. 54 and you can see that a much higher angle 
or a much higher friction is effective at the side where the 
failure took place; the angle p is 25.4° here compared with 
12.6° on the other side. Similar results were obtained in the

f i g .  51. Photograph of interior of gauge.

I want to show you the result of one of these tests (Fig. 
54). This test was carried out at the surface of the medium 
dense fill. The plot in the upper left corner gives the pressure- 
settlement curve for the first loading, the reloading, and the 
second reloading. Below this we see the normal stresses and 
on the right side of this the tangential stresses, both measured 
by the gauges at some characteristic loads.

f i g . 53. Load test of footings in sand.

f i g .  52. Location of gauges in base of footing.

The normal stresses under the first relatively low pressures 
are according to the theory of Boussinesq: that means the 
pressures in the middle part of the footing are smaller than in 
the outer parts. This distribution under higher loads changes 
over to a parabolic form and under the failure load we have

N orm al st re s s

f i g . 54. Test results.

M e d iu m  d e n se

Tangential s t re s s
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other tests, where the tangential stresses in the dense sand 
reached peak values of about 3 kg/sq.cm.

In the medium dense sand we can suppose an angle of 
internal friction of perhaps 37.5° or a coefficient of friction, 
fi, of 0.77. Comparing this value with the value ¡i =  tan 
25.4° =  0.47 we can state that during failure the friction at 
the base of a footing, founded directly at the surface, 
amounts to about 0.6 of the possible maximum. This is a 
high value considering that a specially constructed and there­
fore rather smooth footing was used. Even higher values 
have to be expected when the concrete is poured directly 
into the soil, as is usually the case.

The effective friction and its maximum is not a constant 
value but depends on the foundation conditions, firstly on 
the embedding depth of the footing, and secondly on the 
density of the bearing stratum— that is on those factors 
which mainly determine failure and the corresponding soil 
movements.

With regard to the newly developed gauge it can be said 
that all four gauges worked well and have fulfilled all 
requirements. A larger number of gauges are now being 
used to measure the normal and tangential stresses around a 
subway tunnel to find out more about the effective friction 
forces here, which are important for the design of relatively 
thin-walled steel tubes.

H. M u h s  (Germany)
In his paper to this conference Milovic (3 /30)  has con­

sidered the results of our large-scale loading tests, carried out 
in Berlin, and the bearing capacity factors, N, obtained in 
these tests. May I add some words about the determination 
of the factors N, providing that the failure loads themselves 
have been found experimentally. After some years of experi­
ment, we disposed of quite a number of test results and were 
induced to try to determine the bearing capacity factors, N, 
according to the different failure loads of the different tests.

Doing this and using the general set-up of the bearing 
capacity formula we had to calculate six unknown factors, 
the three bearing capacity factors and the three shape factors. 
For this purpose we had too few test results. Therefore, the 
shape factors were introduced according to theory, or better, 
according to general practice, as the theory of this problem is 
very incomplete. The results of this investigation were pub­
lished by Naujoks (1963) and the bearing capacity factors 
gained are known as those of Naujoks.

Evaluating the test results in this way the magnitude of 
the bearing capacity factors, N , is always influenced by the 
size of the shape factors, s, as the product of Ns  always 
appears in the equations to be solved, which is not very 
satisfactory. Therefore we performed in the last two years a 
new series of 14 tests in order to try to find the shape factors 
experimentally; beyond this the tests were to yield the bear­
ing capacity factors at a density which had not yet been 
investigated by us, that is in a medium dense sand of fine to 
medium size.

All tests were performed in a sand with a porosity of 
38 per cent ±  0.5 per cent, so that the point resistance 
curves of soundings in this sand were well between the 
curves of the earlier tests in loose and dense sand. To 
eliminate the influence of apparent cohesion which had 
proved unfortunate in the evaluation of the earlier tests, all 
tests were carried out with the water level at the surface of 
the fill. In contrast to the earlier tests, where we always had 
the same area of footings, the new tests were performed on 
footings with constant width, that is 0.5 m, but with the

length varying from 0.5 m to 1.0 m to 1.5 m to 2.0 m; thus 
the ratio m  (i.e., length to width) was between 1 and 4.

To approach more closely a strip of unlimited length 
another test was arranged (Fig. 55) with three different 
footings 1.0, 1.5, and 1.0 m long, one behind the other, so 
that the length of this footing was 3.5 m and the ratio, m, 
was 7. These footings were loaded independently by three 
hydraulic presses, directed by automatic loading equipment 
in such a manner that all three footings were sunk approxi­
mately in the same way. As the load on each footing was 
measured it was possible to get the failure load of a footing 
with the ratio m  =  7, but beyond this— using the failure load 
of the middle footing alone—to investigate the bearing 
capacity conditions of a strip of nearly unlimited length, 
since this part can be regarded as being cut out of a strip 
footing. Theoretically, and following the evaluation of the 
load-settlement curve of the central footing, the conditions 
of this footing can be regarded as representative of a ratio 
m =  13.

When you are carrying out loading tests on the surface of 
a sand layer with the water level also at the surface, the depth 
and the cohesion in the bearing capacity formula are zero, 
and as the failure load, the dimensions of the footing, and the 
unit weight of the sand are known you obtain the product 
NySy. In our case the product N ysy for the different footings 
investigated depended on the ratio m. According to theo­
retical aspects, for m =  co, a limiting value for N ysy 
must be reached. It must be possible to determine this limit­
ing value by mathematical means. On the other hand by 
definition it is known that for m — co the value of sy =  1; 
thus the function sy =  f(m )  can be calculated.

To use the same method for the determination of the 
product NqSq or itself, when sy is already known, you have 
only to perform the tests at a certain depth but not at the 
surface.

f i g .  55. Set-up used for testing a footing con­

sidered as unlimited in length.
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Following these considerations we performed all tests, first 
at the surface and then at a depth of 0.3 m. The plot of the 
failure loads over the ratio m  for the tests at the surface 
(Fig. 56) shows that the bearing capacity increases with 
higher values of m  and that it approaches a limiting value 
for m -*■ oo (although the difference between the lower 
values at m ~  1-1 compared with those at m >  10 is rather 
sm all). The same plot for the tests done at a depth of 0.3 m 
(Fig. 57) shows that a limiting value is also reached, but

f i g .  58. Fa ilure of long footing.

Ratio  m [ - ]

f i g .  56. Fa ilure loads for footings on the surface of the sand.

Ratio  m [ - ]

f i g . 57. Failure loads for footings embedded 0.3 m in the sand.

that the difference of the bearing capacity values between 
low and high m  values is much greater. However, the most 
important fact is that the failure loads are here decreasing 
with increasing values of m, which means that the bearing 
capacity of compact footings is much higher than that of 
long slender footing, or generally speaking, of fundamental 
strips with the same width, provided that the footings are 
embedded into the bearing stratum. As it is a general rule 
not to found footings directly at the surface but at a certain 
depth, we can therefore conclude that the bearing capacity 
conditions of compact single footings are always better than 
those of strip footings with the same width.

You can recognize this fact immediately when you see 
the following photos which show the failure zones at the 
surface. From Fig. 58 you can see that where we have the 
long footing, with m  =  7 or 13, a failure line practically 
parallel to the longer side of the footing exists; the same 
happens in the case of the same footing, when embedded in 
the sand. This can be taken as a proof for a practical two- 
dimensional state of stress in the middle part of the footing. 
Against that we already have the transition to a more three- 
dimensional state of stress around the rectangular footing 
with the ratio m — 2. In the case of the square footing (Fig. 
59) it is obvious that a three-dimensional state of stress is

f i g .  59. Fa ilure of square footing.

reached, which is the reason for the higher bearing capacity 
of the compact footing.

Now you will ask for the mathematical equation for the 
shape factor. We are still evaluating the tests, and therefore
I cannot give you exact data. But it seems that the decrease 
of s7 for compact footings with low m  values is a little 
smaller, and the increase of for the same conditions is 
much greater, than is normally assumed. I have to stress that 
these shape factors are different from those used by Naujoks 
for the evaluation of the older tests to determine the bearing 
capacity factors. Those factors have to be improved accord­
ing to the new shape factors. We are doing this and hope 
to be able to present the final improved bearing capacity 
factors in the near future.

Y. N i s h i d a  (Japan)
In paper 3 /7  da Costa Nunes et Porto present an 

interesting example of the application of the compaction 
pile in practice. I presented a paper concerning this prob­
lem at the Paris Conference and I would like to ask the 
reason why they take the value of Am for the pile space. 
According to my studies the zone of sands compacted by 
driving a pile can be estimated through the following 
equation, deduced from the stress and strain conditions 
in the ground,
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where a — 2(1 + m  sin <f>)/m( 1 +  sin <j>) +  2 and <f> is the 
angle of shear strength of the sand, 1/m  is Poisson’s ratio 
of the soil. K 0 is the coefficient of earth pressure at rest 
of the soil, and E  is Young’s modulus of the soil. Accord­
ing to my theoretical studies and experimental data, E  can 
be estimated to be from 20 yZ  to 170 yZ, where yZ  is the 
vertical pressure in the ground, and is dependent on the 
void ratio. Based on some practical measurements, if we 
assume the values of K 0 — 0.65, 1/m  =  0.25, and <f> — 30°, 
then it follows that R /a  =  3.0 ~  6.7, where R  is the 
radius of the compacted zone and a is the pile radius.

G. S a n g l e r a t  (France)
Je désire simplement apporter un témoignage dans une 

question fort controversée à l’heure actuelle: la prévision 
des tassements à l’aide de la résistance à la pointe du péné- 
tromètre statique. C’est avec un très grand intérêt que j’ai 
pris connaissance de la communication de Bachelier et 
Parez (3 /1 ) . Ces auteurs ont généralisé la formule établie, il 
y a de nombreuses années, par Buismann (1940) pour les 
sables, au cas des argiles sous la forme: E  =  (2,3 /a )  R p où 
R p =  résistance à la pointe et a =  coefficient expérimental, 
ce qui correspond bien à la formule que j’ai proposée 
(Sanglerat, 1965): mT =  l / a 0.Rp.

Il est extrêmement intéressant de constater que les résultats 
de l’enquête statistique effectuée par ces auteurs dans la 
région parisienne, le nord de la France et la Belgique recou­
pent d’une manière très satisfaisante ceux que j’ai eu l’occa­
sion de rassembler dans la région Rhône-Alpes (Sanglerat, 
1965).

Certains s’étonnent des rapports trouvés entre le module 
de déformation E  et la résistance à la pointe R p du péné- 
tromètre statique, mais, en génie civil, pour le béton armé, 
n’utilise-t-on pas, pour calculer les déformations, des modules 
d’élasticité du béton déduits de formules empiriques du 
genre E  =  A\/<r où A  est une constante et o- la résistance à 
la rupture du béton? Pourquoi n’en serait-il pas de même 
dans chaque cas particulier pour différents types de sol d’une 
région donnée? Pour les sables, Buisman (1940) a montré, 
depuis fort longtemps, qu’il en était bien ainsi.

Signalons, par ailleurs, pour les milieux cohérents, que 
des essais ont mis en évidence que la cohésion apparente 
des argiles est proportionnelle au taux de consolidation 
(Biarez, et al., 1 /5 ) ,  lorsqu’il est compris entre 2 et 4 bars 
environ. D ’autres essais ont montré que le module d’élasticité 
E  de ces mêmes argiles est proportionnel au taux de con­
solidation (Biarez, et al., 1 /5; Absi, 1965). Il en résulte que 
E  et C sont proportionnels Ce résultat a d’ailleurs été égale­
ment mentionné par Meyerhof (1953).

Comme la résistance statique à la pointe du pénétromètre 
i?p est directement proportionnelle à la cohésion, il est 
donc normal d’admettre, dans des limites données, l’essai 
au pénétromètre statique étant considéré comme un essai

non drainé, que E  et R p peuvent être liés par une relation 
linéaire telle que définie ci-dessus.

Pour les milieux non cohérents, Schultze and Melzer 
(2/47) ont proposé une relation non linéaire. Il est d’ailleurs 
très intéressant de noter que différents géotechniciens, au 
Mozambique, aux U.S.A. and Afrique du Sud, en Allemagne 
et en Yougoslavie (Nonveiller, 1963) ont trouvé des résultats 
analogues à ceux de Bachelier et Parez (3 /1 ) .  En particu­
lier Kantey (Afrique du Sud) a étudié les relations pouvant 
exister entre mT et la résistance à la pénétration dans diffé­
rents types de sols.

Devant les difficultés soulevées par la prévision des tas­
sements, soulignées à juste titre à différentes reprises au 
cours du présent Congrès par de nombreux participants, il 
serait vivement souhaitable de poursuivre dans le plus 
grand nombre de pays possible, les études statistiques com­
paratives entre R v et m v ou E.

Nous n’avons, en effet, pas le droit de laisser échapper 
une possibilité de prévisions de tassements, peut-être gros­
sière et approximative, mais rapide et très économique, qui 
peut rendre de très grands services dans les problèmes 
quotidiens de fondations des ouvrages courants.
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I. A. S i m i v o o l i d i  ( U .S .S .R .)

This article concerns the method for calculating a beam, 
L in length, with a step change in moment of inertia at 
arbitrary cross-sections (see Fig. 60).

Imagine that you cut the beam at the location of the 
inertia moment change. As a result we have two beams of 
definite length and constant cross-section, each of which is 
subjected to outer loads, unknown moments, cross-force Y c, 
and bending moment M c. For convenience in solving this 
problem the foundation under the beam is assumed to be 
a continuous flexible medium, but it is calculated for each 
beam independently. For determining the ground deforma­
tion under each beam the equation of the plane deformation 
is applied. Each of the two beams is considered to be a 
thin resilient bar deforming along its length.

The reactions of the foundation are in the form of 
algebraic functions of the third order.

where

( n ) 4 a ?*■-%) + n
+

L l

L, CD

„ M  A n )  „ 0 0  A n )
do , (ll , a 2 , a.3

are unknown parameters.
To find these unknowns a differential equation and an 

equation of the ground surface deformation are composed 
for each beam, the beginning of the co-ordinates for the 
first beam is on its left side, for the second on its right side.
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f ig . 60. Foundation beam of variable cross-section.

After quadruple integration of each of the differential * y  , * yr _  * A
equations we obtain in each of them eight unknowns. In 10 16 c (, (2)
order to determine these unknowns as well as the equations ^2ôYc +  526M c = 8-ip

of equilibrium and boundary conditions it is necessary that: where

=o

f Ln Yndxn = f Ln vndxn ; =  p i  -  Cra»« +  2 m „  +  m u +  gmu ) 1 /L i] ,
Jo Jo dXn dX-n

y  =  —  =  v =  —  • 3l5 =  (Wn +  m is) +  +  * ! i ) ,  (3)X—" I 2 2  ̂ p I

5l6 =  [(48^ 22 +  2?W23 +  W24 +  g OT25) v /^ 2

(4)

¿25 =  ( ¿ 1 1  +  ¿ 13) — ^(dzl +  ¿ 2 3 )1  (5)
where Y n =  vertical displacement of the neutral axis of the
beam, and vn =  vertical displacement of the deformed ¿26 =  — [(¿12/4 8  +  ¿13 +  ¿14  +  24̂ 15) l / ^ i
ground surface. Besides the above mentioned conditions the _|_ (¿22/ 4g - f  2¿ 2, +  ¿24 +  n d u ) 1/Z,2], (6 )
following requirements are to be met: ( 1) equality of
deflections of both beams at the place of cut; (2 ) equality of dip =  t iS (i) — S (1), (7 )
the inclination of the tangents at the point of cut. As a
result we obtain the following equations: Sip =  — [f/(1) +  XI7(2)], (8 )

1 FI
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mn3 =  (516.096 +  0.296a*) (13.44 +  0.029an), (23)
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1 — mL E nTn
(31)

Everywhere for the first beam n =  1, and for the second 
beam n — 2, where b„ =  width of the beam, L n =  length 
of the beam, Eon =  deformation modulus of the soil under 
the beam, pon =  Poisson’s coefficient for the soil under the 
beam, p.n =  Poisson’s coefficient for the material of the
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beam, E„Tn =  rigidity of the beam, an — flexibility index, 
T0L'l/2 =  bilateral disconnector by Gersevanov (1933, 1934).

After solving Eq (2) with regard to Y0 and Mc each beam 
is then calculated as an independent beam with a definite 
length and constant cross-section, resting on a flexible 
foundation and subjected to force Y c and M 0 as well as 
external loads.

Eq (2) enable one to calculate a great variety of engineer­
ing construction problems, resting on the foundation of non­
variable cross-section as well as articulated beams. Let us 
consider a particular case, when two articulated foundation 
beams are to be calculated. For this it is necessary first to 
determine an unknown cross-force arising at the point of 
articulation and after that to calculate each beam separately. 
For this purpose it is sufficient to equate M 0 to zero in the 
first equation of Eqs (2). Then Yc =  Sif>/8lg.
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A. S. S t r o g a n o v  (U.S.S.R.)

The experimental investigations of the soil properties 
a t the complicated stress state, and the bearing capacity 
investigations of foundations on sand (Stroganov, in 
press; Stroganov, 1958), show th a t soils in the main are 
subordinated to the plastic condition of H uber and 
Schleicher (Schleicher, 1925) which can be expressed as:

o'! =  (H +  cr)tan ip, (1)

where = intensity of shear stresses; H =  hydro­
static pressure, equivalent to cohesion c and equal to 
cl  tan \}/, a = mean normal stress; tan yp = coefficient of 
friction on the octahedral area. I t  is found experimen­
tally (Stroganov, 1958; Stroganov, 1965) th a t soils 
have a new form of plastic potential

6  =  <Ti —  (H +  <j ) v  =  0, (2)

where v =  is coefficient of dilatation and considerably 
less (v «  tan  \p) than when it is in the plastic potential 
of Drucker and Prager (1952).

The relationship between the components of the 
stresses and the strain velocities resulting from Eqs (1) 
and (2) and from the equation of incompressibility 
conditions and the deviator ratio (Stroganov, 1963), is 
expressed as follows:

- a = 2 (H  +  <r)tan^[(£r +  H O /M ,  
t i v  = (H  +  <j)tan tivzv/Çi), etc.

(13)

This relationship is the basic mechanical equation of 
the state  of a dilating soil medium which, when 
v = tan  4/, becomes the well-known equation of Drucker 
and Prager (1952).

Let us consider only the plane plastic flow problem of 
a non-dilating (v = 0) medium for which Eq (3) 
becomes:

— cr = 2 (H +  tr)tan \K£r/fi)
— <r = 2 (H +  cr)tan iA(£y/£i) (4)

= {H +  <t)tan Vxv/£i)

obtained earlier by other means (Stroganov, 1961). The 
incompressibility condition of the medium,

tx +  =  0, (5)

is identically satisfied if the function of flow y) is 
introduced by means of the relationship:

Vx =  d(j>/dy, Vy =  — d(j>/ dx. (6)

By substitution of the strain velocity components and 
their intensity in Eq (4), and taking into account Eq 
(6), we obtain the following relations,

<Tx> ay = (H +  a) (1 ±  tan  i// cos 2%) — H,  
Txy = (H  +  cr)tan \p sin 2%,

|  (7)

/ / - a z c i i

0  ¿a  W

f i g . 61. Velocity and stress field of a loaded foundation.
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where the new function % (x , y)  is introduced by means 
of the relationship:

2  v  =
Vxj/

d~ <t>
_ d y 2

d—t 
dx2

d2<t> 
dxdy.

o 2 ^  2£„
COS ¿ x  =  — —  ~T ^

+
dy2

< t± \ ‘
dx2)

d'4>

dxdy

d2<f>

dxdy,

. d ^  _  d W

\ d y 2 d x )

(8 )

By introducing the expressions of the stress compo­
nents, Eq (7), identically satisfying the plastic condition, 
Eq (1), in the equilibrium equations,

and

dax

dx

^ Txy

dx

+  =  o,
dy

+  ^ T = 7’
(9)

the basic system of the hyperbolic type equations is 
ob tained:

(cot xp +  cos 2 x )da /dx  +  sin 2x(da /dy)
— 2 ( H  +  a-) [sin 2x( dx/ dx)
— cos 2x(dx/dy]  =  0,

sin 2x(d<x/dx) +  (cot \p — cos 2x(d<r/dy) 
+  2 a) [cos 2x(d x/dx)
+  sin 2x{dx/dy)]  =  T cot \p,

dy  =  [sin 2x T  V (1  — ta n 2 \f) / ( ta n  \p 
+  cos 2x)]dx,

da =F 2 (H  +  a) [tan î/'/v'Xl — ta n 2 \p)]dx 
=  7 {dy =F [tan \p /^ / ( l  — ta n 2 \p)]dx}.

(11)

dy = [(sin 2x =F l) /co s  2x]<fo 

dtr T  2cdx =
(12)

determined by Eq (8 ), which gives the linear differential 
equation of hyperbolic type:

2 (d 2</>/cto;d;y)tan 2x — (d2<t>/dy2 — d2<j>/dx2) = 0. (13)

Equation (13) is the one of Mises. In this equation, 
x(x, y) is the angle of slope to the x  axis of maximum 
main normal stress, and consequently to th a t of 
maximum main normal strain velocity. Eq (13) is 
equivalent to the system of two linear first-order 
equations

dvz/  dx +  dvy/  dy =  0 ,

(dvx/ d x  — dvy/dy)tan  2 x — (dvx/ d y  
+  dVy/dx) = 0,

(14)

directly following from incompressibility condition (5) 
and from Eq (13) after reverse replacement of the flow 
function 4>(x,y) by the velocity displacement compo­
nents.

From this system of differential equations, first and 
second characteristic systems of velocity field are 
obtained,

dy/dx  =  (sin 2x =F l) /c o s  2x = tan (x  j t ) , (15)

which are not identical with characteristics (1 1 ) of the 
stress field and are the equations of maximum shear 
strain velocity lines, along which, as is known, the 
normal strain velocity is equal to zero.

A consequence of the la tter is the continuous rela­
tionship along characteristics (15) of the velocity field,

du — vdx = 0 —along first system, 
dv +  udx  =  0 —along second system, } (16)

given earlier in some different form (Stroganov, 1961). 
Using the usual method of determ ination, we obtain for 
system (1 0 ) a system of differential equations of stress 
field characteristics:

When tan  \p = 0 an Eq (10) becomes the known 
equations of Moris Levy, for which the equations of 
characteristics are well-known in the theory of an ideal 
plastic medium:

When tan  \p = sin p and p is a reduced angle of internal 
friction under conditions of plane plastic deformation 
(Stroganov, 1965) E q (10) and (11) formally become 
the known equations of soil plasticity theory. Hence, 
all known m athem atical methods of the boundary 
problem solution for the equations of soil plasticity 
theory based on the R ankine-Prandtl (Coulomb) hy­
pothesis can be used to  obtain Eq (10) in the deter­
m ination of the stress field.

The principal axis direction of strain velocities is

given in the theory of an ideal plastic medium by 
Heiringer.

Characteristics of stress (12) and velocity (15) fields 
are identical in a particular case of a medium w ithout 
(tan \p = 0 ) friction, as they are in the theory of an 
ideal plastic medium. Hence, the problem of determining 
displacement velocity is to construct velocity field 
characteristics (15), on the basis of preliminary solution 
of the stress problem (1 1 ), and then the solution of a 
boundary problem for equations (16) by means of well 
known methods. I t  is clear th a t the complete solution 
of the problem m ust satisfy the jo in t conditions of stress 
and displacement velocity fields.

The problem of Prandtl and Reisner for the weight­
less soil medium can illustrate the results obtained. The 
bearing capacity of soil for given boundary conditions 
(Fig. 61) m ay be found in the following form,

H  +  p = (H  +  ?)[(1 +  tan f ) / (1 -  tan  tp)]
exp[7r tan \p /~ ^/il — tan 2 ^)], (17)

obtained by means of known methods based on the use 
of plasticity integrals of Eq (10) for a weightless 
medium. The characteristic system of the velocity field 
(Fig. 61, thick lines) in the soil, constructed by inte­
grating Eq (15), and known d a ta  of the characteristic 
system of stress field (Fig. 61, thin lines), shows th a t a 
region of plastic flow is considerably less than the one 
obtained by Shield’s solution.

In conclusion, it is necessary to say th a t the applica­
tion of conditions (1 ) and (2 ) to plane plastic flow 
problems leads, as is shown by our investigations 
(Stroganov, in press; Stroganov, 1958), to considerable 
increase of the theoretical bearing capacity of soils and
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to a quantitative agreement between theoretical and 
experimental data.
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Additional investigations into the strength param eter 
problem of soil in the condition of plane deformation 
arose in soil mechanics because of the quantitative 
divergence between experimental and theoretical data.

Experimental investigations of the plastic properties 
of dense ( 7 0  = 1.71 tons/cu .m .) Liubercy sand a t the 
two-stress state  show (Fig. 62) th a t the relationship 
(continuous line) between the intensity of shear 
stresses a, and the mean normal stress tr is practically 
independent of the kind of the stress state, and, as can 
be seen, follows a linear law well. A t the same time the 
results of torsion tests on the tube samples show a break 
in the relationship (dotted line) a t  confining hydro­
static pressures exceeding approxim ately 4 kg/sq.cm . 
This effect takes place because the sample wall loses its 
plastic stability. As a result, a characteristic spiral neck 
is formed which did not form in a com pact sample a t 
the same test conditions. The failure of some investiga­
tions (Barshevscy, 1956) carried out earlier perhaps 
may be explained by this fact.

<?

z

O Z  A' S  s  / 2

6  " P /c m  2

f ig .  62. Stress relationships of sand under stress and 
torsion.

Hence, on the basis of the experimental results and 
results obtained earlier b}' the author it is possible to 
suppose th a t investigated soils in the main follow the 
plastic condition of Huber and Schleicher (Schleicher, 
1925) which can be expressed as

o, =  (H +  a) tan yp, (1)

where o, =  intensity of shear stresses, a = mean nor­
mal stress, tan  \p = coefficient of friction on the octa­
hedral area, H  = hydrostatic pressure, equivalent to 
cohesion c and equal to c /tan  \f/. I t  is known th a t condi­
tion (1) is not dependent on the kind of stress state.

The plastic condition of R ankine-Prandtl (Coulomb) 
can be expressed as:

( 0 1  — 0 3 ) / ( 0 1  +  o3 +  2 H)  = sin 1p, (2)

where 1p =  angle of internal friction on sliding area. I t  
is known th a t condition (2) depends on the kind of 
stress state.

Let us write the main normal stresses by trigono­
metrical form:

ci — o =  (2/V3)o-i cos(w — -57r),
o-2 — o = (2 /V 3 )o , cos(w +  \ir), (3)
o3 — a  =  —  (2 /V 3 )o i c o s  w ,

where tan w =  \/3[(<ri — o2) / (0̂  +  o-2 — 2o3)] =  ta n ­
gent of the angle of stress state kind.

Let us consider the three characteristic kinds of stress 
s tate  corresponding to the methods of test: axial 
“ tension” (w = 0), pure shear (w =  |t t ) ,  and axial 
compression (w = ^7r) a t the all-round hydrostatic 
pressures. Moreover, we can assume th a t the soil follows 
condition (1) and the reduced stresses are expressed 
as follows:

0 1  =  H  -j- a 1
02 =  H  -\- <j2
03 =  H  +  03 (4) 
o' = H  -j- o
<7l =  O',.

By successive substitution in Eq (3), of the assumed 
values of w and condition (1), taking into account (4), 
and by substitution of the obtained quantity  of the 
main normal stresses in condition (2), the following 
relationships can be obtained.

W hen w = 0 and w = |ir,

tan  \f/ = (2/-v/3')[(sin <p/ (1 ±  sin cp)] (5) and (7)

When w =  \ir,
tan  \p =  sin <p. (6)

Now let us introduce the concept of the coefficient 
of lateral pressure a t the plane of plastic deformation 
of the soil by means of the ratio:

¿■2 =  £ ( ii  +  <73). (8)

Substituting (8) in condition (1) we obtain a corre­
sponding equation which is solved by combination with 
the ratio

( 0 1  — 0 3 ) / ( 0 1  +  0 3 ) =  sin p, (9)

by the exclusion of X =  0-1/ 0 3 . Then we get the final 
expression for the reduced angle of internal friction p in 
the plane plastic deformation condition:

sin p =  (2 /V 3 )V [£ ( l  +  £)2 ta n 2 \p
+  f ( l  -  f) -  *]• (10)

6 L « ? /c m z

S
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In determining £, the relationship between the main 
normal stresses and the deformation velocities (Stro- 
ganov, 1961 and 19G3) can be used as follows:

=  (? i/2ô tan i/O (<r 1 — ô), )
£2 +  H i  =  (il/2<t tan i/0(ô2 — <t), > (11) 
£3 +  3 ^ 1  =  (£i/2ô tan ¿)(<t3 — <r). )

The velocity of dilatation is introduced in this equa­
tion by means of the experimental ratio

£ = —^ 1, (12)

where v =  coefficient of dilatation of soil. Assuming 
£2 =  0 in system (11) for the case of plane deformation, 
we get the ratio

<5-2 = [(3 +  2v tan \p) / (o  — 2v tan ^)](<x 1 +  ô3), (13)

obtained earlier (Stroganov, 1958) in a different m an­
ner. Introducing into (10) the value of lateral pressure 
obtained from (13), we get finally the basic ratio

sin p =  [V ( l  -  i^ 2) / ( l  -  &  tan  1/')]tan \j/, (14)

given earlier (Stroganov, 1958).
The reduced value of cohesion a t plane deformation 

can be obtained using the formula

K  = H  tan p. (15)

Substituting relations (5), (6), and (7) in (14), we get, 
for axial tension and axial compression tests,

2------------- V l  -  3*'” . (16) 
sin p =  ----r  --------- r-------- sin <p,

V 3 .  1 / ,  1  V  and
1 ±  3 [ 1 =F \ / 3  v) sin <P ( 1 S )

and for pure shear test

sin p = [V ( l  — i«'2) / (1 — 3 7  sin (p)]sin <p. (17)

The curves corresponding to the incompressibility 
(v = 0) of the soil are shown in Fig. 63. The dilatation

f i g . 63. Curves of incompressibility of the soil.

of soil (v t6- 0) leads to an increase in the reduced 
angles of internal friction. Eq (11) is obtained as a 
consequence of the new form of plastic potential:

0 =  0-1 — (H  +  <y)v =  0. (19)

W hen v = tan \p Eq (11) is transformed into Drucker 
and Prager’s equations (Drucker and Prager, 1952).

The plastic potential of the Drucker and Prager form 
was used for the first time by Malishev (1954) to ob­
tain the particular relationships between p and <p which 
correspond to the axial compression test. Similar rela­
tionships were given later by Takagi (1962) and Lipson 
(1963). Using the relation of plastic potential, excess 
values of p (Stroganov, 1965) are obtained because of 
tan  \p »  v (Stroganov, 1958).

The results obtained show the possibility of overcom­
ing the quantita tive divergence between experimental 
and theoretical da ta  in the plane problems of soil 
plasticity theory, while retaining all the m athem atical 
methods of the solution of the problems mentioned.
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C. S z e c h y  (Hungary)
Some laboratory and photo-elastic studies have been car­

ried out with the purpose in mind of determining the 
influence of the shape of contact surface of spread founda­
tions upon their bearing capacity and settlement. They have 
indicated that convex-shaped contact surfaces have a favour­
able effect upon the propagation of stresses, transmitting 
them upon a larger area and thus leading to a certain 
reduction in settlement. On the other hand, this shape of 
contact surface facilitates lateral displacement and thus leads 
to a certain reduction of bearing capacity. Contact surfaces 
with a concave shape act just in the opposite sense in con­
centrating the stress-propagation zone and counteracting the 
lateral displacements.
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Deviations were not in excess of 10-20 per cent, however, 
and were understandably diminished with foundation depth, 
that is, when the foundation depth was double the foundation 
width, differences became negligible. For further details the 
reader may refer to the following literature.
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V. U s h k a l o v  (U.S.S.R.)

It is well known that the compressibility of ground thaw­
ing under pressure is characterized by a thawing coefficient 
A 0, and by a consolidation coefficient a0, and that the strain 
for the thawing ground is determined by the equation:

e = Ao +  &ap- (1)

Consolidation coefficients were determined at two pres­
sures of thawing: p1 =  1 and ps =  3 kg/sq. cm. in 
accordance with the procedure suggested by Tsytovich. 
Consolidation tests were carried out in a big consolidometer 
with a diameter of 200 mm. A hot settlement plate with an 
area of 5000 sq. cm. was used in the field test.

In accordance with the procedure (1) the following data 
were determined.

£l =  (-Em — E e l ) / (1 +  -Em) =  A o  +  OCopl, (2)

e3 =  (Em -  £ e> )/ (l +  -Em) = A 0 +  aoPt, (3)

in which e1 and e3 stand for the compression of the ground 
monolith during the thawing under the pressure of p l and 
p 3, Em and  Em stand for the initial porosity coefficients of 
the frozen monoliths; Ecl and EcS stand for porosity coeffi­
cients of the thawed ground monoliths.

Using Eqs (2) and (3) we determined consolidation 
coefficients a0 and A 0:

ao =  [(-E”  -  E c3) (1 +  E l )  

-  (E Jm -  E oi) (1 +  £ "  ) ] / [ ( l  +  -Em) X

X (1 +  Em)(p3 — />i)] (4)

or

ao =  s(e -  e i) / ( p3 — pi) , (5)

and

Ao =  -  Oiopi (6)

The correlation of the value ep and the initial value of the 
porosity coefficient Eom was determined statistically by 
generalizing the data obtained in the experiment. From the 
analysis of the experimental data we may write: Eom =  
Em(£i/£m). in which =  E m -  £ min (or E wp) / E m, and 
where £ min stands for the minimum coefficient value for the 
porosity of the sandy soil, E wp stands for the porosity coeffi­
cient with the moisture at the expansion limit, and £m=  
Z !if i/« , n  standing for the number of the tests (for loam 
Cm — 0.51, for sandy loam 0.40, for sand 0.37, and for sandy 
grit 0.36).

The change in the ep value in accordance with the above 
equation may be expressed in the following way:

ep =  M pE om ±  f t p ,  (7)

in which Mp and bp stand for the parameters of the equation.
The plotting of the experimental data in the co-ordinated 

field ep — E,,m gave the linear relationship between the given 
values stated by Tsytovich (1941), who was the first to 
discover this relationship. Calculated data for the relation­
ship between ep and Eom may be expressed by the correlation 
factor equal to 0.86 and the quadratic deviation of the 
experimental data en and the calculated data eci which 
amounts to ±  12 per cent, the latter meeting the requirements 
of engineering calculations (Ushkalov, 1962). The data

TABLE I I . COMPARISON OF LABORATORY AND FIELD  TESTS

Field tests Consolidation tests Ratio of coefficients

ot/aoo A/ Aoo

Type of 
soil Coefficient

P =
1 kg/sq. cm.

P =
3 kg/sq. cm.

P =
1 kg/sq. cm.

P, =
3 kg/sq. cm.

P =
1 kg/sq. cm. p, =3 kg/sq. cm.

loam
ao 0.031/0.042 0.092/0.127 0.0SS/O.O47 0. ¿00/0.141 0.52/0.90 0.525/0.90
Ao 0.000/0.137 0.060/0.137 0.065/0.148 0.065/0.148 0.55/0.93 0.55 /0.93

sandy loam
ao 0.029/0.043 0.0&9/O.131 0 .031/0 .047 0.056/0.142 0 .93/0.92 0.93 /0.92
Ao 0.054/0.117 0.054/0.119 0.062/0.131 0.062/0.133 0.57/0.89 0.57 /0.89

sand
a o 0.0Î7/0.030 0.052/0.090 0.021/0.031 0.062/0.093 0.5Î/O.96 0.84 /0.97
Ao 0.025/0.086 0.025/0.086 0.037/0.095 0.037/0.095 0.65/0.90 0.68 /0.90

sandy grit
ao 
A o

0.017/0.027 
0.0i£/O.O79

0.050/0.080
0.018/0.079

0.0^5/0.028 
0.033/0.080

0.053/0.085 
0.033/0.080

0.54/0.96
0.55/0.99

0.54 /0.94 
0.55 /0.99

N O TE: Indices “f” and “c” stand for the coefficients obtained from the data of field and consolidation tests. In the fraction, the con­
solidation coefficient in the numerator (in italics) is given at E0m = 0.3 -f- 0.8, and in the denominator at £ om= 1.3 -f- 1.8.
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obtained by the equations determining the calculated para­
meters of the correlation between e,„ a0, and A 0 and E om 
have been already published (Ushkalov, 1962).

S u r fa c e  le a d  

in te n s i t y

TA BLE III. SUMMARY OF RESULTS

Correlation factor

Type  of 
soil Coefficient

E om 
0.5 4- 0.8

E om
1.3 -f- 1.8

ao 0.92 0.90

loam Ao 0.88 0.93

ep 0.90 0.91

ao 0.93 0.92

sandy loam A o 0.87 0.89

et> 0.90 0.91

at, 0.81 0.96

sand Ao 0.68 0.9

ep 0.75 0.93

ao 0.94 0.96

sandy grit Ao 0.55 0.99

ep 0.75 0.98

Table II shows the comparative data for the calculated 
consolidation coefficients of thawing ground obtained from 
the data of consolidation and field tests. In the laboratory 
experiments with a large consolidometer it was necessary to 
interpolate the correction factor K r (the ratio of the calcu­
lated values obtained as a result of field tests and those 
obtained in consolidation tests). The figures are summarized 
in Table III. Thus, the study of the data obtained gives 
grounds for believing that the large consolidometer may be 
successfully used for the testing of thawing ground, on the 
condition that the above correlation factors are taken into 
account.
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R. V .  W h i t m a n  (U.S.A.)
This discussion deals with the development of plastic zones 

beneath a footing. Traditionally, the engineer has been able 
only to estimate the initial slope of the load-settlement curve 
using elastic theory and to estimate the ultimate load using 
a bearing capacity theory. Until now, there has been no 
method for analysing the behaviour once yielding starts but 
before the ultimate load is reached. Such an analysis now 
is possible using the finite difference iterative techniques 
developed by Bendel (1962) and Ang and Harper (1964).

In a study at M.I.T. (Whitman and Hoeg, 1965) the 
Harper-Ang technique has been applied to the problem 
shown in Fig. 64. The numerical properties correspond to 
steel rather than to soil, but the general nature of the results 
emerges nonetheless. Fig. 65 shows the calculated load- 
settlement relation, while Figs. 66 through 69 show the 
extent of the plastic zone and the motion field at four dif­
ferent stages of the loading. In the final stage, the load has 
virtually reached the ultimate load predicted by the Prandtl 
theory, and the motion field is very similar to that predicted 
by that theory. Note that the plastic zone spreads to con­
siderable depth before it begins to spread sideways beyond 
the loaded area.
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f i g . 64. Details of problem to be analysed.

Load in te ns ity  -  ksf

f i g . 65. Computed load-settlement relation.

REFERENCES

A ng, A. H. S., and G. N. Harper (1964). Analysis of con­
tained plastic flow in plane solids. J. Engineering Mechanics 
Division, Proc. A.S.C.E., Vol. 90, No. EM5, pp. 397—418.

B e n d e l, H. (1962). Die berechnung von Spannungen und 
Verschiebungen in erddämmen. Mitteilungen der Versuchs­
anstalt für Fasserbau und Erdbau, Zürich, No. 55.

W h itm a n , R. V., and H ö eg  (1965). Development of plastic zone 
beneath a footing. Report by M.I.T. Department of Civil 
Engineering to U.S. Army Engineer Waterways Experiment 
Station.

449



f i g . 6 6 . L oad  =  4 6  kg /sq .in . (poin t 1 ) ;  p o in t o f initial yielding . 1
and m otions during  elastic increm ent. L ° a<l =  80 kg /sq .in . (p o in t 3 ) ;  extent o f yielded zone

and m otions during  sm all increm ent o f load.
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