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Summary

This paper deals with the plane state of stress and the plain
state of strain in a granular material without a liquid phase.
It is shown, that the stress-pattern in any state of equilibrium
differs from the stress-pattern during motion. In general it is
impossible to derive the shape of a rupture-line from an investiga-
tion of an equilibrium state of stress, since a rupture-line belongs
to a dynamic state of the soil.

The pattern of rupture-lines has to be derived from kinematical
considerations. It seems to be irrational to carry out stability-
investigations with the aid of elements belonging to a state
of motion.

1. This paper deals with the plane state of stress and strain
in a granular material without a liquid phase, and of which
the frictional properties may be described by the equation

T =octan. @

in which T denotes the shear stress
o denotes the normal stress
and ¢ denotes the angle of friction

Tl_le real cohesion C is assumed to be zero. The angle of
friction ¢ can never exceed the value ¢,,, which is a value
characteristic of the particular granular material being cons-
idered.

2. The state of stress at any point is determined by three
variables, for instance by

the normal stress ¢, in the direction of the x-axis,

the normal stress o, in the direction of the y-axis,

the shear stress < being the same in both the directions
of the x-axis and the y-axis.

. Assuming a specific weight v, the equilibrium in the direc-
tions x and y furnishes the equilibrium equations
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From these two equations only it is impossible to obtain a
solution of the state of stress. One equation is lacking and the
problem therefore is statically indeterminate. In such cases
the missing equation will be derived by formulating a law of
elastic deformation. This seems to be practically impossible,
in the case of a soil, because our knowledge about the elastic
deformation properties of soils is still very incomplete. At
present, it is therefore practically impossible to calculate
the state of stress caused by known loads upon the soil.

3. We can therefore only calculate particular states of stress
In order to obtain the third missing equation we supply the
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Cette communication traite de la contrainte plane et de la
déformation simple dans un matériau a grains, sans passer par
une phase liquide. Les auteurs démontrent que la contrainte a
n’importe quel stade d’équilibre differe de la contrainte en mou-
vement. Il est impossible en général de déduire la forme d’une
ligne de rupture de la recherche d’une contrainte dans un état
d’équilibre, puisque une ligne de rupture implique un état de
mouvement du sol. Les lignes de rupture découlant de considé-
rations cinématiques, il semble irrationnel de procéder a des
recherches sur la stabilité, a I'aide d’éléments dépendant du
mouvement.

equation of deformation by any assumption about the state of
stress. In soil mechanics the so called “limiting condition” is
often used for this purpose. This assumes that at every point
there are two directions (the ¢-directions) in which the angle of
internal friction ¢ attains its maximum value ¢,,. This requires
that all the stress circles in the stress diagram are tangential to
the Coulomb envelopes. Expressed in the principal stresses p,
and p,, the third equation becomes
sing,, = f1 ‘ P2
P17 P2

Substituting in equation (1) and (2) the variables p;, p, and
the angle « between the p; — direction and the x — axis for the
variables 6, 6, and 7, three equations are obtained for p;, p,
and o from which the three variables may be calculated.
Since we are dealing with partial differential equations, a
solution can only be obtained which applies to a number of
boundary conditions.

Lately, de JosseLiN DE JoNG [Litt, 1] has given a graphical
solution of this special state of stress. Starting from the
boundaries, he constructs a pattern consisting of two systems
of ¢-lines (which he denotes as slip-lines *) ; the value of the
total stress on the ¢ — lines is indicated at each point of
intersection of two @ — lines. The angle of intersection equals

T .
5 P Along the ¢ — lines the total stress changes according

to the equations of Kétter. To each value of ¢, there is a
certain pattern of ¢-lines.

The state of stress, described by the equations (1), (2) and
(3), is the state of stress at border-equilibrium, and will be
denoted by the symbol §,.

4. The existence of S, within a certain area is a fairly arbi-
trary assumption. Obviously it is impossible to prove, that the
loads acting on the soil are able to create this S,,. Likewise it
is impossible to calculate how far this S,, may extend.

* The denomination « slip-line » may be misleading, because these
lines describe an equilibrium state of stress, in which no slipping occurs.

79



If one succeeds in the graphical construction of a ¢ — lines
pattern without gaps, it is obvious that the soil may be in
equilibrium under the acting loads. At any rate, one state
of stress (the §,,) is imaginable, which is able to assure equi-
librium. It is not possible, however, to prove that even this
special state of stress really will occur.

At the S,, the angle of internal friction obtains its max-
imum in every direction. Along the ¢ — directions this has to
be ©,,, but in every other direction ¢ has a maximum value.
In connection with the internal equilibrium an increase of the
© existing along an arbitrary direction would require an in-
crease of ¢,, along the ¢ — directions. The latter increase is
impossible, because the material is not able to supply it.

Therefore, the S,, may be regarded as the state of stress
which activates the frictional resistance of the soil up to its
maximum value.

If one does not succeed in constructing a ¢ — lines pattern
without gaps, two possibilities exist. Either the gap may be
filled up by a minor stress pattern, not being the S, or it is
impossible to fill the gap. The latter case means that even
a full activation of the internal friction resistance is not able
to assure equilibrium. The soil will move and plastic defor-
mation will result.

5. Since in a dry, granular material there is no influence
which forces the plastic deformation to be a steady movement,
this deformation generally will be a non--steady or accelerated
one.

The equilibrium-equations (1) and (2), therefore become :

8, 3% _ ¥
g Sx—y—an (1m)
3, 3t v
Sx %y g e 2 m)

a, and a, denoting the acceleration in x-and y-direction
respectively.
During the plastic transformation the third equation

. P1— P2
sin =T (€]
o P1 + P2 )
keeps its validity
The state of stress during plastic deformation, denoted here
by the symbol §,,, cannot yet be derived from these three
equations, because there are five variables : py, p,, %, @, and a,,.
The two missing equations can be obtained from considering
the plastic deformation (e.g. the principle of continuity, the
principle of the Saint Venant, etc.).

We will not deal here in particular with the shape of these
equations, nor with the problem of how to construct the
¢-lines patterns, stress fields, flow lines or strain fields.

In general the S, can be representated by a ¢ -lines pattern,
which may be a function of time. The state of motion (strain)
here denoted by the symbol M, can be represented by a flow
line pattern or a strain field.

In general S,, is not identical with §,,, because they depend
on different equations. Therefore, the ¢-lines patterns of S,
and S,, will be different ones.

The Kotter equations in §,, are more intricate than in S,,.
There is no reason, why the ¢-lines of §,, should be identical
with the flow-lines of M.

6. The slip-line or rupture-line is the border-line between
the area in motion (plastic deformation) and the area at rest.
Continuity considerations lead to the statement that a rup-
ture-line has to be an extreme flow-line of the moving area.

In general a rupture-line will not coincide with a ¢-line.
The angle of internal friction along a rupture-line in general
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will not be equal to ¢,,, but will be smaller. The total stress
along a rupture-line will not change according to Kotters
equations.

The stability of soil is often investigated by assuming some
rupture-lines of arbitrary shape. However, this is not permis-
sible because only one system of rupture-lines is the correct
one, which may be derived from the state of motion M.
It is a flow-line system. Moreover, the angle of internal fric-
tion along a rupture-line in general will not be equal to ¢,
but will be smaller. The real value of ¢ has to be derived from
the ¢-lines pattern belonging to .S,,.

8. In his investigations [2 and 3], de Josselin de Jong
identifies slip lines belonging to M, with the ¢-lines belonging
to S,,. This is based on his assumption [3, p. 52] that disinte-
gration of the soil can take place only in the slip-line directions.
This assumption of shearing only along the slip-lines seems to
be incorrect, since during plastic deformation shearing occurs
in every direction. Moreover, he identifies §,, with §,,, and
this is only true if @, and a, are small.

m>

9. In his stability-investigations Brinch Hansen starts
from rupture-lines, the shape of which has been investigated
in model-tests. He points out, that in general rupture-lines
have to be kinematically possible [5, p. 61]. This in itself is
certainly true, but one may ask, what these kinematics (slip-
lines and rupture-lines included) matter in an investigation
of the S,,. Kinematics only come in when the soil moves, but
at that moment the S,, in general does not exist any longer.
Further, Brinch Hansen assumes that along the rupture-line
the angle of internal friction equals ¢,, and that Kotters
equations are valid. In the opinion of the authors these assum-
ptions cannot be right in general. It is noteworthy, that the
shape of the rupture-lines, as found by Brinch Hansen, does
not always agree with the shape required by Kétters equation.

10. In most stability investigations there is the same queer
contradiction. Stability is a state of equilibrium, in which
there is no movement or plastic deformation. In this equil-
ibrium problem, however, a rupture-line is assumed, but a
rupture-line belongs to a state of motion and does not belong
to a state of equilibrium. It seems to be irrational to carry
out an investigation of the soil at rest with the aid of elements
belonging to a state of motion. Since it is in practice impos-
sible to calculate the real state of stress caused by the acting
loads, a study of stability has to be a study of the S, only,
without bringing into the picture elements of plastic deforma-
tion, i.e. rupture-lines or kinematic considerations.

11. A soil in equilibrium can be described by only one
“image”, here denoted by the symbol I. This one image is a
stress field, denoted by the symbol IS,. If the equilibrium
of the soil is a border equilibrium, we write IS,,.

A moving soil cannot be described by one image ; we need
two images. The state of stress may be described by an IS,,,
the state of strain (plastic deformation) by /M. The latter
may be a strain field, a strain rate field or a flow-lines pattern.
If, for any reason, a steady movement occurs, we write IS,
and IM,,,. A soil in the state of equilibrium apparently has
an IM = 0.

A soil in a state of steady flow (accelerations are zero or
small) has IS, = IS,,. The IM,, depends merely on kine-
matical considerations (including the kinematic boundary
conditions); the IS,,, depends merely on the pure stress
equations (1), (2), and (3) and their boundary conditions on
stress. IS and /M however are connected by stress-strain
relations, given by the properties of the material.

In general, however, a non-steady flow will occur. IS,
will differ from IS,,. The whole pattern of IS and IM and
their interrelations as well, becomes far more intricate. Both
are a function of time.
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