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Rheological Properties of Clays

Propriétés rhéologiques des argiles

b y  S. M u r a y a m a , D r. Eng., P rofessor a t the K yo to  U niversity , D isaster P revention  R esearch Institu te  

and

T .  S h i b a t a , D r. Eng., A ssistan t P ro fesso r a t the K yo to  U niversity , K yoto , Japan

Summary

The viscosity of clay is assumed to be a structural viscosity, 
derived from statistical mechanics and based on the frequency 
of the mutual exchange of position between each water molecule 
and its void in a bond material containing soil particles. A 
mechanical model of clay is constructed by introducing the 
structural viscosity and the authors have developed a new 
formula relating deformation and strength of clay with this 
model. This formula is well adapted to explain the results of tests 
on compression flow, stress relaxation and long-term strength 
of clay.

Sommaire

Ce rapport est relatif à des recherches théoriques et expérimen­
tales sur les propriétés rhéologiques de l’argile.

La viscosité qui intervient dans l’écoulement de l’argile est 
considérée comme la viscosité de structure que l’on obtient en 
appliquant la mécanique statistique à la fréquence des échanges 
mutuels de position entre les molécules d’eau et les vides dans un 
liant contenant des particules de sol. On établit le modèle rhéolo- 
gique de l’argile en introduisant la viscosité de structure et on en 
déduit une nouvelle formule fondamentale relative à la déforma­
tion ou à la résistance de l’argile. Cette formule rend compte 
d’une manière satisfaisante des résultats des essais de fluage, de 
relaxation et de la résistance à long terme de l’argile.

Viscosity and mechanical model of clay

A  typ ical flow curve fo r clay  reveals two m ain  stages o f 

d e fo rm a tio n ; ( 1) in stan taneous an d  (2) re tarded  deform ation. 

A ccording to  T-K . T a n  (1957), (1) the instan taneous deform a­

tion  m ay  be due to flexure o f th in  plate-like clay  particles and  

to  an  increase o f  repulsion betw een the clay  particles, and  (2) 

re tarded  deform ation  m ay  be due to  the visco-elastic p ro ­

perties o f  the clay  particles them selves and  to  the m igration  

o f  w ater molecules.

C lay has tw o m ain  properties, elastic and  viscous. H . E y- 

r i n g  (1941) developed a  fo rm ula fo r the viscosity o f a certain  

liquid by statistical m echanics, p roposing the existence of 

“ holes” , o r irregularities in  the arrangem ent o f m olecules in 

the liquid. In  his calculation , the num ber o f  m olecules w ith 

ac tiva tion  (or the num ber o f u n it process) o f deform ation  was 

assum ed to be independent o f  applied stress g 1 and  the rate  

o f stra in  d z jd t  was expressed by :

dzi

dt

Ik n k T
exp

k T
sinh | —  — 

2 N  k T
( 1)

where k  is B o ltzm ann’s constan t, T  is the abso lu te  tem per­

ature, h is P lanck’s constan t, E 0 is the free energy o f ac tiva tion  

for flow, A is the average distance betw een two balanced pos­

itions o f m olecules, n is the num ber o f m olecules w ith ac tiva­

tion  in series per u n it length in the d irection o f stress and  

N  is the num ber o f m olecules w ith activation  in  a u n it area 

o f cross section perpendicu lar to the d irection o f stress.

The viscous behav iour o f c lay  w hich m ay be due to  the 

exchange o f position  betw een a w ater m olecule and  a void 

in a bond  m aterial con tain ing  soil particles is o f th ixo trop ic  

character an d  does n o t conform  w ith E y ring ’s theory  of 

viscosity. T he au thors propose the existence o f a restra in ing  

resistance <i0 acting inside the bond  and  assum e th a t N  and  n 
vary and  are follow ed by a  function  o f to ta l stress cr applied 

to the clay  skeleton which is m ade w ith elastic and  viscous 

elem ents. T h a t is.

w hen

0 <  a <  cr0 
crft <  a

n o r N  =  0 

n =  a(a —  cr0) 

N  = b(a —  ct0)

(2)

w here a and  b a re  constants.

Substitu ting  Eq. (2) for Eq. (1), we ob ta in  the follow ing 

equation  relating  the ra te  o f stra in  o f the bond  d e jd t  w ith 

the stress on  the bond  a b by changing the suffix I in Eq. (1) 

w ith suffix b.

dz
= A b(G -  (70) sin h I 

dt \  cr -

Bk Gh

and

ThakT
exp

- E q

k T

(3)

2bkT

H ence the apparen t coefficient o f viscosity o f  the bond  is 

represented as

'Ob =

A,, sin h
B„ G, (4)

The au tho rs  also propose th a t Eq. (2) is valid only  within 

a certa in  lim it o f a, and  tha t, if applied to ta l stress g  over­

com e this lim it, bonds will s ta rt to  break to  b ringing clay 

failure. A n  applied stress which causes bond breakage is 

defined as the upper yield value au.
T he elastic constan t E  (E 1 o r E2) o f the elastic elem ents 

show n in Fig. 1 is assum ed to  be unchanged unless the applied 

to ta l stress is greater th an  the preconsolida tion  stress oc, 
because the orien ta tion  o f clay  particles is considered to  be
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affected on ly  by the to ta l stress exceeding crc. The au thors 

obtained a  relationship between the elastic m odulus E (E 1 
or E-2 o f the m odel show n in Fig. 1) and the applied stress a  as 

follows for the region o f  a >  tjc.

E  =
ac 1 , cr

t t  +  -p,log -E r E  ov
(5)

where E c and  E ' are constants.

The m echanical m odel show n in Fig. 1 was developed 

to  explain the viscosity, elasticity  and  in ternal resistance 

o f  clay (1956).

f*

dz2

H i
=  A 2(g  — ct0) sinh

Fig. 2
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Schematic arrangement of compression plastometer. 

Schéma d’un plasticimètre à compression.

T he clay  specim en (8-5 cm  in height and  3-5 cm in diam eter), 

p laced in  the triax ial cell, was p ro tected  by a  rubber m em ­

b rane  ; the top  porous plate  on  the specim en was connected 

to  the drainage system  and  the low er p late to  the pore-pressure 

m easuring system.

T o avoid  the effects o f  stress-history, each fresh specimen 

o f the sam e clay  was used fo r each test.

Flow mechanism of clay

Flow Characteristics. —  The relationship  betw een to ta l 

strain  s  and  tim e t, can  be obtained  by solving the follow ing 

sim ultaneous equations (c.f. Fig. 1),

e =  £x +  e2 

CT =  z1E l

G =  ZnEn (°  ~  <’°> sinh -1 
B<>

i dz9

A 2(o  — cr0) dt
+  cr0

If

° <  ^  <  (g,„  y  (2 b2
2B2E2

1)

(7)

(8)

Fig. 1 Rheological model for clays.

Modèle rhéologique pour argiles.

It consists o f a series coupling o f a spring elem ent Elt 

and  a m odified Voigt elem ent (E2, <J0, 7/2), the dashpot o f 

the la tter representing  the structural viscosity expressed in 

Eq. (4).

The relationship  between the strain  o f the m odified Voigt 

elem ent s2, and  the applied stress on the dashpo t cr2 is repres­

ented as follows, by changing the suffix b in Eq. (3) with 

suffix 2.

s  is given approx im ate ly  as

a  (a  -  «„) (<r -  a 0) A ,

E 1 E2 B2E2 2 2 2

I f  s2 beyond the lim its o f re la tion  (8), viz.

(o' -  o0)

we obtain  a t t

£2 >  

-+00

- >  00

2B2E2
(2 B, -  1)

_  (g ~  g 0)

(9)

(10)

(11)

(6)

Clay specimen and compression plastometer

U ndisturbed  clay  sam ples used for the tests were obtained 

from  the alluvial clay  stra tum  in O saka C ity with the aid o f a 

thin-w alled sam pler with a sta tionary  piston. This clay is 

norm ally  consolidated, and  its physical properties are as 

follows : specific g ra v i ty ; 2-67, L .L . ; 83 —  63 per cent ; 

P .L .; 36 — 25 per cent, n a tu ra l m oisture c o n te n t; 92 — 58 

per cent, degree o f sa tu ra tio n ; 100 p er cent.

Fig. 2 shows the com pression p lastom eter which consists 

o f a triaxial testing un it and a recording 1-1 and controlling- 

un it. L oad  im posed on the lead ing  rod  and  its displacem ent 

can be au tom atically  and  continuously  recorded electrically. 

W ith  th is p lastom eter, various types o f com pression tests 

can be perform ed autom atically .

Eqs. (9) and  (11) show  that the flow stra in  o f c lay  e is p ro ­

portional to the logarithm  o f  tim e t a t first bu t should  approach  

to W —>CO as show n in Fig. 3.

Fig. 3 Relationship between flow strain and time.

Relation entre la déformation et le temps.

Perform ing long term  an isotropic conso lidation  tests with 

the p lastom eter, axial displacem ent, pore w ater pressure 

at the low er surface of the specimen and  the volum e o f w ater 

expelled from  the specim en were measured.

T ypical results are illustrated  in Fig. 4. Fig. 4 (a), in which 

axial strain  is plotted against the logarithm  o f tim e t, shows 

tha t the secondary  com pression curve (continuous line) 

exhibits the purely  com pressive flow character o f clay. As 

show n in Fig. 4 (b) and  (c), the effect o f pore-w ater m ove­

m ent and  pore-w ater pressure on flow behav iour m ay be 

negligible. Fig. 5 shows the strain-tim e curves (continuous 

lines) obtained  by these tests and these curves reveal th a t the 

flow strain  s increases proportionate ly  w ith the logarithm  

o f tim e t as represented by Eq. (9).
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Fig. 4 A typical example of flow test results : a) flow strain ; 
b) pore water pressure ; c) volume change.

Un exemple typique des résultats d’écoulement : a) défor­
mation ; b) pression interstitielle ; c) variations de 
volume.

Fig. 5 Deform ation — time diagram.

G raphique temps — déformation.

Strain rate characteristics. —  F rom  Eq. (9) the strain-rate 

is given by

de (a -  a0)

dlogt
(12)

2 bka
(13)

E q. (13) shows th a t dz/d  log t and tem peratu re  T a re  direc­

tly  p ropo rtiona l if the applied stress a  is constant.

Fig. 6 Relation between d z/d  log / and stress.

Relation entre d z/d log t et contrainte.

T he result o f tests on  the therm al effect o f com pression flow 

o f clay is show n in Fig. 7. In  Fig. 8, each de/d  log t obtained 

from  Fig. 7 is p lo tted  against the abso lu te  tem peratu re  T  

for a constan t value o f  a. This figure proves the validity  o f 

E q. (13).

Fig. 7 Deformation related to iime.

G raphique temps — déformation.

T herefore, the relationsh ip  betw een the stra in -rate  de/d  
log t and  its applied stress cr (so-called D  —  t  curves) should be 

represented by  a  stra igh t line w ithin the stress range from  

tr0 to  the upper yield value.

In  Fig. 6, dz/d  log t ob tained  by  flow tests is p lo tted  against 

its applied dev iator stress (ffj —  ct3). Fig. 6 shows th a t the curve 

is linear w ithin the stress range up to (e^ —  <r3) =  0-7 kg/cm 2. 

T he abscissa o f the po in t o f intersection o f the curve w ith 

the a —  axis gives the low er yield value <r0, below which no 

flow deform ation  takes place. The stress corresponding to  

the first inflection p o in t o f the curve gives the upper yield 

value g u ,  and  th is value is the m axim um  stress which can 

exerted fo r a long tim e w ithout failure.

Thermal effect on flow. —  Substitu ting  B2 o f Eq. (3) into 

E q . (12), and  neglecting ct0 we ob tain

Fig. 8

Tempera tu re  

R ate of flow as a function of temperature.

Vitesse d’écoulement en fonction de la température.

Stress relaxation of clay

T he re laxation  o f stress in clay under constan t initial 

deform ation, viz. the relation  between to ta l stress a  and  tim e 

t can  be obtained  by solving the sim ultaneous Eq. (7) under 

the condition  o f s =  £0 (const.) a t t =  0. A pproxim ate result 

is given as
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r

where

-  exp(i/) du = C • t 
u

Bo

B 2E2 

(a —  cr0)

C  =  —  E-, exp S  B2 (  I
2 \ \

(14)

and  a t / -*■ 00

G t- >  00 —

E \E 2 

£ j  +  E 2
(15)

Fig . 9 Calculated stress- relaxation curves. 

Graphiques contraintes- relaxation.

yield value the long-term  strength , the long-term  strength  

does no t m ean  a definite value.

W hen the stress exceeding the upper yield value is applied 

to  clay, the rate  o f flow strain  shows a m arked increase as 

com pared w ith th a t at the stress low er than  the upper yield 

value. This fact is considered to  be due to  the successive 

breaking o f bond between clay particles caused by the app li­

cation  o f ex ternal stress exceeding the upper yield value. 

T herefore, if the num ber o f such bonds per u n it cross sectional 

area perpendicular to  the direction  o f the applied stress o f 

clay is N b, failure will take place w hen the num ber o f  rem a­

ining bonds bscom es zero.

Since the ra tio  o f num ber o f activating  bonds per u n it time 

d N Jd t  and to ta l bonds N b is equal to  the frequency of activa­

tion  o f one bond per unit o f  tim e, if the broken  bonds are 

repaired , the ra te  o f breaking o f such bonds a t con stan t stress 

cr is w ritten  as follow s :

T he results o f the stress —  tim e relationships num erically 

calculated  by Eq. (14) applying m odel constan ts found  by 

the experim ents show n in Fig. 10 (i.e. E1 =  48-0 kg/cm 2, 

E2 =  34-3 kg/cm 2, B 2 =  5-0) are show n in Fig. 9 for various 

values o f initial stra in  £0, and  these calculated curves are 

represented  by approxim ate stra igh t lines on the semi-Iogar- 

ithm ic paper. W hen the in ternal stress is entire ly  transm itted  

to the spring elem ents E1 and  E 2 in the m echanical m odel 

show n in Fig. 1, stress re laxation  ceases.

1 dN>

dt

2k T  
=  exp 

h T¥ )  sin * (
Act ,

2 N JcT
(16)

where a2 is the stress applied on the dashpo t show n in Fig. 1, 

and  g 2 =  ct (7q e2 E2.

W hen the stress is near th a t o f failure, the elasticity  o f clay 

becom es negligible and  the lower yield value <j0 is very sm all 

com pared w ith the applied stress cr, hence cr2 == (o =  <j0) == cr =  

const. T herefore, w hen the in tensity  o f applied stress a is 

h igher o r the repair o f the bonds does n o t occur, Eq. (16) 

becomes

1

N,

dN>

dt

k T
exp

k T
exp

Act

IN J c T

A pproxim ate so lu tion  o f Eq. (17) is given as

log10 tf  =  log10 —  +
Act

2-3 k T  4-6Nbok T

(17)

(18)

w here tf  is the tim e w hen N b becom es zero o r the tim e lapse 

necessary to  the flow failure, N b0 the initial num ber o f  bonds 

per u n it a rea  o f clay.

Eq. (18) represents the linear re la tion  betw een the long­

term  strength  cr and  the logarithm  o f the tim e to  failure tf .

Fig. 11 illustrates the flow curves and  those po in ts where 

failure took  place, obtained  by unconfined com pression tests 

under constan t stress cr exceeding the upper yield value. Fig. 11

Fig . 10 Relax at ion o f stresses.

Relax at ion  des contraintes.

The result o f stress re laxation  test u nder the undrained  

condition  obtained  by the p lastom eter show n in Fig. 2 

is given in Fig. 10, this shows th a t stress decreases p ro p o r­

tionately  w ith the logarithm  o f tim e and  finally approaches 

to  a finite value like as show n in Fig. 9.

Long-term  strength

I f  any  constan t stress exceeding the upper yield value is 

app lied  to  clay, the clay  will fail a fter it flows. Since the 

au thors defined such stress th a t exceeds the upper

Fig . 11 Flo w  curves for clay.

Graphique de l ’écoulement de l ’argile.

shows th a t every  flow strain  value a t failure is alm ost the same 

irrespective o f the applied stress, bu t the higher the in tensity  

o f the long-term  strength , the shorter will be the tim e at 

w hich flow failure takes place. T he results o f this test and 

ano ther such tests fo r flow failure are given in  Fig. 12. As the 

experim ental da ta  are  in close agreem ent w ith each straight
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line on a  sem i-logarithm ic scale, each relationship  between 

a and  tf  is quite satisfactorily  expressed by  Eq. (18), and  the 

tangent o f  the slope o f each line should be equal to  the values 

o f  X/4-6Nb0kT .

Fig. 12 Relationship between the long-term strength and the 
time elapsed until failure occurs.

Relation entre la résistance à long terme et le temps 
écoulé jusqu’à la rupture.

=  1o & l o  ¿ y
2-3 k T

(19)

I f  log10 tf  a t ct =  0 is w ritten  as log10 tf .{, the ac tua l value 

o f  can  be obtained by  ex trapo la ting  the stra igh t

ine p a rt o f a —  tf  line. As the equation  o f log10i'/ .!- is given by

the value o f ac tiva tion  free energy E0 can  be com puted  from  

Eq.(19). E0 thus calculated  are tabu la ted  in Fig. 12 and  have 

order o f 10-12 erg respectively.

Addendum

In  the above, the au thors refer on ly  to  som e results w hich 

can  be deduced from  their fo rm ula. In  add ition , som e problem s 

o f secondary  com pression, conso lidation  by dynam ic stress, 

the flow effects o f repetitional load  and  a new  m easuring 

m ethod  for determ ining the upper yield value o f clay  and  

preconso lida tion  stress have been investigated, and  som e o f 

them  will be repo rted  in subsequent papers.
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