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Consolidation and Secondary Time Effect of Homogeneous,
Anistropic, Saturated Clay Strata

Consolidation primaire et secondaire des couches d’argile homogénes, anisotropes et

saturées

by Dr TAN TjoNG-KIE, Professor Wuhan Institute of Mechanics, Academia Sinica, Hankow, People’s Republic

of China

Summary

The author presents a new theory on the primary and secondary
consolidation of homogeneous, anisotropic clay strata ; funda-
mental assumptions are based on many results of creep, relaxation
and oedometer tests and on records of settlement observations
published in recent years. He points out that the stress strain
relationships for clays as a function of the time approximately
can be described by means of linear integral equations. The
general differential equations for displacement and water pressure
in the anisotropic case are presented, which in the isotropic
case are largely simplified. In plane strain, the clay is considered
as a porous orthotropic body defined by three independent
operators X', v/, m®, and two coefficients of permeability &k, and
k,. By means of transformation, similar equations have been
obtained as in the isotropic case. Hence solutions in the ani-
sotropic case can be directly derived from the coresponding
isotropic solutions ; four methods of testing with triaxial equip-
ments, compression plastometers, and gauge oedometers are
suggested. The necessity of rheological measurements is emphasis-
ed and the role of these rheological properties in secondary
settlement is analysed. An oedometer test with recording -of
the lateral pressure is discussed in detail ; this test result shows
that the ultimate settlement and lateral pressure as a function
of the time correspond satisfactorily with theory.

Introduction

In order to meet the increasing demands of the rapid cons-
truction on a large scale in China, theoretical and experimen-
tal research has been started on the fundamental properties
of clays, loess and rocks and their application to engineering,.
The author presents a part of the research on the properties
of anisotropic clay deposits as they frequently occur in his
country.

Since 1946 many results of creep and relaxation tests on
clay samples have been published ; the deformation in tests
under constant stress consists of two parts, vis. an instan-
taneous deformation and a deformation increasing with the
time. Two types of creep-time effects have been reported :

(a) creep at a decelerating rate continued by flow at cons-
tant rate; all these tests have been carried out with the help
of the triaxial apparatus (HAEFELI, 1953 ; GOLDSTEIN, 1957),
torsion plastometer (GEUzE-TAN, 1953) and compression
plastic meters (TAN, 1957-1959);

(b) creep increasing with log ¢; these tests have been per-
formed with the ring shear apparatus (GEUZE, 1948 ; VyaLOv-
SKIBITSKY, 1957).

Tests with the help of the relaxation-plastometers (TAN,
1957), whereby the sample is subjected to a constant deforma-
tion, and the stress is observed as a function of time show that
intensity of this internal stress decreases with the time and

Sommaire

Ce rapport présente une théorie de la consolidation primaire
et secondaire des couches d’argile homogeénes, anisotropes,
saturées ; les hypotheses fondamentales ont été choisies d’aprés
les résultats de trées nombreux essais de fluage, de relaxation,
d’essais oedométriques et aussi d’observations de tassement
communiquées pendant les dernieéres années. L'auteur remarque,
que I’on peut représenter approximativement les relations tension-
déformation de l'argile par des équations intégrales linéaires.
Les équations générales pour les déplacements et la pression de
I’eau interstitielle dans le cas du milieu anisotrope sont présentées ;
dans le cas isotrope ces équations se simplifient beaucoup.
En déformation plane 'argiie est considérée comme un matériau
orthotrope poreux, défini par 3 opérateurs A', v/, n® et deux
coefficients de perméabilité &k, et k,. A 1’aide de la transformation
affine on peut obtenir des équations semblables a celles du cas
isotrope ; ainsi on peut déduire directement des solutions du cas
anisotrope a partir des cas isotropes correspondants. Quatre
types d'essais utilisant des appareils triaxiaux, des plastométres
de compression et des oedomeétres a jauges latérales sont proposés
pour mesurer les 5 paramétres orthotropes. La nécessité des
mesures rhéologiques est accentuée et le role des propriétés
rhéologiques dans le tassement secondaire est analysé en détail ;
cet exemple montre que la correspondance est suffisante entre
le tassement final, la pression latérale en fonction du temps
et la prévision théorique présentée.

for fat clay samples may even be reduced to zero; this
phenomenon supplies further evidence of the tendency of
clay to flow continuously under constant deviatoric stress.
Further additional data concerning the time-effects have been
obtained from vibration tests on clay cylinders, carried out
with a special dynamic triaxial apparatus (TaN, 1958);
these experiments show clearly that damping is sensitive to
a change in frequency and this sensitivity is a measure for the
visco-elastic properties of clays. In the case of flow at constant
rate the viscosities of engineering clays are found to be in the
range of 3-10'2 to 6:10'4 poises (HAEFLI, 1953, TaN, 1954,
MasLov, 1955).

Tests on clay samples and wave velocity measurements
in the field have shown that natural clay layers have a cer-
tain amount of anisotropy and that this anisotropy increases
with the clay content (LAUGHTON, 1957). As the structure of
clay is built up of anisometric plates mutually interconnected
at many points, it is plausible to expect that these platelets
should assume a definite regular orientation, when the clay
layer has been subjected to intensive uniaxial compression of
sufficiently long duration (contacts type C, TAN, 1957, 1959).
Such a state of stress may cause laminated, stratified clay
layers with definite orientation of fissures especially under
high pressures.
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The first attempt to set up the stress strain relationships
for porous anisotropic visco elastic materials is due to BiLoT
(1956). In this paper a new visco-elastic theory on the consol-
idation and flow of homogeneous, anisotropic saturated clays
will be presented, the assumptions in which are based on
results of laboratory and field tests published in international
literature and on tests carried out in the author’s laboratory.

Stress strain relationships

For the majority of cases there is an approximate linear
relationship between the stress applied and the deformation
observed at definite time intervals; this relationship holds
up to a certain yield stress, after which non-linear effects and
intensifield flow occurs gradually leading to failure. It has been
estimated that this relationship may hold up to from 60-to 80
per cent of the failure stress. Within this linear range the
deformation ¢ (¢r) from experiments under constant stress o,
increases according to the time function F(¢) as follows :

) = o, [iE + F(r)J M

and the stress under constant unconfined deformation g,
relaxes with the function R() :

o(f) = g[E — R(1) €]

In analogous manner the corresponding test results for simple

may be described :
1 _
(@) = T"[E + F(t)] €))

(1) = v,[G — R C))

In the above expression :
E = elastic modulus;
G = shear modulus, F(f) and R(r) creep and relaxation

functions for uniaxial compression and F(r) and R(1) are the
corresponding functions for simple shear. If at the time ¢ = 0
the material is initially free of stresses and deformations the
above expressions can be generalized :

t
=20 4 ff(:—e)a(e)de;
0
t
o(r) = Ee(r) — f vy —0)e6)do;
Q) [:’ ©
T _
w =2+ j fe - 6)=(6)do;
0
,1t
) = Gy() — / Tt ~ 6)y(®) do
0
Where :
f@® =_dF(t)/dt; r(®) = dR()/dr; f(t) =d1‘:(t)/dt and
r(t) = dR(»/ar.
e, M= vt
gy = Vap Mt -1
€, — ~ Vi 7\h_ = Vi )\h—l
Yzz
Yuz
Yav .
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After application of the Laplace transformation :

1 CH+ioo
S = z_f ev! f(w)dw,
i C—iw

the above expressions become :
&) = [iE +f(s)] o)
a(s) =[ E — v(s) 1e(s);

) = ILG +f<s>J (s

t
/ et f(n) dr = f(5);

v 0

(6

W) =[G —¥ 1y,
which further can be written in the more rigorous form :

c(s) = A(®e(s)

GO RTOME) ™
when :
1
)= ol E — y(s);
1 _
$(s) = Gt rG) G —¥(®

In the following the operators for uniaxial compression
A(s) and the shear operator (s) for brevity will be written
A and ¢ respectiviely and accordingly all the transformed
stresses and deformations will be written without (s). In the

isotropic case the six stress-strain relationships in three
dimensions can be written :
e, = Allo, — Vg, + 6,)] .. (8
Yoy = Y710 cyclically.

in which v denotes the operators for lateral expansion. So the
stress-strain-relaxations are governed by three operatores;
from geometrical considerations however the following
relationship applies :

A=2d(1 + v). ©
Further the following expression may be derived :

e=¢,+¢g +¢,=(,+0,+07)0, (10)

in which :
® = 2\/3(1 — 2v) is the operator of volume compression;
for a material whereby its volume decreases with the time
under constant hydrostatic pressure, & is an operator such
that it decreases with the time approaching a definite mini-
mum value, It becomes clear that it should be v < 1/2, for
the theoretical case that the deformations under deviatoric
stresses for infinite values of the time might become unlimited,
thus for A -0 then v should approach %, as € and thus &
should be limited. Then the process will approach the state
of hydrostatic stress; and the clay assumes ultimately the
properties of a thick viscous mass as reported by BERNAT-
zik (1947).

Now the case of transverse isotropy with the Z-axis as axis
of symmetry will be considered ; the operational stress-strain
relationships can be written in the following matrix form :

8

<

(an

8 N
8

Aaqaaaqaa
=
0N



in which :

A » A, = compression operators in horizontal and vertical
directions respectively, v,, = operator of lateral expansion
due to horizontal stress in horizontal directions, and v,
and v, are corresponding operators of lateral expansion due
to vertical stress in horizontal directions and due to hori-
zontal stress in vertical direction respectively, and Y, and
), are shear operators acting in vertical and horizontal planes
respectively.

Between these seven operators the following two relation-
ships exists :

Verhn = Vighes
A = 20501 + vy, (12)
Further the following restrictions hold :
Vir T Vie<<1; v, <172
The stress-strain relationships can be written also in the

following form :

Gy 1 P2 ¢3 €e
Gy F2 91 3 €y
Oz =1 ¥ Pz P €2
Tz LIJZ Yzz
TUZ "IJZ Yyz
ey — . N Yazy
in which :
¢ = )\h(l - vhvvvh)/A ) P2 = )‘h(VILh+VIwVvIL)/A >

O3 = )\hvvh(l + th)/A 5
4 = a +van) a

Py = )\v(l _thZ)/A >
2\‘“5\',”)) > ijl =P1— P

—Van—

Fundamental equations

Let us now proceed to find the equations for the stresses and
deformations, when the soil skeleton is completely saturated
with water. Strain components for this skeleton are given
in the compatibility equations :

ou . Ou_‘_bv
3 Yay = oy | 8;/’

cycl.

€y = —
(14)

where u, v, w represent the displacement field.
The stress-field is subject to the three equibrium equations :

0 o7 o7 0
Oy a:y_l_ a:z+ G"’+X=0

ox Dy vz dx

0t,, 06,  0T,, 00,

Yy T ! Y=0 15
bx+by+bz+by+ (15)
07,,  07,, 0o, oo,

= Zluz Z, =0

ox T dy Oz 2: A

with ¢, = waterpressure, and X, Y, Z = the body forces
per unit mass. In (14) and (15) a shortening should be given
the positive sign as pressure is considered positive.

The squeezing of the overburden pore water is governed
by two coefficients of permeability &, and k, as follows :

Qu oG

S N B X*
or h( ox T Pw )

Ov,, 0o

—2 = — | == Y* 16
0[ h( by + Pw ) ( )

d d ‘

Jﬂ: ¥kt( G1v+\oin*)

ot 0z /

with «,, v,, w, = displacement components and p, unit

mass of the water. As the water is incompressible the cont-
inuity condition requires :

ow,, (
Oz ‘

o  orl dox | oy

and then is combination with (16) the following equation in
Laplace-transformation may be obtained :

d% 0? 02
—sz—:—k,,( Y Gl>+kv—c"’

17
dx2 Oy2 Oz2 (7

When constant body forces are assumed. With the help
of (13) and (14) the equations (15) can now be written in terms
of the displacements :

02 02 02 2
<P1 +9102+9202 (4’1‘*‘02)
oG,
=% x
+(4’2+@3)a 2z ox
| %y . %y 2y | 02u
'41077‘%54‘%@4‘(914‘%) %D
(18)
+ (e + 2wy y
2 T P3 3o oy
%w 2w d2w 02y o2y
%(W * 072) Toagz Tt [bxbz * ayaz]
00,
=-—%4Z
0z *

For the isotropic case these equations are largely simplified :

Oe s,
e ) Pw i x=0
¢ ( * 3)bx+ ox

’ L\dz o
—u vy + (0 i>_ vy y=0
Y 1+( +3’b + S + (19?
b\ds o,
_y e 0+ 2= =0
? w+< +3>az dz
—se =kV%,

The complete process of consolidation and secondary
time effects in the isotropic case is thus governed by two
operators @ and Y. These equations are generalisations of
those obtained earlier (TAN, 1953, 1954) where @ is assumed
constant and the process thus is governed by one operator
only (Maxwell solid.)
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Plane strain

In the case of plane strain the equations (17) and (18)
reduce into;

O2u 02u da, )
P1 3552 2+Vzb +(‘~H2+<?3)0 bz_ ox + X;
ot (U + 0 2L _ 0 4 7. 20)
‘1)2624_@402_{_"/" @300 be H .
d%,, d%

It will be shown further on that these equations can be
simplified by performing affine transformation. The stress-
strain relationships in plane strain :

1 Vor¥
vh
€ =0, ——G@G, ;
T * T * z
)\h 7‘1)
V¥ Q2n
v
g, = ——,60 +—0, ;
* T *x Z °
)‘h )‘v

Yzz = "IJZ—I Tzz

are governed by the shear operator J, and 3 new operators

g, = g/ [/m? ; g, = mk, ;
6, = m’os, ; 6, = o, /m?;
k, = k', Jm? : k, = m*’', ;
X = mX' ; zZ =2Z'lm ;

It may be noticed that this transformation from the coor-
dinate axes x — z to the new axes x’ — z' does not affect the
shear, the shearing stress and the shearing operator. (13),
(21) and (23) it may be derived further that :

mi\ ] AV
=z =0 =1 ons
26
4 N , I (26)
0= ——— JJ =
mi(l — v'% ; 2(1 + v")

Substitution of (24) and (25) and (26) into (20) gives directly ;

1+v,,0" 25,

— 'y = = .
v + v'v ox’ ox’ ’
,o0e’ 0o,
- e © = ; 27
{' VR + > v 5 T @7
, , 0% , 0%
- se =kh bxl;)_’_k’l) b/;u'

e

1—v
2q}/ w

(28)
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for plane strain A,*, A,*, v,,*, which are related to the oper-
ators in (11) in the followinng way :
)‘h . )\ * — 7\1)

VonrVhy

Vo

S Vit =

hv 1 — th

(22)
whereas : v, *A,* = v, ) *A*

Next the clay will be considered as a porous orthotropic
visco-elastic body described by four operators A', v, §’, m®
of which only three are independent, since the following
relationship will be assumed :

A =20'(1 + v)

This assumption is reasonable as in many natural clay
deposits the degree of anisotropy has been measured no to
exceed the ratio A,/A, = 3. Let the ratio X,*/A,* be denoted
by m8, then the following relationships will be introduced :

ME=m o NF =N mt
(23)

* = 4. L J— 4.’
Vot = v'/m*; v, ¥ = mty

Hereafter affine transformation will be performed to the
equations (20) which is defined by :
z=2Z'lm; wu=ulm; w=mw

x =mx'; 24)

This transformation involves the following operations :

Yzz = Y’a:z s Tor = Tlmz 5 qJZ = l1bl 5
Xds = mX'ds ; Zds = Z'dsim
(25)
o6, . o, | d, 1 3s,,
Ox ox° ° dz  m o7

For the solution of the problem the affine transformation
should be performed also on the boundary conditions. Then
the solution referred to the new transformed coordinate axes
x' — 2’ can be found. For the final solution in the original
x — z system, however, back transformation with the help
of (24) and (25) should be carried out, and hereafter the defor-
mation, stress-distribution and water pressure as a function
of the time can be obtained by inversion of their Laplace
transformations. It occurs that the first two equations of (27)
referred to the transformed x’ — 2z’ system is similar to the
corresponding equations in the isotropic case referred to the
original x — z system. This becomes clear when in (14) the
isotropic plane strain parameter v/ = v /(1 — v,) will be
substituted. Hence solutions of the isotropic case in the
original x — z system are simultaniously also solutions of
the transverse isotropic case in the x’ — z’ system, provided
the influence of the water-pressure ¢ ,, can be neglected as it
is the case with the calculation of instantaneous settlement,
the maximum settlement due to consolidation and the
settlement due to secondary time effects.

If only roughly approximate solutions are wanted, then it
may be tried :

0%, d%

—SE:I =k’hw+k10 b 75

Y Nk, Vi,
(29)

and the complete process including the primary, secondary
consolidation and the water pressure as a function of the time



can be derived directly by back transformation from the
corresponding isotropic case.

Experimental determination of the rheological operators

It may be recalled that the process of consolidation and
secondary time effects of homogeneous, orthotropic clay-
layers in plane strain is governed by three independent oper-
ators : A’, v/, m® and two coefficients of permeability k,
and k,. The measurement of these five quantities will not
be a simple procedure, as clay is a two-phase material, viz.
a porous soil-skeleton saturated with water. For the evaluation
of these three operators from experimental data, the following
relationships may be summarized :

* —
md = 7‘h _ 7\h 1 Ve Ven _ @1 .
Ty * % 1 —v..2 L
7‘1; )\z 1 Van Pa
v @
5o 4 * * 4 _ hy _ T3
V=MV = Vi /m > Vi _1 -
Vhn 4
N o= A0S = m =0 mt
P )\’b‘ C R = 7‘71
\y. 1 PEAY ] B) .
— VYonVnr = VT

In these expressions we have to deal with froe operators
ns Aps Vins Vons and v,,, of which ohly four are independent
because of the relationship (12). Thus it is necessary to per-
form at least four independent types of tests as for instance :

I. Uniaxial compression tests on clay cylinders loaded
along their symmetry-axis of anisotropy Z,

II. Similar tests in a direction perpendicular to this Z
axis ;
III. Confined consolidation tests in Z direction;

IV. Similar tests in a direction perpendicular to the Z
axis.

For the experiments type I and II use can be made of tria-
xial equipments, and of compression plastometers, which have
been designed especially for creep-and flow tests. The follo-
wing loading system will be recommended : the sample is
subjected to a constant vertical stress for so long a period
that its continuous flow effects can be recorded adequately ;
then the vertical stress is increased by the same amount
during the following time interval. This loading system is
continued until failure; at every interval the deformation is
recorded as a function of time. In this manner it is possible
to study the instantaneous deformations and the creep-flow
effects and to measure the failure strength on the long term.
These tests data enable us to determine E and the flow function
F(1) and thus to calculate A, and A, in the linear range of the
stress-strain-relationships. These creep-test data are required
for the computation of instantaneous settlement and the
secondary time-effects due to deviatoric stresses.

The tests type III and IV will enable us to determine
Vun Vor and vy, by measuring o,, ©, and og/¢,. It may be
pointed out that ¢;, ©; and ¢, are operators ; since they vary
with the duration of loading and moreover the time-effect
of the waterpressure is always related to these time effects,
the measurement of these operators becomes very intricate.
These quantities, however, can readily be determined for
small and very large values of the time by measuring the
settlement and the lateral pressure. For this purpose the gauge
cedometer has been developed, which enables us to record

the lateral pressure as a function of time (Tan, 1957, 1958).
For the analysis of these test data the following formulae
have been derived :

(a) Tests type III :

for t - 0:
2q et _ /
= — —_ = — 2 —_
"o '4\/; e q( )\ h
(30a)
h 1
for t ~0: we=—20 . 5= _g (30b)
P4 Pa
where C, = k0, ;
(b) Tests type IV :
29 /Cyt
for r -0 : uoz—z,\/cl (31a)
?1 g
/
for -0 : Uy = % (31b)
?1

where C, = k,0,".

In above formulae : 1y, to, Wy, Wo settlements in x and z
directions : ¢ = loading intensity ; # = thickness of sample ;
C, and C, coefficients of consolidation in vertical and hor-
izontal directions; 6, = mean lateral pressure; ¢,’, ©3', @,
are constants denoting the approximations for ¢;, ©3, ©4
for small values of time, whereas these operators in the ultimate
state are approximated by the constants ¢,"’, ¢;'" and ¢,"”
respectively. The quantities @,’, Cy, ©," and C, can be obtained
by applying Taylor’s curve fitting method after plotting u,
and w, against \/7 ; simultaneously k; and k, can be calculted.
Further ¢,'/¢o, can be computed from the slope of the 5, — 4/7'
curve. The quantities ¢,” and ©,"’ can be obtained from

long duration tests. For the isotropic case the following
reductions hold :

’ ’ ’ ( —V) 1 7 1

o =04 =0 (1.v)0 7= =" =0 ;
W=v) v (32)

C‘v_Ch_Tve' ;0304 “T=w

and it may be recalled; & = compression modulus, v, =
elastic part of operator of lateral expansion v. This isotropic
case renders it possible to compute o’ from ¢’, when v,

has been determined from the &, — 4/t curve.

For practical purposes the displacements on the long term
are the most important and then it well be sufficient to take
only the values of the operators for large values of the time.
In practice samples are taken usually from vertical boreholes
with a diameter of less than 15 cm. Then the creep tests type 11
can not be performed easily and we are restricted to the tests
type I, III and IV. As sufficient data no longer can be prov-
ided for the computation of the 5 operators, it will be proposed
to introduce the approximation v,,v,, ~ v,2 and to estimate
@, 9;", ¢, and ¢,”" with the help of (30, 32) and (31, 32).
This computation will be illustrated now by means of the

following experimental example. The figure shows the w, — \/_t

curve (1) and the c,/g — \/t' curve (II) for a dense, stiff clay
specimen with a watercontent of 21-5 per cent and a height
of 2 cm loaded by ¢ = 2-1 kg/cm?, Firstly the ultimate settl-
ement after Terzaghi Wr can be calculated according to
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Taylor’s method giving Wr = 045 mm, and then the
following quantities can be determined : ¢, = 93 kg/cm?;

C, =18 x 1073 cm/sec™!; &, = — = 91 x 107 cm/sec™™.

w
It occurs that the settlement exceeds this theoretical value
and obviously approaches another asymptote, which can
be estimated with the help of (30) and (32). Now determine

@5’ /9, from the slope of the G,/g-v/ t' curve. If we further
assume ¢,'/o," ~ v /(1 — v,) then we find v, ~ 0-41 and the
settlement after the author’s isotropic theory can be calcul-
ated w_ = 3(1 — v)/(1 + v,)*Wr ~ 0-55 mm and thus
¢, ~ 76 kgfem?®.

The lateral stress decreases initially with time until a definite

00

Conclusion

In the discussions during the Fourth International Confer-
ence in London 1957 it was concluded that the majority of
settlements observed in practice is larger than predicted by
the current methods of computation. It has been pointed
out that this fact may be due to the following factors : (a) effect
of deviatoric stresses causing an instantaneous deflection
followed by secondary time effects due to lateral flow;

(b) secondary time-effects due to volume creep as measured
in cedometer tests. Therefore it is necessary to determine the
rheological properties and the measuring technique suggested
above is fairly simple. In practice two main types of secondary
time effects have been recorded (TERZAGHI, 1953) : the settl-

:\.-‘Ji‘
05 e —0C LD O——00-0—00Q—O0—C00—0C0—0—0 0~
03t oz
= 02 il i

of x| 2

0l g VT i
VO . B A W W W @ om0 e

Settlement as a function of \/_t (Curve I)
Ratio lateral/vertical pressure G,/q as function of x/ t (Curve II)

Tassement en fonction de x/_T(Courbe I)

Rapport pression latérale/verticale 6,/¢ en fonction de \/T (Courbe II)

minimum is reached, but then gradually rises to a maximum.
This test-result is common for dense clays, but this increase
has been not yet observed for loose clays. The decrease is
due to the waterpressure, which relaxes with time. Simul-
taneously shear and volume creep occur, thereby gradually
an increasing part of the stress is transferred to the rigid ring
of the gauge cedometer ; so the interrelation of the two complex
processes, consolidation and flow, has been measured. This
test result is in agreement with the theory presented here,
which predicts that the operator of lateral expansion v should
increase with the time leading to a gradual rising of the lateral
pressure to its ultimate maximum. In above example the
operator v increases from 0-41 to 0-44, when computed with
the help of (30b) and (32).
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ement proceeds at constant rate or increases linearly with
log . As it has been analised above this secular settlement
is mainly governed by the shear operator . In the first case
of constant rate the assumption of a porous Maxwell body
may be satisfactory and the shear operator may be wriiten :
¢ = 7es/(¢ + 7s); in the second case a good approximation
may be : 4 =7e/(c — 7 loges);

For the determination of ultimate settlement in the one
dimensional case, which is larger than predicted from Ter-
zaghi’s theory, simultaneous measurements of lateral pressure
and settlement are required, but the calculation itself is a
simple procedure. In order to estimate secondary settlement
in more dimensional cases long term creep and flow tests are
required ; the computation of settlement due to deviatoric



stresses is similar to that in the elastic theory except that for
the shear modulus G the shear operator ¢ should be substit-
uted. For plane strain in the transversely isotropic case the
stress and deformation fields can readily be derived from the
corresponding isotropic case by back affine transformation.

The author states that in China multi-layered clay deposits
hundreds of metres deep frequently occur, consisting of
regularly alternating plane parallel layers several metres
deep. By ensuring the continuity of displacements of the
consecutive layers it is possible to compute the equivalent
anisotropic parameters of the entire clay mass and to bring
this problem back to the case of transverse isotropy.
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