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Design of Structures on Elastic Foundations

Calcul des ouvrages sur appui élastique

by Prof. M. I. GorBUNOV-PossaDOv, Member of the Academy of Construction and Architecture of the USSR, Doc-

tor of Technical Sciences,
and

R. V. SereBrJaNY), Candidate of Technical Sciences, Scientific-Research Institute of Foundations

Summary

The authors describe a method useb by Soviet engineers
for designing beams and slabs on elastic foundations.

M. I. Gorbunov-Possadov has derived a formula of linear
connections between the coefficients of a double power series,
expressing the distribution of normal pressures on the rectangular
area of an elastic half-space surface, and the coefficients of the
same series expressing the vertical displacement of points on
this surface. On this basis the solution of the problems of settle-
ment of rigid foundations with central and eccentric loads and
the bending of flexible rectangular slabs, under the action of
uniform and concentrated loads, are calculated. A solution is
derived for slabs of great length, of the airfield slab type with
loads located near the free edge.

For continuous foundations, double power series pass into
single ones. The methods of calculation of rigid, short, infinite
and semi-infinite beams are given on elastic foundations with
any loads.

R. V. Serebrjanyi has solved the problem of bending under
a concentrated load of rectangular slabs of great length hinged
to adjoining ones and resting on an elastic foundation. The
solution is obtained by integral transformations. Tables of slab
deflections and bending moments are given.

In the Soviet Union, the foundation bed is generally consi-
dered as an elastic half-space for practical calculations of the
strength of reinforced concrete foundations. It is estimated,
that even though this hypothesis does not make adequate
allowance for the properties of the soil, it is nevertheless
nearer to actual conditions than the Winkler hypothesis.

The pioneers of this new method of calculation in the
U.S.S.R. were G. E. Proctor and N, M. Gersevanov, Cons-
iderable contributions were also made by V. A. Florin,
B. N. Zhemochkin, O. J. Shekhter, P. I. Klubin and others,
who considered the plane problem and the axial symmetrical
problem.

M. M. Filonenko-Borodich, V. Z. Vlasov, P. L. Pasternak
have developed design methods in which the foundation is
represented by two bed coefficients representing compression
and shear resistance. A. P. Sinitzin, 1. J. Stajerman, and
1. 1. Cherkasov used combinations of models of elastic half-
spaces and the Winkler model. G. K. Klein introduced a cal-

Sommaire

Exposé sommaire du développement en U.R.S.S. des méthodes
de calcul des poutres et dalles sur appuis élastique d’apres diffé-
rents modéeles de propriétés mécaniques du sol.

Le rapport est essentiellement consacré a la solution de pro-
blemes a trois dimensions que les auteurs ont pu résoudre en
partant d’un modéle élastique semi-infini.

M. Gorbounov-Passadov a traité les problemes de calcul des
poutres et dalles de fondations d'une rigidité et de dimensions
quelconques, ayant une semelle de forme rectangulaire. Il a
trouvé I’expression de la relation linéaire qui existe entre les
coefficients de la série exponentielle double exprimant la distri-
bution des pressions normales sur une aire rectangulaire en
surface d’un demi-espace élastique ainsi que l’expression des
coefficients d'une série identique exprimant le déplacement
vertical des points sur cette aire. C’est sur cette base qu’ont été
résolus les problémes du tassement des fondations rigides
soumises a des charges centrées ou excentrées et de la flexion
des dalles rectangulaires flexibles soumnises a des charges unifor-
mément réparties et concentrées.

Une solution a été donnée pour les dalles de grande longueur
du type employé pour les revétements des aérodromes, chargé
sur le bord extérieur.

Pour les fondations continues, les séries exponentielles doubles
se transforment en séries simples. Sont également exposés les
procédés de calcul de poutres rigides, courtes, infinies et semi-
infinies sur une fondation élastique, sollicitées par une charge
quelconque.

R. Serebriany a trouvé la solution du probléme de la flexion
de dalles rectangulaires de grande longueur unies les unes aux
autres par des articulations et reposant sur une couche élastique,
sollicitées par une charge concentrée. La solution a été obtenue
a l'aide de transformations intégrales. Des tables donnant les
déflexions des dalles et les moments de flexion ont été calculées.

culations method for foundation beds with the modulus
of elasticity changing with depth. O. J. Shekter, V. N. Avra-
menko, L. I. Lokkenberg-Fedulova, I. K. Samarin, K. E. Ye-
gorov and others worked out calculation methods for the
case of an elastic layer of finite thickness. B. G. Korenev
derived a solution for most of these models simultaneously,
and the same author considered the problem of estimating
plastic hinges in slabs on elastic foundations.

Reviews of these works are given in several works
(M. I. GorBuNOV-PossaDov, 1949, B. J. KORENEv, 1954,
N. A. ZyToviTtCcH, 1956).

The authors consider the design of beams and rectangular
slabs with free edges resting on an leastic half-space (M. 1. Gor-
bunov-Possadov), as well as slabs hinged with adjoining
ones along common rectilinear lines (R. V. Serebrjanyi).

For a rectangular supporting foundation area. the connec-
tion between vertical displacement W(x.y) of the half-space
surface and normal pressures p(x.y), transmitted to the soil
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by the foundation according to Boussinesq is determined by
formula :

(1 =vePab »1 1

m Ey [

o« —1 e

p(x, y) dx dy
\/a (\ — x)% + by — )2

Q)

Wix,y) =

(friction of the foundation against the soil is neglected).
In formula (1) v, and E; are respectively Poisson’s ratio
and the modulas of deformation of the foundation bed,
A1 1

x =—and y =ZL — reduced coordinates of displaced point
a

(while axis x is directed parallel with the big side and x’
and » — actual coordinates) a and b — correspondingly
half-length and half-width of supporting area, x and y
— reduced coordinates of pressure element.

It is assumed that the unknown distribution of reactive
pressures is expressed by a double power series :

o0 2]
YN oy 2
i=0j=0

Thus, settling may also be expressed by a double power
series (GOrRBUNOV-Pcssapov, 1939).

plx,y) =

(1 —v02)a © fo’ :r;‘ 4] \ i

W(x,y) = T e Y ( A \‘ Cu, vain i 4 j ' xuyt
~Egr =0 st \i=0 j‘:(‘) /

where (3)
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For values of «, v, i, j from O to 6, algebraic expression

1
of integral equations (4) have been found for o = 3 =1, 15,
2,3, 5,7, 10 with their numerical values. :
For rigid rectangular slabs with central load P, unknown
coefficients ay,, ,; in equation (2) are determined on condition
of equilibrium :

o co
Agiy 25

L NGy G

&)

and constant settling conditions. On this basis, the coefficients
of all derivatives x2* y2? are taken equal to zero, except for
x°y°. The obtained infinite system of equations in relation to
Gg;,9;, is substituted by a shorter one. A similar method for
problems solved in single series was used by H. Borovicka
(1936, 1939), V. A. FroriN (1937) and M. I. GORBUNOV-
Possabov (1937, 1941).

As a result, for example, for a rigid square stamp (¢ = 1)
at 2n = 8 the following equation was obtained :

p(x,»)=[0,5414-0,248(x%+y?) + 0,251(x*+p%) — 0,008x2y?

+ 0,280(x%+y% + 0,042(x%2+x2yY -+ 0,499(x8+y8)
P
+ 0,079(x®y%+x2y%) — 0,186x%y4] F (6
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K, = 0,913 (F = 4ab)
O

Similar solutions were received for eccentrically loaded
slabs. For moments Oli, and O, acting correspondingly
along axes x and y, the angles of turning of the foundations
were :

1 — vy? an 1 —v2 m
t = = K, —, tgo, = —— K, —
B 9y E 1 a3 E Py E() 2 fa

®

On the basis of the received data, taking into account the
decreasing character of values K, K;, K, with increasing
power of pressure polynomials, graphs were plotted of more
accurate values (Fig. 1).
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Fig. 1 Graphs for determination :

(a) by formula (7) of settlement of rigid rectangular
plate with ratio of sides « under action of central
force P;

(b) by the first formula (8) of angles of turning of
a rigid rectangular plate under the action of
moment I, ;

(¢) according to second formula (8) under action
of moment JIL,.

Graphiques servant a déterminer :

(a) le tassement d’une dalle rectangulaire rigide
sollicitée par une charge concentrée P en fonction
du rapport des cdtés d’aprés la formule (7);

(b) les angles d’inclinaison d’une dalle rectangulaire
rigide sollicitée par un moment N, d’apres la
premiere formule (8);

(c) sollicitée par un moment JIi,, d’aprés la seconde
formule (8).

For flexible rectangular slabs the unknown bending equation
with continuous loads were written in the form of a double
series :

@0 o
Y Y B, x ©

u=0 v=0

Y(x,y) =

In case concentrated load P is placed at any point of the
slab, series (9) has the following member added :

Pa 2
—— p%] 10
8D i (10)
where
p — distance from point of load application reduced to a,

D — cylindrical rigidity of slab.

On the basis of the biharmonic equation of slab bending
and edge conditions, a linear function is determined between
the unknown coefficients in series (2) and the coefficients
in series (9). Consequently, comparison with similar powers
in series (3) and (9) results in an infinite linear system of
equations in relation to unknowns a, ;, which are substituted by
shorter ones. During calculations irregular function (10),
as well as the derivatives of this function are substituted by
power interpolation polynomials.



Fig. 2 is a graph of lines of equal non-dimensional calcula-
tion values, when the slab has a concentrated load at the
centre. Lines of reactive pressures p are given for each of the

four quadrants, bending moments AM_, transversal forces
N, and torsional moments H_ for the case when the slab is
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Fig. 2 Graph. of non dimensional reactions p, bending moments
M,, torsional moments H,, and transversal forces N,
for calculating by formulas (12) of rigid square plate
under the action of a concentrated load P.

Graphiques exprimés en unités sans dimensions des
réactions p, des moments de flexion M,, des moments

de torsion 174, et des forces transversales I_V’I pour
le calcul d’une dalle carrée rigide sollicitée par une
charge concentrée P, d’aprés les formules (12).

so rigid that the reaction pressures actually do not differ from
the pressures described in equation (6). This is assumed when
the power of flexibility of the rectangular slab :
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The actual design values are determined by the following
formulae :

o i -~ ¥ i — P
p ZP_F’Mx = Macaz _F’ Ny, = N,a _Fsz . Hzaz—
(12)

The solution for a flexible square slab of very large dimen-
sions (r = 50) with a concentrated load near the edge based
on the Saint-Venan principle and the theory of similarity
to compose the tables (GorBUNOV-PossaDpoV, 1959) for calcu-
lating thin slabs. These tables are employed for designing
airfield pavements, concrete floors, and slabs below columns.

Fig. 3 shows curves calculated for loads at the middle of
the edge of square slabs with cylindrical rigidity D of a con-
centrated load , = 50. Calculation is performed by the follo-
wing formula :

_(I—v.2) P _
p=_L_2!W:W( E,Vn)21Mx:MIP’Mﬂ=MyP’
2D(1 —v,%) .
A o ) E il n = L
0

(12

For beams with « == 10 calculation is simplified by ignoring
the squares and higher powers of {3 in the algebraic form of
equations (4). As a result, for example, for symmetrical
loads the following is obtained :

when
V#£0, 155 u; Cyyy gy, 21, 25 =0
when
) 4
V 0, I = Uu; C2u, 20, 26, 25 2V(2j—2V+ 1)
when
4
V= 0, 1 # u; C2u, 2v, 24, 27 (2f—2u)(2j+ 1)
when

;A
V=0,i=u;Cy, g4, 2, 25 = (1"2‘7-_‘12“*’21. = )

2j + 1

b)
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Fig. 3 Graphs of non dimensional values for calculation by formula (12') of flexible square plate of great length.
Graphiques exprimés en unités sans dimensions pour le calcul d'une dalle carrée flexible d'une grande longueur

d’aprés les formules (12).
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where

dyyy = (13)

Further, on the understanding that, the beam does not
bend transversely and, that the coeflicients for all multipli-
cations x2* y2' in series (3) at ¥ > 0 should equal zero, the
following equations apply to symmetrical loading :

o Ao \ u =0,1.23,.
:: = L. _ (14)
2w 20 2 lo =123,
the accurate solution being :
[:3:5...2j -1
To2i = T g 25 Two (13
leading to the following equation for reactive pressures :
N P o
pxy) = o LA (16)
moV1—yt

Consequently, the transverse reactions are distributed in
accordance with the formula for rigid strips of M. SADowsKY
(1928).

A similar solution is also correct for asymmetrical loads.

Formula (16) may bz used to determine the distribution
of average transverse pressure in the form of a single series :

r19
where a; = - a;
2

e =]
px) =¥ axt
i=0

(17

Displacement of the foundation under the beam with a
symmetrical load is expressed by the following formula :

40—y 2 | 2 ay ;

Wey == Y | ¥ 5o & Unda —dy)ay, | 2%
e u=01] i=0
»i;ﬁu

(18)

The equation of bending of beam Y(x) in case of a contin-
uous loas or concentrated load placed at the ends, after in-
tegration of a common differential equation of beam bending,
is also expressed in the form of a power series, the coefficients
of which are directly proportional to a,;. In case of intermittent
loads or of a concentrated load placed at the inner sections of
the beam, irregular functions in the bending equations may be
replaced by interpolation power polynomials on the basis of
minimum squares. Therefore, to ensure accurate or approx-
imate execution of identity w(x) = Y(x) in this case, equalize
the coefficients at similar powers x in series w(x) and Y(x).
The system thereby obtained with the addition of equations
expressing equilibrium conditions is approximately solved by
substituting it in abbreviated form with the (6) or (5) equations.

Fig. 4a illustrates the changing of non-dimensional dia-
grams of calculated values for uniform load ¢ in the function
of & and beam flexibility :

t— Eya3h
201 —v D EJ
(E,J — beam rigidity)

(19)

To obtain the actual values of the reactions p, bending
moment M and deflections (settling) Y employ the following
formulae :
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Fig. 4 Graphs of non dimensional diagrams of reactions p,

moments A and deflections (settlements) Y for

calculating a beam of finite rigidity and length by

formulae (20) for different values of flexibility of

beam ¢ and ratio of sides « :

(a) for uniform load ¢ and

(b) for concentrated load P, placed at the centre
of the beam.

Graphiques exprimés en unités sans dimensions des
réactions p, des moments M et des déflexions (tas-

sements) Y pour le calcul des poutres d’une rigidité

et longueur limitées d’aprés les différents indices

de la flexion de la poutre ¢ et les rapports des cdtés a

d’aprés les formules (20) :

(a) dans le cas d’une charge uniforme g ;

(b) d’'une charge P concentrée, appliquée au milieu
de la poutre.



Fig. 4b shows a similar graph for a concentrated load placed
at the middle of the beam. The transient formulae are found

P
with substitution of ¢ by — in (20).
a

When ¢ <C 0-5, the diagram of calculated values practically
coincides with the diagram for an absolutely rigid beam
(t = 0). For this case, tables have been composed of non-

dimensional values p, O, M, Y (Q — transverse forces) for
beam design at values « from 10 to 100 and any kinds of
loads.

On the other hand, when ¢ = 10 and passing from reduced

!

. . X
abscissa x = — to abscissa £ = I where
a

_ EIA =)
“\ T eE

the diagrams also do not depend on r and change into dia-
grams for an infinite beam (in the case of loads remote from
both ends), of for the diagrams of half-infinite beams (when
loaded near one of the ends). For these cases, employed for
designing continuous foundations, detailed tables have been
prepared of ordinates of non-dimensional diagrams for the
values of p, O, M, Y in any section £ for various reduced

(21)

b
half-widths of the beam f = I and concentrated load placed

d
at any reduced distance & = I from the beam end.

The problem of designing a thin rectangulat slab of great
length resting on an elastic foundation and with a concentrated
load, where the edge his hinged with the edges of the adjoi-
ning slab is important, mainly in connection with pavement
design. This problem, depending on whether the load is at
the centre of the slab, near its edge or corner, can be solved
with sufficient accuracy if the following are assumed :

(a) an infinite horizontal slab,
(b) two slabs in the form of half-spaces hinged along a
common line,
(c) four slabs in the form of a quarter of a plane hinged
along two mutually perpendicular lines.

The first problem has already bzen well investigated. The
solution of the second and third problems is found by means
of integral transformations of Fourier.

A hinged joint is such when the values of deflections W(x,y)

. an.‘
and the total tangential force N, - (I —v) ——, where v-
Poisson’s ratio of slab material » and ¢ directions perpendi-
cular and parallel with the common edge of two slabs, remain
continuous when passing from one slab to another, and the
value of normal bending moment M, changes to zero at this
edge.

It is considered that all linear dimensions are expressed in
*/2D(1 — vg?)
/ EO
the total external load is P and that it acts on all four slabs
hinged along axes x and y, resting on an elastic layer of
thickness /4, below which is an unloaded layer. Then, multi-

plying the bending equation of the slab and the equation
connecting the deflection of the surface layer with the external

fraction of L = (m). Let us assume that

} 63 = . .
load byz—e”lx+’€y, after integration for all values of x and y
T

the following expression is found for slab deflexion :

Wixy) = __EL
YY) = mP( —vd)
. T 0002 + (42 4+ vE?) By(Z) + (vi? + E2) By(n)
,/ = (2 + 522 Ferth + 1
X F(q.2,h) e—inx—~i2y dyd?
(22)

Here Q(n, £) — Fourier’s transformant obtained by multiply-
L2

ing by P the function of distribution of the external load
T

on the slab, F(7,E,h) — the same by multiplying by

E.L
P>l — vg?)
elastic layer, under the action of unit concentrated forces
placed at the origin of the coordinates.

B,(%) and B,(1) are determined by the system of Fredholm
integral equations of the second kind obtained on condition
of changing into zero at the joints of slabs under normal
bending moments. In case there are two slabs connected
along axis y, B, = 0 and B, is determined by the ratio :

the function of deflexion of the surface of the
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Fig. 5 Graphs of non dimensional diagrams of deflections W

and bending moments M and M for calculating
by formulae (12’) of two semi- mﬁmte slabs hinged
along axis x and loaded with concentrated load P at
the origin of the coordinates.

Graphiques exprimés en unités sans dimensions des
déflexions W et des moments de flexion M, et M,, pour
le calcul de deux dalles semi-infinies, unies par des
articulations de long de l'axe x et sollicitées par des
charges concentrées P a l'origine des coordonnées,
d’aprés les formules (12).
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The formula for reactions is derived from (22) when the
L2

factor before the integral is replaced by 5P’ and the ker-

T

nel expression is divided by F.

The expression for bending and torsional moments, as well
as for transverse forces is obtained from (22) by differentiation
at x and y as parameters.

The asymptotic equations were found for B; and B, with
large independent variables, due to which all infinite limits
of integration were replaced by finite ones and all required
integrals were calculated by the Simpson formula. All tables of
deflexions and bending moments were composed for the
slab for cases when the concentrated load was placed at dif-
ferent points, located perpendicular to the edge in the case
of two slabs and along the bisector for four slabs. The thickness
of the foundation bed layer / is considered equal to 0-5, 1, and
2,4,

Fig. 5. showes the lines of equal non-dimensional deflexions
and moments with load at the joint 4 of two semi-infinite
slabs. Instead of x and y at this figure are written correspon-
dingly £ and . The foundation bed in this case is considered
as an elastic semi-space (& = c0).
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