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The Effect of Inclined Loads on the Stability of a Foundation

Contribution a I’étude des fondations soumises a une charge inclinée sur la verticale

by A. Kézpi, D. T. Sc., Technical University for Architecture, Civil and Communication Engineering, Budapest,

Hungary

Summary

The author maintains that failure of a foundation is due to
shearing force, and he determines, the strength of a wedge shaped
body subjected to an inclined uniformly distributed load. The
results obtained are applied to the case of punching strength,
which is a function of the angle of friction and of the inclination
of the resultant load. A reduction factor is given for determining
the limiting value of the inclined load.

The author also determines the distributed load acting at
ground level, which causes a state of plastic limit. The nature
of distribution of the load is an unambiguous function of the
angles ¢ and 9.

The most important part of an investigation into the sta-
bility of foundations subjected to an inclined and occasional-
ly eccentric load is the determination of the factor of safety
against failure under shear. This is generally done by com-
paring the available frictional resistence with that compo-
nent of the resultant load acting on the foundation-plane
which is parallel to this plane. The effect of the normal
force is generally investigated separately : we comput the
value of maximum edge stress, calculated on the assumption
of linear distribution of contact pressure.

This method is open to criticism from many aspects. The
division of the resultant load into components and the
separate investigations of their effects is an approximation
to what occurs in practice : the soil is collectively affected
by the contact-pressure, the distribution of which depends
on many factors, such as the inclined eccentric resultant
load, the stiffness and dimensions of the foundation slab,
and the nature of the soil itself. The foundation will fail
when stability vanishes. It is precisely for this reason that
the coefficient of friction between the soil and a given founda-
tion cannot be determined by a shearing failure test, because
this will not give the coefficient of friction, but the limiting
value of failure corresponding to a resultant load acting
at a given inclination. This is the reason why the quotient
of tangential and normal loads obtained from such tests
was considerably lower than that resulting from a direct
shear test (see e.g. LEONHARDT, 1951). Yet there are two
considerable differences between thrust on the surface and
a direct shear test. This is partly because the soil specimen
is laterally confined in a shear-box, and partly because the
area of shear is stipulated and therefore the load acts over
a prescribed area ; conversely, in the case of an actual founda-
tion these conditions are not fulfilled, and there will be
failure of the foundation.

The problem has been solved only for certain special
cases (SokoLowskl, 1954); in practice, the limiting value
of an inclined eccentric load is calculated by semi-empirical
methods for sand (¢ = 0) and for clay (@ = 0). (See, e.g.

Sommaire

La stabilité des semelles n'est pas exprimée correctement
par la condition H/V < tg ¢, car lorsque la semelle glisse, il
se produit une rupture en fondation. Afin de faire avancer la
discussion théorique de la question, 'auteur étudie la résistance
d’un massif prismatique tronqué chargé par une distribution
uniforme et inclinée. Les résultats sont appliqués au calcul de
la résistance au poingonnement de fondations peu profondes
en fonction de I’angle @ et de I'inclinaison ¢ de la force résultante.
L’auteur donne un facteur de réduction pour la détermination
de la valeur limite de la force inclinée.

Dans la deuxiéme partie, en supposant des surfaces planes
de glissement, 'auteur détermine la distribution des forces sur
la surface limite qui provoque un état plastique limite du massif
semi-indéfini.

BriNcH HANSEN, 1957, and SKEMPTON, 1951). The author
does not provide a complete theoretical solution, his aim
being only to promote precise theoretical investigations by
making two contributions, namely :

1. the theoretical determination of the inclined punching
strength of the material for y =0;

2. An investigation of the general stress-state of the semi-
plastic semi-space in the case of a plane sliding surface.

1. Inclined punching strength in a semi-plastic medium

The author seeks to determine the limiting value of a
uniformly distributed inclined load acting in a given direc-
tion, and affecting the truncated wedge shown in Fig. 1

Fig. 1

Slip lines in a truncated wedge.
Lignes de glissement dans un prisme tronque.
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under a condition of failure v =ctg® -+ ¢ in a weight-
less state. Stresses acting on the horizontal surface are :
p, = pcos € and p, = psin . Sliding surfaces are composed
of three sections. In range I there are plane sliding surfaces ;
the angle of slope is a function of the direction of the force,
i.e. of the angle . In range III the free surface AE is acted
upon by uniformly distributed normal stresses; thus p,
is a principal stress, the sliding surfaces are planes, inter-
secting each other at an angle 90° — @ and the direction
of the first principal stress is at an angle 45° — @/2. In
range II, the sliding surfaces are —in compliance with
Prandtl’s well known solution — logarithmic spirals and
rays starting out from point A, respectively. The network
of sliding surfaces has no symmetry plane, and the left-
hand side pattern indicating a lower resistance, can only
develop. The stress-state is the same for all points in range
1. It is sufficient, therefore, to investigate the point A4, only.
The stress-components are (Fig. 2) :

Al 1 sin @ sin 2, — D)

B = sin D cos D ~_CCOt¢
_ 1 —sin @sin 20, — D)
g =% S ® cos @ —ccot® \ 4}
__ _cos (20, — &)
R cos @

Fig. 2 Mohr’s circle of stresses.
Cercle de Mohr des contraintes.

< means the tangential stress acting on the sliding surface,
o, is its slope-angle. Stress-components acting at point A
are known : 7,, = psin ¢ and 6, = p cos €. Replacing these
into equation (1), © can be expressed, while for the deter-
mination of the slope-angle o, the following equation can
be deduced :
P cos @ cos 2o, — D) @
¢ sine —sin@cosQRo, — D +2)
In range I, the sliding surfaces are really planes, as in
the case if p = a constant, we have o, = a constant.
In range II, Prandtl’s stress-state is predominant, for
v = 0 we have from Kotter’s equation
dz
— —27tan® =0 3
7 3)
- = Ke 28tang
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Consequently, the shear stress on the boundary surface
between ranges I and 1II is :
T = Ke%Bitang
The normal stress on AC is : ¢ = (T —¢) cot D; for the
vertical stress we have (Fig. 3) :

o-zzpcose=c+7tan¢+cos¢sin(2ao—€b)

Fig. 3

Substituting values of ¢ and T into the above equation,
we obtain :

pcose = Ke2Btand

1 in o, — i
+ sin Qa, qj)smdrl—ccot@

i sin @ cos @
G
In range I, p, is a main stress, therefore :
T
=6+ ttan P — .
Po ' cos @
Shear-stress on plane AD is :
T = Ke—-2ﬂztan(b
i.e.
1—sin®
= Ke™%:tan® ——— __ccot P
Po i sin @ cos @
(%)
Dividing equation (4) by equation (5), we get : as (see

Fig. 1).

B, =90°+ @D —q,
and

By =454+ P2 +0

the above relation obtains the following form :

1 + sin Qx, — D) sin @
1 —sin®

E coSs € = ﬂ) e (204 20,—90°—p) tan @
c

1 + sin Quy — D) sin @ 1'|
1 —sin® J

()

Equations (2) and (6) are already sufficient for determi-
nation of the two unknowns. In the special case p, =0
and 0 = mw/2 (horizontal ground level, bearing capacity
beneath a strip foundation centrally loaded by an inclined
force), the angle «, can be determined by the following
equation :
_ 1 =
sin @ cos ¢

+ cot Qj[e (20420, —9Co— ) tan @

1 + sin Qe, — D) sin D
- -1
1 —sin®

[e (/2 + 200 — D) tan &
| B
(62)
cos 2o, — D)
sin € — sin @ cos Qu, — P — €)




If oy is known, the value of the punching strength can be
determined from equation (2). The value of «, can vary
between the limits 0 and 45° + @/2; as for a, << 0 the
sliding surface would leave the body; for a, = 45° + D/2,
however, the direction of p becomes vertical. Fig. 4 shows
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Fig. 4 Relationship between the direction of load and the
angle of slip line in the first section.
Relation entre la direction des pressions et ’angle de
la ligne de glissement dans la premiére zone.

the relation between «, and &, by using the parameter @.
It is easy to prove that «, will be equal to zero (the main
sliding surface is horizontal within the range I) if

e (x/2— P)tan @ (1 + sin ¢)
e@2—®)tan® (] + sin @) — |

tan € = tan ¢, = tan

)

This is the case corresponding to failure under shear. The
values of g; as a function of @ are shown in Fig. 5. Thus
if the inclination of the resultant force were greater, equi-
librium would not be possible, The values of the punching
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Fig. 5 Limiting inclination of pressures.
Valeur limite de Il'inclinaison € en fonction de ®.

strength plotted as a function of @ and ¢ to be found in
Fig. 6. For e = ¢, the values of p/c are the followings :

@° 40
4,52

0

276

10
3,23

20
3,65

30
3,95

ple

».

Fig. 6 Punching strength as a function of @ and e,
Résistance au poingonnement en fonction de @ et e,

If the load acts vertically (¢ = 0), the ultimate bearing
capacity is obtained from Prandtl’s formula; in this case
o, = 45° + D2

With regard to the applicability of the analyses for @ = 0,
it is worth examining this case separately (Jaky, 1945).
Carrying out in equations (5) and (6) the transition for the
slope angle of the sliding surface, we obtain the relation-ship :

T .
l——2+29+sm2cxo+2a,

cote = 8
cos 2,

while for the inclined strength the relationship
p  cos2a,

®

¢ sin €
is obtained. If 6 = /2, i.e. if bearing capacity for inclined
pressure is concerned, we have

1 +% + sin 2, + 2a,
(82)

te =
ce cos 2a,
The value of the limit-angle is €, = 21°15’, then p = 2,76¢;

the vertical component thereof is : p, = (1 + 2)0 ; as the
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limit value of the vertical load according to Prandtl is
T\ . .
n = 2<1 + E)C’ in the case € = g, the vertical component

of inclined pressure is only the half of the limit-value of
vertical pressure. The limit value of inclined pressure is
shown in Fig. 7 as a function of tan ¢; it can be seen that
for @ = 0 the relationship may reasonably be assumed as
linear, i.e.

p = 2c(2,6 — 3,0 tan g). (10)

Fig. 7 Punching strength as function of tan e.
Résistance au poingonnement en fonction de tg e.

It is interesting to compare this result with the formula
of Skempton — somewhat transformed, published by BrINCH-
HaNSeEN (1957). According to this, the bearing capacity of
a strip-foundation (L —~o0) on the surface (D = 0) is

p =5(1—13HV);

Taking into consideration that H/V = tane, we can
write :
(11)

i.e. the two results are nearly identical. According to the
numerical values plotted in Fig. 7, it can be observed that
for @ = 10° and 20° a similar regularity appears, i.e. when
calculating the limit bearing capacity of a strip foundation,
the effect of the inclination of the resultant force can be
taken into account by a simple reduction. So, the compe-
tent strength valid for an inclined force is :

p=2c(2,5—325tane);

£ =o(l —1,15tan g)
c

(12)
where « denotes the value of p/c valid for a vertical load
depending on the angle of friction only. This relation can
also be used even up to 20°.

2. Stress state of the infinite semi space in the case of plane
sliding surfaces

The sliding surfaces of the semi-space being in a plastic
limit state are plane if ¢ = 0 and the ground level is unloaded
or uniformly loaded, respectively. If ¢ 55 0 and v 5 0, then
for an inclined ground level curved sliding surfaces will be
obtained (see e.g. JELINEK, 1947). Even in that case, if plane
sliding surfaces are assumed, this could be possible only
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for a not uniformly distributed load and for a certain given
inclination of the load. This investigation shall be carried
out in the following.

We start from equation (1) expressing co-ordinated stresses
with the help of tangential stresses acting on the sliding sur-
face. We suppose that o = const and the sliding surface as
being plane. Then from (1) :

6, =At—ccot®
6, = Bt—ccot® \ (13)
T, = C=

Substituting the above into Cauchy’s differential equa-
tions we obtain :
0T 0T ot 0
A= 4 C==y; C= +B_=o.
0z Ox oz ox

From these equations we have :

2—; =Y p ¢ = v tan D[1 — sin D sin 2o — D))
(14)
07T C
ox YC*_AB "
Thus, the value of © can be obtained by integration :

T = zy tan P [1 — sin D sin 2o — D)]

— v tan @ sin D cos Qu — D)

(15)
— xy tan @ sin @ cos 2o — D) + K.

We wish to apply this result for the semi-space with a
horizontal ground level. Boundary conditions are (Fig. 8) :
in the case of z=0 and x =0 :

T =19=K
G, = P,COSE
Tz = PoSIDE;

s

[ TTTTTor—
——

/:IVV',””'

Fig. 8 Boundary conditions in the semi-space.
Conditions aux limites dans le semi-espace.

Replacing these into equations (1), we obtain for the slope
of the sliding surface the same formula as in the case of a
weightless medium loaded by an inclined force :

Po cos D cos o, — D) @
¢ sine—sin D cos Qu, — D + ¢)
If ¢ =0, then :
cos Qot, — D + ) = R (2a)

sin @



The constant of integration can be obtained from the
known stress of the zero-point :
sin € cos @
— P IREER T _ K (16)
cos (2o, — D)
Gnrn’_lunrurnnn
", =029, - 017 xy -
g -7 : ; - 0957, ~065x7
£ o 15
y=2uym

| ; G172y - (65xy » 096,
i 5 6, <0572y~ Q3lbxy + G464p,
: Ty = Q362 -0175x9 + 0,259p,

Fig. 9 Numerical example.
Exemple numérique.

and on the basis of equation (2) the tangential stress acting
on the sliding surface can be determined at each point of
the semi-space. On the horizontal ground level (z = 0) :

sin @ cos @

s ) XY tan @ sin @ cos 2ty — )

an

Thus, 7 and herewith the coordinated stresses and similarly
the resulting stress p are linear functions of x. Fig. 9 shows
a numerical example : it gives the stress distribution in the
semi space in the case of a given p, and ¢, respectively @ ;
¢ = 0. Consequently, at a given slope, the distribution of
stresses acting on the ground level is determined, the degree
of the linear decrease on the ground level is given. Assum-
ing plane sliding surfaces, in the semi-space the plastic state
— corresponding to Rankine’s state — can only come into
effect at these values.

T =P
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