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Stresses and Deflections in Homogeneous Soil Masses

C ontraintes et déform ations dans des m asses de sol hom ogène

b y W . J.  T u r n b u l l ,  Ch ief , So ils D iv isio n  

A . A . Ma x w e l l ,  Ch ief , Flex ib le Pavem en t Bran ch , So ils D ivisio n  

a n d

R. G . A h l v i n ,  Ch ief , Sp ecial Pro jects Sect io n , So ils D iv is io n , U .S. A rm y En g in eer Waterw ays Ex p er im en t Stat io n , 

Vick sb u rg , M ississip p i, U .S.A .

Ab s t r a c t  So m m a i r e

Typical  result s ar e pr esent ed fr om a st udy of  t he st resses and 
deflect ions induced in t wo soil t est  sect ions by sur face loads. 
Compar i sons  ar e made bet ween t heoret ical ly det er mined and 
measur ed values.

Introduction

Fo r  a num b er o f  years a research  p rog ram  has been u nd er 

w ay at  the U .S. A r m y  En g in eer  Waterw ays Ex p er im en t  

Stat io n , Vick sb u rg , M ississip p i, th at  has as its p u rp ose the 

ad vancem en t o f  k now led ge o f  the d ist r ib u t io n  o f  stresses, 

st rain s, and  d ef lect ions in  air f ield  pavem en ts. Un d er  th is 

p rog ram , test ing  has been com p leted  on  tw o  hom ogeneous 

test  sect ion s. These tw o  stud ies, w h ich  are b r ief ly docum ented  

here, were m uch  m ore ex ten sive than th is p resen tat io n  

ind icates, and  there were m an y t r ib u tary  and  su b sid iary 

facets t o  the in vest ig at io n s th at  can n o t  be treated  in  th is 

p aper. Com p lete rep o rts on  them  are con tain ed  in  references 4 

and  5 o f  th e b ib lio g rap h y.

Description of Tests

Th e stud ies inclu d ed  the m easu rem ent o f  stresses and  

d eflections ind u ced  b y a u n ifo rm  c ircu lar  load  in  each  o f  

the tw o  test sect ions. Th e f irst  w as con structed  o f  a clayey-  

s ilt  m ater ial p laced  at  ab o u t  its op tim um  m o istu re con ten t. 

T h is m ater ial h as a liq u id  lim it  o f  36 and  a p last ic it y  index  

o f  13. In  p lace in  the test  sect io n , it  had  a C BR  o f  ab ou t  15, 

d en sity n ear 105 lb / ft3, and  m o istu re con ten t  o f  ab ou t  18 p er 

cen t. Th e o th er  test  sect io n  was con stru cted  o f  a f a ir ly  u n ifo rm  

air - d ried  sand . T h is m ater ial is n o n p last ic ; m ore than  95 per 

cen t  passes th e N o . 10 sieve and  is retain ed  on  the N o . 40 

sieve. In  p lace i t  had  a C BR o f  ab o u t  7- 5, d en sity near 

108- 5 lb ./ f t3, re la t ive d en sity o f  abou t 83 p er cen t , vo id  r at io  

o f  ab ou t  0 ’ 53, an d  m o istu re con ten t  less than  0- 3 p er cen t.

In  bo th  test  sect io n s, p ressu re cells and  d ef lect ion  gages 

were installed  at  var io u s lateral p o sit ion s 5 f t  b elow  the 

su rface. Lo ad s were ap p lied  alo n g  tw o  lin es d ow n  the cen ter 

o f  each  test sect io n  such th at  st ress and  d ef lect ion  read ings 

cou ld  be tak en  fo r  each  fo o t  o f  offset f ro m  the lo ad  ax is 

between 0 and  9 f t . T h is w as accom p lished  b y p ro p er sp acin g  

o f  instrum ents eith er  sid e o f  the load  lines. Th e test  sect ion s 

were cu t  d ow n  in  successive 1- ft layers so  th at  a ll  m easu re­

m ents co u ld  be repeated  fo r  each  fo o t  o f  d ep th  fro m  1 to  

5 f t . By  th is m eans, stress and  deflection  p atterns w ere estab ­

lish ed  in  the test sect ions w ith in  l im its o f  9 f t  h o r iz o n tally  

and  5 f t  ver t ically .

Da ns  ce r appor t  sont  présent és les résult at s caract ér ist iques 
obt enus à la suit e d'une  ét ude des cont raint es dével oppées et  des 
flèches résul t ant  dans  deux sect ions d’essais de sol de l’appl ica­
t ion de char ges en sur face. Les  valeurs obt enues par  le calcul  sont  
compar ées  aux résult at s expér iment aux.

Lo ad s were ap p lied  using  w ater- f illed , f lex ib le- face load ing  

p lates o f  the typ e show n  in  Fig . 1. A  truss m ounted  on  railro ad  

car ts and  loaded  to  300,000 lb . gross p ro vid ed  the react io n

Fig. 1 Fl exibl e- Faced Pr essur e Plat e. 

Pl aque de char ge à face flexible.
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Fig. 2 Loadi ng Tr uss.

Char pent e de mise en char ge.

for app lying test loads. Fig . 2 shows this truss in p lace over 
the clayey- silt test section. Parallel pairs o f  railroad  tracks 
on each side o f  the test section perm itted m oving the truss 
to allo w  passage o f  equipm ent during construction as well as 
to provide reactions at various posit ions.

Vert ical, horizontal, and d iagonal (4 5 °) stresses, az, cx, <7y,a„, 
and g v, and vertical deflections, to, were m easured at each 
foo t o f  depth and offset beneath both single and dual loads. 
In  the first (clayey- silt) test section, single, 1 000- sq- in., 

circu lar uniform  loads and dual, 500- sq.- in., circu lar uniform  
loads at 3, 4- 5, 6, and 7*5 f t  center- to- center spacings were 
used. In  the second (sand) test section, single, 1 000- , 500- , 
and 250- sq.- in., circu lar uniform  loads were used as w ell as 
dual, 1 000- sq.- in., circu lar loads at 4- 5- ft sp acing ; dual, 
500- sq.- in., circu lar loads at 3- and 6- ft spacings; and dual, 
250- sq.- in., circu lar  loads at 2.5- ft spacing.

In  the first test section, loading intensit ies o f  15, 30, 45, 
and 60 psi were used, wh ile in the second, intensities o f  15, 30, 
and 60 psi were adopted. Fo r  convenience o f  presentation o f  

all data in  com m on plots, the stress measurements were 
all reduced to percentage o f  contact pressure (load ing  inten ­
sity). The deflections were reduced to a rat io  o f the deflection 
to a loading intensity o f  I- psi surface load  in  the clayey- silt 
test, and to a ratio  o f  deflections fo r a 100- psi surface load 
in  the sand test. The on ly reason for the lat ter is that it  gives 
a m ore convenien t num ber to handle.

Theoretical stresses and deflections were developed for 
com parison w ith  m easurements. Fo r  this purpose a sem i­
in f in ite elast ic mass was assumed. The load was taken to 
be circu lar and uniform . Newm ark  charts [2 ]*  were used to 
produce theoretical results fo r  the first (clayey- silt) test 
section, wh ile those fo r  the second (sand) test section were 
com puted d irectly. A  0-5 value o f  Poisson’s ratio  was satis­
facto ry fo r theoretical data fo r the clayey- silt lest section, 
but results developed fo r a 0-3 value were m ore suitable for 

the sand lest section. Com putat ion o f deflections required the 
selection o f  several values fo r the m odulus o f  elast icity, 
Em, in order to bracket test data. Fo r  the clayey- silt test 
section the values used were 5,000, 10,000, and 25,000 psi. 

Fo r  the sand test section they were 20,000, 40,000, and 
60,000 psi.

The pressure cells used for m easuring stresses were the

* Bracketed numbers refer lo Bibliography.

Waterw ays Ex perim ent Station  type incorporating a fluid-  
filled  space o r pocket to transm it pressure from  the face 
p late to an inner diaphragm . The result ing bulge o f  this 

d iaphragm  is measured by electrical- resistance type strain 
gages. Cells in the first (clayey- silt) test section were 12 in. 
in d iam eter and 1 in. th ick , w h ile those in the second (sand) 

section were o f  an im proved design and were 6 in . in  d iam eter 
and 1 in. th ick . Fu rther details o f  design are beyond the scope 
o f  this paper but m ay be found in the com plete reports o f  
the two test sections [4,5]. The stresses m easured, cz, g x, <j v, 
au, and <jv> g ive a com plete definit ion  o f  stress at a poin t 
since the two 4 5 ° d iagonal stresses can be resolved into 
the shear stress, x2X, o r its equal, t m, and the rem aining 
shear stresses are zero. Fig . 3 shows the stress d irections.

The deflection gages used incorporate Selsyn  m otor units 
fo r  rem ote actuation. They m easured between reference 
flanges at  the gage level and reference rods dr iven  deep in 
the subsoil. Here again , details are not  w ith in  the scope o f  
th is paper but m ay be found in the com plete reports [4,5].

Stress M easurem ents

Clayey silt— Com parisons o f  measured and com puted 
stresses are shown fo r selected typ ical cases from  the clayey-  
silt  test section in  Figs. 4  and 5 [6 ].*  The com puted stresses 
are fo r  a Poisson’s ratio  o f  0-5 but the p lots include results 
fo r  concentrat ion factors ( N ) other than fo r N  ==■ 3 which 
represents the Boussinesq o r  elast ic case. Ex p lanation  o f  the 
concentrat ion factors can be found in some o f the w ork  o f

O. K . F r ö h l i c h  [1].
Fig . 4 shows the vert ical stress at 1 - ft depth fo r  all loadings 

and spacings used. Fig . 5 shows the vert ical stress fo r  2-  
and 4- ft depths, and two horizontal stresses and the vertical-  
horizon tal shear stress fo r 1- ft depth, all fo r single loading. 
Bo th  p lots show the stress in  per cent o f  surface load inten ­
sity versus offset fo r  a given depth. A ll stresses were treated 
at five depths fo r all loadings but, again, lim ited  space 

prevents inclusion o f  these data.
These p lots ind icate a rather rem arkable agreem ent between 

theoretical com puted stresses, assum ing elast ic action  o f  

the mass, and the stresses m easured w ith in the test section.

* Some of the results from the clayey-sill lesl section were reported 
in reference 6 .

338



Dir ect ions des cont raint es.

The com puted curves fo r concentration  factors other than 

3 d id not , in  general, show better agreem ent w ith  meas­
urements than those o f  the N  =  3 curves.

Sand—Com parisons o f measured and com puted stresses 

are shown fo r selected typ ical cases from  the sand test section 
in Figs. 6 and 7. Com puted curves are given fo r Poisson ’s 
ratio  o f  0-3 and on ly the elast ic (N  =  3) case is considered.

Fig . 6 shows the vert ical stress at 1 - ft depth for all loadings 
and spacings used. Fig . 7 shows the vertical stress fo r 2- ,
4- , and 5- ft depths, and two horizontal stresses and the 
vertical- horizontal shear stress fo r 1 - ft depth, all fo r  single 
loading. Bo th  p lots show the stress in  per cent o f  surface 
load in tensity versus offset fo r g iven depths. The study 
included com parisons fo r all loadings fo r 1-, 2- , 3- , 4- , and
5- ft depths fo r all the stresses shown in  Fig . 7 and fo r the 
m ajo r and m inor p rincipal stresses as well. Space lim itations 
prevent their presentation here.

These p lots also show a generally good agreem ent between 
com puted theoretical stresses and those measured w ith in 
the test section. In  Fig . 6, the stress m easurements beneath 
the loaded areas p lo t slig h t ly above the theoretical curves. 
It  was established in  later work  on the program  (beyond 
the scope o f  th is paper) that these overlarge m easurements 
are p robab ly due to pressure cell overregistrat ion . Fo r  a 
detailed treatm ent o f  pressure cell theory, see reference 3.

Deflection M easurements

Clayey silt— Com parisons o f  measured and com puted 
deflections are shown for the clayey- silt test section in Fig . 8. 
These are p lots o f  the vertical deflection fo r a 1- ft depth. 
The figure shows deflection versus offset fo r all loadings 
and spacings. Theoretical curves are shown fo r two values o f  
the m odulus o f  elast icity, Em (25,000 psi and 10,000 psi), 
and in  one p lo t, a theoretical cu rve fo r the 5,000- psi m odulus 
value is included fo r com parison.

Sand— Com parisons o f  measured and com puted deflec­
t ions are shown for the sand test section in Fig . 9. These are 
also p lots o f  the vertical deflection for a 1- ft depth. And 
again, each graph p lots deflection versus offset fo r a l l loadings 
and spacings. Theoretical curves are shown fo r two values 
o f  the m odulus o f  elast icity (40,000 psi and 20,000 psi).

Measured versus computed deflections— Com parison o f  the 
theoretical curves w ith  the p lotted data points fo r either the 
clayey- silt (Fig . 8) o r the sand (Fig . 9) test section shows on ly 
general correlation . Beneath the load, at shallow  depths 
where deflections are large, the theoretical curves fo r  the 
lesser values o f  the m odulus o f  elast icit y app ly, wh ile measured 
deflections out from  beneath the load are sm aller than any 
o f the theoretical com puted deflections. Th is im plies fo r 
shallow  depths either a nonagreem ent w ith  the theory used 
or a variation  o f  the m odulus o f  elast icit y w ith stressing o f  
the so il. In  both test sections, agreem ent w ith  theoretical 
results is quite good at the greater depths, and in both cases, 
this agreem ent is with  the theoretical curve based on the 
larger m odulus o f  elast icit y used fo r com putations (25,000 psi 
fo r  clayey silt , 40,000 psi fo r  sand). Space lim itations prevent 
inclusion o f  these com parisons.

As was to be expected, deflections in the sand test section 
fo r equ ivalen t cond itions were, in general, less than h alf  as 
great as those in  the clayey- silt test section. It  is perhaps 
notable that the two so il m aterials used in these tests show 
such sim ilar deflection behavior patterns.

St r e s s - St r a i n  Re l a t i o ns

Measurem ent o f  the three co- ordinate stresses, cŷ , Gy , and 
g z , and the vertical deflection, co , fo r com m on points with  
respect to the loadings applied perm it the developm ent o f  
stress- strain relations fo r the test sections. Vert ical strains 
were derived from  plots o f  the vert ical deflection versus
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Fig. 6 St ress vs Offset  Di s t ance, a 2 at  1- ft Dept h, Sand Test  Sect ion.

Cont r aint e en fonct ion de la dist ance hor izont al e, à 1 pied de pr ofondeur . Essais sur  sable.



1000-SQ-IN. PLATE

x z

1-FT DEPTH

L EG EN D

I 5 - P S I  LO A D  

3 0 - PSI  L O A D  

6 0 - PSI  LO A D  

A L L  L O A D S

-  T H EO RET IC A L

N O T E: O F F SET  M EA SU R ED  FRO M  

C EN T RO ID  O F LO A D ED  A R EA  

A L O N G  X- A X IS.

PO ISSO N 'S R A T IO - 0 .3 .

Fig. 7 Var ious  St resses vs Offset  Di st ance, Single Plat e Load, Sand Test  Sect ion.

Cont r aint es diver ses en fonct ion de la dist ance hozizont al e. Char ge sur  pl aque simple. Essais sur  sable.
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Essais sur sable. 



Fig. 10 Logar i t hmic Plot , St ress- St rain Da t a , Clayey- Sil t  Test  Sect ion.

Repr ésent at ion logar i t hmique. Données  cont r aint e- défor mat ion. Essais sur  l imon ar gileux.

depth m erely b y tak ing the slope o f tangents to the deflection-  
depth curve. These strains are related to the stresses b y the 

fam iliar equation :

s* = [u, - V (ox + <T„)]

wher e

sz =  vertical strain

£■„, =  m odulus o f  elast icity 
g z  =  vertical stress

g x  and Gy =  m utually perpendicular horizontal stresses

v =  Poisson ’s ratio

Thus, the nature o f  the m odulus o f  elast icity or the relation  

between stress and strain can be ex am ined b y p lo tt ing zz 

versus g z  — v (g x  +  g „). This has been done fo r each test 

sect ion. In  the case o f  the clayey- silt  test section, v was taken 

as 0- 5. Fig . 10 is a logarithm ic p lot o f  all the pertinent lest 

data collected. A curve g iving  the best visual average fit 

has been drawn through the p lotted points. In  the case o f  

the sand test section, a 0-3 value o f  v was used. Th is value 

was found from  m any facets o f  the over- all analysis o f  the 

sand test section data to belter represent the act ion o f  the 

m aterial than the m ore com m only used 0-5 value. Fig . 11 

shows all pertinent data on an arithm etical stress- strain plot.

Here again, the best visual average cu rve has been drawn 

through the points.

It  is interesting that the stress- strain cu rve for the sand 

test section is n early a straight- line relation on an arithm etical 

scale, wh ile that fo r  the clayey- silt  test is rough ly linear 

beyond a ver t ical strain o f  about 0-001 in./ in. The indicated 

m odulus fo r  the sand is about three tim es that fo r the clayey 

silt .

Concl usions

Som e o f  the p rim ary conclusions derived  from  th is study 
are

(а) Stresses measured in the test sections are, in general, 
in good agreem ent w ith  those predicted b y the theory o f  
elast icity.

(б) Deflections measured in the test sections show a d is­

t r ibu tion  som ewhat d ifferent than that predicted b y the 
theory o f  elast icit y at  shallow  depths, but show relat ively 
good agreem ent at depths o f  3, 4, and 5 ft.

(c) The stress- strain curves determ ined from  stress and 
deflection measurements were nearly linear fo r the sand test 
section, and were rough ly linear fo r the clayey- silt test section 
beyond vertical strains o f  about 0 001 in./ in.



Fig. 11 Ar i t hmet ical  Plot , St ress- St rain Da t a , Sand Test  Sect ion.

Repr ésent at ion ar it hmét ique. Données  cont r aint e- déformat ion. Essais sur  sable.
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