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Influence of Flexural Rigidity of Superstructure on the Distribu-
tion of Contact Pressure and Bending Moments of an Elastic

Combined Footing

L’influence de la Rigidité du Batiment sur la Répartition de la Pression et le Moment Fléchissant
Agissant sur une Semelle de Fondation Elastique

by H. GRASSHOFF, Baurat Dr.-Ing., Ingenieurschule fiir Bauwesen, Wuppertal, Germany

Summary

The influence of the rigidity of superstructures and of the degree
of fixing of the supports in the foundation beam on the distribution
of contact pressure and on the bending moment is explored for an
elastic, combined footing with three symmetrically arranged single
loads. In order to deal with the described conditions arithmetically,
a generally applicable approximation method is developed.

A series of comparative computations with presumed varying
degrees of rigidity revealed, as the most important result, the par-
ticularly great influence of the degree of fixity of the supports on the
foundation beam on both the distribution of contact pressure and
the bending moments. The influence of the rigidity of the super-
structure is not so great. The higher the degree of fixing and the
stiffer the soil, the more favourable the distribution of the bending
moments in the foundation beam.

It is known from experience that the bending moments of
combined footings change considerably with the distribution
of contact pressure. For this reason the highest possible
degree of accuracy should be achieved in all methods for the
computation of distribution of contact pressure under com-
bined footings. Apart from the mathematical interpretation
of the actual nature of the forces in the subsoil it is especially
difficult in computing to evaluate the stiffness of the super-
structure. In order to simplify the matter an unrestrained and
vertical freedom of movement of the columns in relation to
each other is generally assumed, and, further, that they are
hinged at their base to the combined footing. In reality,
however, the more or less rigid superstructure prevents a free
movement of the columns. Apart from this the columns are
often rigidly connected with the combined footing. These
facts influence the contact pressure and the bending move-
ments. With regard to the economy and the safety of our
buildings it seems, however, to be especially important to
examine the described relations more closely. Sufficient experi-
ence has not been gained up to the present as the corresponding
computation methods and measuring data have not been
available.

With the help of the following examples the above named
relations are represented and evaluated for the first time. To
create some mathematical basis a general computation method
for the simple case of a combined footing with three sym-
metrically positioned point loads, taking into consideration the
differences in stiffness in the superstructure already mentioned
and the all-round elastic properties of the subsoil, will be
developed (Fig. 1). It is useful to examine the following limit-
ing cases of stiffness:

(1) Perfectly flexible superstructure (the columns can move
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Sommaire

_Considérant une semelle de fondation élastique avec trois charges
disposées symétriquement, on examine I'influence de la rigidité de la
construction du batiment sur la répartition de la pression exercée sur
la semelle et sur les moments fléchissants ainsi que I'influence du
degré d’encastrement des supports dans la semelle de fondation.
Afin de permettre le calcul numérique des conditions statiques
décrites, un procédé de calcul approximatif, de validité générale, sera
tout d’abord développé.

Une série de calculs comparatifs, avec différents degrés de rigidité,
montre entre autres, comme résultat de plus grande importance, une
influence particuliérement grande du degré d’encastrement des sup-
ports dans la semelle de fondation sur la répartition de la pression sur
la semelle ainsi que sur les moments fléchissants. L’influence de la
rigidité de la construction du sommet est moins grande. Plus le
degré d’encastrement est grand, plus le terrain est ferme, et plus la
répartition des moments fléchissants a la semelle de fondation est
favorable.

freely in a vertical direction with respect to each other). The
columns are hinged at their bases to the combined footing
(Fig. 2a).

(2) Rigid superstructure (the columns cannot move vertically
relative to each other). The columns are hinged at their bases
to the combined footing (Fig. 3a).

= L -
Symmetrical framed structure with three columns on an
elastic combined footing
Une structure symétrique 4 charpente avec 3 colonnes sur
une fondation sur semelle élastique

Fig. 1

(3) Perfectly flexible superstructure. The columns are
rigidly connected to the combined footing (Fig. 4a).

(4) Rigid superstructure. The columns are rigidly con-
nected to the combined footing (Fig. 5a).



The actual rigidity, which influences the magnitude of the
column loads and the distribution of contact pressure, will lie
between these limiting cases. An exact computation of the
elastic combined footing is prevented by the complete statical
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Fig. 2 Soil pressure and settlements resulting from flexural rigidity,
Case No. 1

La pression de contact et les tassements dans le cas de
rigidité No. 1
indeterminacy due to the continuous bedding on the com-
pressible subsoil. Therefore the solution must be found by
an approximate method, the mathematical treatment of which
must still be within reasonable limits.
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Fig. 3 Soil pressure and settlements resulting from flexural rigidity,
Case No. 2

La pression de contact et les tassements dans le cas de
rigidité No. 2

The general computation method is derived as follows:

Figs. 2a to 5a each show an elastic beam of finite length L

with 3 single loads in symmetrical position on a compressible

bedding. In proportion to the length, the width of the beam

will be so small that it can be treated with sufficient accuracy as
if dealing with a plane problem. The symmetrical curve 4-A
shows the distribution of contact pressure under the beam
which is unknown at first. If, for instance, this beam is
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Fig. 4 Soil pressure and settlements resulting from flexural rigidity,
Case No. 3

La pression de contact et les tassements dans le case de
rigidité No. 3
divided into 5 equal sections of length a, then the soil stress

curve can approximately be substituted by a trace polygonal
with the ordinates p; to p;. The area of contact pressure
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Fig. 5 Soil pressure and settlements resulting from flexural rigidity,
Case No. 4

La pression de contact et les tassements dans le cas de
rigidité No. 4

which is now bounded by finite lines is composed of 10 stress

triangles. Consequently the foundation beam can be looked

upon as a beam in equilibrium on two compressible end

supports. It is loaded on its upper surface by the three

301



symmetrically positioned single loads and on its lower surface by
the symmetrically acting 10 soil stress triangles.

In Figs. 2a and 3a the end supports can move freely, and
in Figs. 4a and 5a they are rigidly fixed. In the Figs. 3a and
5a the central load P, cannot produce deflections because of the
rigid superstructure. It is maintained at the height of the end
supports.

For the computation of the required 3 soil stress ordinates p,
to p; we begin with the equation of equilibrium XV = 0:

2.Py + P,
L

The other two equations of condition are derived from the
deformations of the beam and the subsoil. For this purpose
the settlements y, and y; of the beam are determined at the
points 2 and 3 (Figs. 2b to 5b). For instance, the settlement
y, at point 2 (Fig. 2b) results from the superposition of the
following part values:

Y2=Y1+% Yar — Yi2 . @

y, is the settlement at the beam end, y,, is free deflection of the
beam on two immovable end supports, resulting from the
central load P,, and y,, represents the opposite deflection result-
ing from the load of the required soil pressure, always under
the same conditions as in y,;.

The settlements y; and y, result from a settlement analysis
with the required soil pressure as a perfectly flexible load
(Fig. 6a). To simplify the computation the stress intervals are
graduated according to Fig. 6. Thus uniformly distributed
perfect flexible rectangular loads are formed whose shares in the
settlement must be superimposed correspondingly. To make
matters easier, the slim beam will be dealt with as a plane
problem; consequently its cross direction must be looked upon
as being rigid. Therefore the settlement analysis of the per-
fectly flexible load is executed at the so-called ‘characteristic
cross-section’ (1) (Fig. 6 b), i.e. at the point, where the settle-
ment of the load, which also in the cross-direction is supposed
to be perfectly flexible, equals the settlement of the rigid load.
The general settlement formula reads as follows:

L = length of beam (cm), K = constant coefficient of com-
pressibility of the subsoil (kg/cm?), ¢ are dimensionless in-
fluence coefficients of settlement which result from the pre-
vailing settlement analysis. The first index refers to the point
of the settlement and the second index to the influence of the
corresponding stress ordinate.

The general formula for the free deflection as a result of the
central load P, is as follows:

L}
Ya2 = Pz-Eﬁ-Sz . @
P, = central load (kg) = qg.«.L.B, L = length of beam (cm),
I = (B.d%/12, the moment of inertia of the beam (cm?), d =
thickness of beam (cm), E, = modulus of elasticity of the
beam material (kg/cm?), g = equally distributed load (kg/cm?)
(Figs. 2a to 5a), « = share of load belonging to P, (dimen-
sionless factor) (Figs. 2a to 5a), B = width of beam (cm),
d is a function of the conditions of support at the beam end
(freely movable or rigidly fixed) and is a dimensionless
factor.

With respect to a beam width of 1-0 cm formula 2 changes as

o.L

follows:
% (5) "o

€y = 1282

Yaz = 9. . (5)

The general formula for the opposite deflections resulting from
the triangular loads of the soil pressure, relating with reference
to a beam width of 1-0 cm, is as follows:

L4
sz=E—I(P1«92,1+P2-92,2+P3-92, 3) . (6)
b.
L (L\3
Vb2 = E-(a) (P1-m2,1 + P2.7M2,2 + P3.72, 3)
- (D
n=12.0

6 = dimensionless factor dependent on the prevailing position

L of the triangular load. The first index refers to the point of
=L (pidi 1+ Poi, 2 + Prd . : lex ref point o
Vi K(‘D‘?S" 1+ i 2+ Prdbi ) ) settlement, the second to the appropriate soil stress ordinate.
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Fig. 6 Stepped curve of soil pressure simplifying the settlement analysis
La courbe représentant pression de contact modifiée en forme d’escalier pour faciliter le calcul du tassement
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After inclusion in formula 2 the result is:

If(-(‘Pl b2 + P2-ba2 + P3.da3)
L L(L\3
= R-(P1-¢|~x + Pp2-d12 + p3.dra) + 9-%(2) €3 —
L (Ly3
5 (3) (P1-m2.1 + P2.m2.2 + P3.12.3)
3
Introducing C = K(é) as a simplifying factor the above
E\d
formula changes as follows:
®21-C + $2.1 — $1.0).P1 + (92.2.C + $2.2 — $1.2).p2 +
(1]2.3.C+¢2.3—¢1.3).p3=9.a.€2.C RN (8)

In the same way, the third equation of condition is derived at
point 3:

131.C + é3.1 — 1.0P1 + (M3.2.C + $3.2 — $1.2).p2 +
(1;3.3.C+¢3.3—¢1.3).p3=9.a.53.C e (9)

For the cases of stiffness 1 and 3 (Figs. 2a and 4a) the
bending factors 7 and e are determined in Tables 1 and 3:

Table 1 tad )

Case of rigidity No. 1

i 72, 1 = 0-00624

73, 1 = 0-00944
n2, 2 = 0-03376 73, 2 = 0-05280
n2, 3 = 0:05280 73, 3 = 0-08656

© =0142 €3 = 0236

In the cases of stiffness 2 and 4 the central column P, is
immovable because of the rigid superstructure. It therefore
cannot create the deflections y,, and y,.3 so that the deflection
ordinates ¢ become equal to zero. But the opposite deflections

Table 2

Case of rigidity No. 2

72, 1 = 0-:00065088

73, 1 = 0-00015104

72, 2 = 0:00240640

73, 2 = 0-00069120

72, 3 = 000099272

73, 3 = 0-00045776

e =0

e3=0

Table 3

Case of rigidity No. 3

72,1 = 0-00048 73, 1 = 0-00080
72, 2 = 000432 73, 2 = 0-00864
72, 3 = 0-00800 73, 3 = 0-01936
e = 0022 ¢3 = 0-056
Table 4

Case of rigidity No. 4

72, 1 = 0-00018432

73, 1 = 0-00004736

72, 2 = 0-00108160

73, 2 = 0-00039680

72, 3 = 000053408

73, 3 = 0-00035584

& =0

e3=0

e
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Fig. 7 Cases of flexural rigidity 1-4 based on soft clay K = 50 kg/cm?

Cas de rigidité 14, sur argile molle

Yu2 and y,3 due to the soil stress triangles are computed so as to
allow the load P, to act as an immovable central support.

The bending factors computed with this assumption are
found in Tables 2 and 4.

i; TR

Sen

WA 4,

The sometimes tedious calculation of the influence coefficients
of settlement by means of a settlement analysis can be avoided
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Fig. 8 Cases of flexural rigidity 1-4 based on stiff clay K = 1344 kg/cm2
Cas de rigidité 14 sur argile raide

]
3
k4
(b) Bending moments

30000

Fig. 9 Cases of flexural rigidity 14 based on loose sand K = 500 kg/cm?2
Cas de rigidité 1-4 sur sable meuble

when the subsoil down to a sufficient depth may be taken as a
perfectly elastic half space. Using the settlement formula 10
by Boussinesq for the corner of a perfectly flexible, uniformly
distributed rectangular load (2) complete algebraic terms, which
can be calculated numerically, are obtained after a correspond-
ing superposition as per Fig. 6a and b.

y= p-f—{-g[a{loge (1 + (&2 + 1)) — log, o}
+ log, {« + (« + D} ... (10)
bl
B= I
=
o = 1,
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b’ = width of the prevailing rectangular area (cm), // = length
of the prevailing rectangular area (cm), p = uni-
formly distributed load (kg/cm?2), L = length of com-
bined footing (cm), K = constant coefficient of com-
pressibility of the subsoil (kg/cm?).

For a relation of the sides B/L = 1/10 of the combined foot-
ing, for instance, the ¢ values are compiled in Table 5.

The following 16 calculated examples are based on a rein-
forced concrete combined footing (E, = 210,000 kg/cm?2) with
the dimensions L = 1000 cm, B = 100 cm and d = 40 cm.
The examples are divided as follows:

Examples 14 : Cases of flexural rigidity 1 to 4, coefficient of
compressibility of the subsoil K = 50 kg/cm? (for instance: soft
clay), C = 3-72024.



0 ; S

EN
10000174
20000\ (b) Bending moments

300001

Fig. 10 Cases of flexural rigidity 1-4 based on firm sand X = 1000 kg/cm?2
Cas de rigidité 1-4 sur sable compact

Table §
Point 1 Point 2 Point 3
é1,1 = 0071064 | ¢3, 1 = 0-025205 | 43, 1 = 0-014856

$1,2 = 0-041626
¢1, 3 = 0-026815

é2, 2 = 0:146107
é2, 3 = 0-049778

$3, 2 = 0-049778
3. 3 = 0169070

Examples 5-8: Cases of flexural rigidity 1 to 4, coefficient of
compressibility of the subsoil K = 134-4 kg/cm?2 (for instance:
stiff loam), C = 10.

Examples 9-12: Cases of flexural rigidity 1 to 4, coefficient
of compressibility of the subsoil X = 500 kg/cm? (for instance:
loose sand), C = 37-20238.

Examples 13-16: Cases of flexural rigidity 1 to 4, coefficient
of compressibility of the subsoil K = 1000 kg/cm?2 (for instance:
firm sand), C = 74-40476

The computation results (distribution of contact pressure
and bending moments) have been compiled in two different
ways. In Figs. 7-10 for each kind of soil the 4 different cases
of flexural rigidity have been superimposed.

It is remarkable that all contact pressure curves show com-
paratively little differences. The differences are less marked
on soft soil (Fig. 7). They increase slowly with the increasing
modulus of compressibility of the soil and this in such a way
that the contact pressure concentrates under the point loads.
The differences are, however, so small that they are still likely
to remain in that region in which displacements of the contact
pressure in consequence of plastic deformations of the subsoil
make themselves felt. - The increasing rigidity of the super-
structure and the rigid connection of the columns with the
combined footing exercise an equalizing effect on the contact
pressure.

The distribution of the bending moments, which was com-
puted for a medium soil pressure p,, = 1-0 kg/cm?2, corresponds
to the contact pressure. In the cases of stiffness 1 and 2 (the
columns are standing with a hinge on the combined footing)
hardly any difference can be noticed. Also the cases of stiffness

3 and 4 (the columns are rigidly connected with the combined
footing) show between themselves only slight differences. In
the case of stiffness 4 (rigid superstructure) the most advan-
tageous compensation of the bending moments is obtained.
Naturally, in the cases of stiffness 3 and 4 a better distribution
appears, as compared with the cases of stiffness 1 and 2, because

fixed point moments are effective at the end columns. There-
fore this arrangement has advantages in construction.
Table 6
Yo | y2 | »3 Y| y2 | ¥
cm | cm ! em cm | cm | ¢m
a|1]4-07]3-72|3-88 2|1{046| 026|043
Soil Soil 5
No.l %/2/401(374(393| No.3 &[2|0-48 0-26|0-41
K=50 & K =500
kg/cm2 :' 3/3793-824-11| kg/cm2 : 3/037 033048
]
8 4|3-95|3-83|3-90 S|4|044 033|039
| 1[1-57]1-29|1-47 a/110:25|009)0-24
Soil  F Soil 3§
No.2 %[2]1-56|130|1-48] No.4 .5|2|0-27|0-09|0-22
K= 134-4: K=1 &
kg/em2 g 3(1-38|1-38|1-61| kg/cm2 : 3/0:19(0-14|0-25
v ©
S14|1-50|1-39 | 1-45 Sl4|0-24|014]0-20

The settlements at the computation points 1 to 3 are compiled
for a medium soil pressure p,, = 10 kg/cm? in Table 6. Very
small differences in settlement result and they quickly decrease
as the subsoil becomes more firm. Especially remarkable are
the small uneven settlements between a perfectly flexible and a
rigid superstructure. From this it might be concluded that the
growing rigidity of the superstructure has no important bene-
ficial influence on the stresses of the combined footing. This,
however, is only valid for an ideal homogeneous subsoil, such
as was taken as a basis for the above examples. Actually, sub-
soil is usually of a heterogeneous nature and shows local
differences in firmness, and because of this the differential
settlements may increase if the superstructure is perfectly
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flexible. For the above example—in the case of a rigid con-
nection of the columns with the combined footing—a mutual
displacement of two neighbouring columns of only 2-0 cm for
instance causes an additional bending moment of 53,700 kg/cm?2.
Therefore, the utmost rigidity of the superstructure and a rigid
connection of the columns with the combined footing must be
looked upon as the most advantageous construction.

In order to be able critically to assess the foregoing computa-
tion methods which have been based on an idealized medium,
it seems to become more and more urgent to take measurements
on completed beam and slab foundations, by means of which
the settlements, the soil pressures and the bending stresses in
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the slab may be computed. Attempts should be made to
introduce such empirical corrections and additions in the com-
putation methods by means of observations obtained on the
completed building as will make it possible to approach the
real picture of the stresses and thus secure still more economical
and safer foundations.
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