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Influence of Vibration and Seepage on Stability of Cohesionless 

Soil 

Influence des Vibrations et de l'Eau de Percolation sur Ia Stabilite des Massifs Pulverulents 

by z. BAZANT, Jr., Professor of Foundation Engineering, Techn. University, Prague, Czechoslovakia 

Summary 

The aim of this article is to study the prevention of piping under 
weirs founded on cohesionless sandy soil. The stability of the sand 
as attested by vibration combined with seepage is studied by two 
methods. First, by dimensional analysis equation II is determined, 
giving seven dimensionless arguments which it is necessary ~o study 
in model tests. The model laws, equations I2 to I8, are denved and 
the simplified equation I9 is found. Secondly, the dynamic pressure 
head analysis is made and the depth of foundation is given by 
equation 21. The dynamic pressure head expressing the influence 
of vibration is determined by equations 22 and 23. An example 
shows the use of this method. 

Statement of Problem 

The stability of cohesionless sandy subsoil forming the 
foundation of a weir is a problem of vital importance in all 

arid regions where water for the irrigation of arable land is 
taken from rivers flowing on great sand deposits, e.g. in Egypt, 
India and central U.S.S.R. This problem was studied by the 
author in the case of instability in shear along a cylindrical 
failure surface-BAZANT (1953). Analysis and tests proved 
that the failure of stability known as 'piping' can be prevented 
by the proper depth of foundation at the toe of the structure. 
Graphs are given for the simple determination of this depth. 

The author's tests showed a satisfactory agreement between 
the calculated depth and the reality for pure cohesionless sand. 
Sometimes the depth used in practice can be smaller, because of 
either the presence of a small percentage of clay producing 
cohesion in the sand or a sand density greater than the assumed 
value of I ·8. Even a slight cohesion enables us to use a depth 
which is 50 to 70 per cent of the theoretical one given by the 
author-BAZANT (1953). 

No tests have been made to study the behaviour of sand 
exposed to vibration combined with seepage-such as exists in 
the foundation of an overflow weir-and to verify the author's 
suggestion that the effect of vibration may be represented by 
the apparent angle of friction at vibration. In this article two 
other ways, suggested by the author, of solving the vibration 
problem are studied. First, the possibility of model testing is 
considered and the dimensional analysis of the stability of sand 
when vibration is combined with seepage is given. Secondly 
an analysis using the dynamic pressure head is proposed. 

Dimensional Analysis of Vibration 

Analytical solutions of the problem being unknown, the 
solution can be achieved by model tests. To ensure the 
reliability of model tests it is necessary to find out the mechanical 
similitude of tests and reality. The dimensional analysis serves 
for this purpose-MURPHY (1952). 

Let us assume that the stability of saturated sand exposed to 
vibration combined with seepage (Fig. I) may be expressed by 
the function 

f(d, 2b, hp, A, fz, t, d., d0 , k) = 0 .... (I) 
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. Sommaire 

L'objet de cette communication est d'etudier les moyens d'empecher 
Ia formation de renards sous les barrages fondes sur sols sableux pul­
verulents. La stabilite du sable sous l'effet des vibrations et de I'eau 
de percolation, est etudiee par deux methodes. La premiere, basee 
sur une analyse des dimensions de l'equation 11, foumit sept coeffi­
cients sans dimensions, qui sont necessaires pour I'etude des essais 
sur modeles; les lois de similitudes (equations 12 a 18) sont degagees, 
et l'equation simplifiee I9 est trouvee. La seconde analyse mathe­
matiquement Ia charge dynamique de l'eau; et Ia profondeur a donner 
a Ia fondation est obtenue par Ia formule 21. La charge dynamique 
resultant des vibrations est donnee par les formules 22 et 23. Un 
exemple d'utilisation de cette methode est donne. 

where d denotes the depth of foundation at the toe of the 
structure, 2b the width of the structure, hP the head at the 
beginning of piping, A the amplitude of vibration of soil at the 
surface, fl the frequency of vibration of soil, t the time elapsed 
from the beginning of vibration, ds depth of sand deposits, da 

active depth of sand, giving the depth which is affected by the 
vibration and which is governed by damping, and k the co­
efficient of permeability of sand. 

·.· .. 
-r· : 

Fig. 1 Arguments influencing the stability at vibration combined 
with seepage 

Facteurs influen9ant Ia stabilite des sols soumis a Ia fois a . 
des vibrations et a une percolation d'eau 

We use for model tests the same sand as exists in reality at 
the site of the proposed structure, and so in the analysis we 
can neglect the further variables of the problem which become 
constant. They are:</> angle of internal friction of sand, y 1 the 
unit weight of combined soil and water, Yw the unit weight of 
water and V the velocity of elastic wave in sand. To simplify 
the problem, we neglect further the surface loading p, the weight 
of an apron or riprap. Equation I we reduce to the form 

/(TT~o 7rz, TTJ, TT4, TTs, 7T6, TT7) = 0 .... (2) 

where TT1_ 7 denote the dimensionless arguments which are 
generally expressed by 

7T = dx(2b)YhpzAurzvtwdsad0cke 

On inserting the fundamental units, length (L] and time [T], 
we get 

[I] = [L]x[L]Y[L]z[L]u[T-l]v[T]w[L]a[L]c[LT-l]e 



from which it follows 

[I]= [L]x+y+z+u+a+c+•[T]-u+w-e 

This equation is valid only when exponents vanish: 

x+y+z+u+a+c+e=O 

-v+w-e=O 0 0 0 0 (3) 

In equation 3 there are nine unknowns and we can choose 
seven independently in seven combinations and thus reduce the 
number of independent variables by two, which is the number 
of fundamental units. The chosen combinations and dimen­
sionless arguments are: 

(1) x = 1, y = - 1, z = u = w = a= c = 0; 

d 
7TJ = 2b 

(2) x = - I, z = I, y = u = w = a = c = 0; 

hp 
7Tz = d 

(3) y = - 1, w = I, x = z = u = v =a= 0; 

kt 
7TJ = 2b 

(4) u = v = 1, e = - I, x = y = z =a= 0; 

Aii 
7T4 = T 

(5) ll = ), X = - ), )' = Z = a= V = IV= 0; 

A 
7Ts = d 

(6) u =I, a=- 1, x = y = z = v =IV= 0; 

A 
7T6 = d; 

(7) a= 1, c = - I, x = y = u = v = w = 0; 

ds 
7T7 = da 

0 0 0 0 (4) 

0 0 0 0 (5) 

0 0 0 0 (6) 

0 0 0 0 (7) 

0 0 0 0 (8) 

0 0 0 0 (9) 

0 0 0 0 (10) 

The result of dimensional analysis is that stability under 
vibration combined with seepage is seen to be governed by 
the function f with seven dimensionless arguments: 

( 
d hp kt An A A ds) 

f 51/ d' 2b' k' d' d..' d"a = 
0 0 0 0 0 (11) 

Equation II, replacing equation 1, determines the arguments 
which may be necessary to the complete solution of the model 
tests. The unknown function fin equation 11 is to be found 
by model tests and it gives a satisfactory description of the 
stability under vibration combined with seepage, assuming that 
all the essential arguments have been introduced into equation!. 

Equation 11 can be used for model tests if it is possible to 
realize the model laws-as many as the dimensionless argu­
ments, i.e. seven. They are as follows: 

(1) We choose the scale of reduction of length.\. We insert 
it into equation II and apply the condition that similitude exists 
when dimensionless arguments of model and reality are equal. 
We get then the model law 

d, bi 1 
dz = b;. = X 02) 

where index 1 denotes the model and index 2 the reality. 
(2) From equations 5 and 12 it follows 

0 0 0 0 (13) 

(3) Using equations 10 and 12 we get 

dsi dal 1 
dsz = da2 =X 

0 0 0 0 (14) 

(4) For the scale of reduction of time we choose T. 

gives the law 
This 

~ =-
tz T 

(5) Equations 6 and 15 give 

T 

k1 =X kz 

(6) From equations 8 and 12 we find 

A 1 1 
A;= X 

0 0 0 0 (15) 

0 0 0 0 (16) 

0 0 0 0 (I 7) 

(7) Finally equations 7, 16 and 17 give 

ii2 1 
-=- = - 0 0 0 0 (18) 
n1 -r 

The model laws require the geometric similarity 1:,\ of 
length of structured and width 2b, of water head hp and depth 
of sand ds; this is easy to realize. So it is with the reduction 
of time 1 :T. 

The coefficient of permeability of sand k should be changed 
in the ratio 1 :,\fT. It was assumed that the same sand would 
be used, in which case k1 = k2 ; values compatible with equa­
tion 16 when,\= T, a condition which must be fulfilled. The 
frequency n must be increased in the ratio 1 :-rand the amplitude 
decreased in the ratio 1 :.\. 

There remains the law of equation 14 requiring the change of 
da. This change cannot be made because, as the sand is the 
same, the damping does not alter. Hence the model is only 
approximately correct. It is probable that the sand will be 

vibrating through the whole depth of the model. Therefore 
tests of weirs will require greater depth, but the difference will 
not be great as is shown by a comparison between equations 22 
and 23. On the other hand, in the case of earthquake vibration, 
the active depth da = oo and the model test is strictly valid. 

The increase in frequency n by the ratio 1 :T and the decrease 
in amplitude by the ratio 1 :.\ cannot be large because large 
changes would alter the behaviour of the sand. If it is assumed 
that,\= -r===IO then the models will be of large dimensions. 

The number of variables in equation 11 being great, we wish 
to derive some simplified solution. Let us assume the dimen­
sions of the structure have been chosen to make df2b = const. 
Supposing that the sand fails when maximum hP is reached, 
we can neglect the effect of time so that the argument (kt)/(2b) 

vanishes. Finally we can take (d5 )((da) = 1 and Afd = Afds 

because the whole depth of sand in the model is vibrating. The 
simplified function of stability under vibration combined with 
seepage is then given by 

!( '!.!! An ~) = o (19) 
d' k' d 0 00 0 

which can be plotted with coordinates (hp)/d, (Aii)/k and with 
A/d as the system of curves. The unknown function in 
equation 19 must be found by model tests. This equation 
shows that it is necessary to study both the amplitude A and 
the frequency 11 even in the simplest case. 

Dynamic Pressure Head Analysis 

The problem of stability under vibration combined with 
seepage can be solved as in the static case of the author's theory 
(BAZANT, 1953) if the influence of vibration is introduced into 
the neutral stress as the dynamic pressure head hd which is 
added to pressure head h, at the toe. This is valid assuming 
that the pattern of seepage is not altered by vibration. 

From the author's analysis (BAZANT, 1953, Vol. 2, p. 201, 
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Fig. 2 Chart of relative pressure head h,/h at toe (compiled after Khosla, Bose and Malhotra) 
Diagramme de Ia pression relative h,jh (d'apres Khosla, Bose et Malhotra) 

equation 18 and Vol. 3, p. 221) we know that stability in the 
static case requires that hrfd = 1·11; which is valid for¢>> 15 
degrees and YriYw = 1·8. Multiplying the left-hand side by 
the coefficient of permissible loading K1 = 1·7, for concrete 
foundation, or K1 = 2, for sheet pile wall foundation, and 
adding the dynamic pressure head we obtain 

K1 hr ~ hd = I ·11 . . . . (20) 

which is the solution for the stability under vibration combined 
with seepage. Then, from Fig. 2, we get for the chosen value 

of d/2b = K 5 the coefficient 

from which we derive 

hr- K 7i- 6 

hr = K6h 

Inserting this into equation 20 we have 

K1K6h + hd = 1·11 
d 

and the required depth of foundation under vibration com­
bined with seepage is given by 

K1 
d = m<x6h + hd) .... (21) 

Finally from chosen d/2b = K 5 we get 

2b = !!._ 
Ks 

The dynamic pressure head hd entering into equation 21 was 
studied by MASLOV (1954) who measured the compaction of 
sand at the beginning of vibration which squeezes the water 
from pores. Owing to the high permeability of sand this 
squeezing of water takes place within a few seconds, e.g. in the 
test cylinder of 195 em height it took no more than 45 sec. for 
sand having D65 = 0·25 mm. 

Maslov found the maximal dynamic pressure head at the 
beginning of vibration 

" ( z2) hd = f dsz- 2 .... (22) 
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which holds for constant vibration through the whole depth 

ds of sand. In equation 22, "n denotes the velocity of com­
paction during vibration, k the coefficient of permeability and z 

the depth of a point under the surface of submerged soil. For 
vibration decreasing linearly to zero at the active depth da it is 
possible to derive the equation 

"o[ z2 z3] 
hd = k dsz- 2da(ds + da) + 3da (23) 

where v0 denotes the velocity of compaction at the surface. 
The dynamic pressure head hd entering equation 21 can be 

found for z = d. The depth d is chosen, and then hd com­
puted, inserted into equation 21 and adjusted by trial until the 
chosen d equals the computed one. 

The velocity of vibration "n was found to depend on the 
acceleration of vibration, grain size and density of sand. 
Equation 19 shows that the tests should be supplemented by 
measuring amplitude A too. The velocity "n was measured 
indirectly, the sand being vibrated in a cylinder in which a 
piezometric tube was inserted. The head hd was measured 
every 5 sec, the maximal head determined, and from it "n 
computed by the use of equation 22. 

The acceleration, which is smaller than a certain critical 
value (a,r < 25 to 200 mm/s2), does not produce measurable 
compaction. The actual acceleration of sand under the weir 
lies in this range; but because in equation 20 the loosest sand 
is assumed with ytfyw = 1·8 and porosity n > 0·4, it is reason­
able to expect that the test of this sand with actual acceleration 
will produce measurable compaction. 

To show the possibilities of this method we will compute the 
necessary depth of the foundation of the Lloyd Dam on the 
Indus, studied previously by the author (BAZANT, 1953, Vol. 3, 
p. 220). On inserting into equation 23 v0 = 0·0001 cm-1, 

k = 1·10-1 em s-1, ds = 5000 em, da = 1000 em, z = 366 em. 
we get hd = 148 em. Further we know K 6h = 0·16h and from 
equation 21 we get, for h = 583 em, the required depth 

2 
d = ITI(0·16 x 583 + 148) = 434 em 

As actual depth is 366 em, the agreement is satisfactory. 



The dynamic pressure head analysis depends on the right 
determination by tests of the velocity of compaction vn which 
must be measured for the loosest sand. The evaluation of the 
active depth of sand da is not so important as we can resort to 
equation 22. The amplitude A and frequency fl of the system 
weir-soil is assumed to be known, it can be determined by 
measurement on existing structures or by theoretical analysis. 
Valuable information for analysis can be derived from the study 
of forced damped vibrations of engine foundations-Sym­
posium (1954). Nevertheless, it will be necessary to elaborate 
the solution for the amplitude and frequency of the vibration 
of a weir resting upon sandy soil and vibrated by the water 
discharging over the spillway. 
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