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Session 4/8

The Consolidation of a Layer, which Modulus of Elasticity 

is proportional to the Depth

Le tassement d’une couche, dont la compressibilité diminue linéairement avec la profondeur

by Ir. T. E d e l m a n n , Chief-Engineer, Directie Algemene Dienst 

Netherlands

Summary

This paper deals with the hydro-dynamical consolidation of a soil 

layer, supposing, that the compressibility of the soil decreases in a 

linear way with the depth. The formulae of the time-settlement- 

curve is derivated for this case.

van de Rijkswaterstraat, Van Hogenhoucklaan 60, D en  H aag,

Sommaire

Dans cette communication le tassement d’une couche est étudié 

comme phénomène variable dans le temps, et dépendant de l’écoule

ment des eaux souterraines. En admettant que la compressibilité 

du sol diminue linéairement avec la profondeur, l’auteur établit une 

formule donnant le tassement en fonction du temps.

Physical Problem

A  soil-layer, with thickness D, a coefficient o f permeability 

K  (cm/sec) and a modulus o f elasticity E  (kg/cm2), confined 

above by the free air and at the bottom by an impermeable 

layer, is loaded at the time T  — 0 by a load p  (kg/cm2).

A t the first moment the water within the voids bears this 

load, and at once this void-water becomes an increase o f head: 

<P0. After a little time the head has decreased to <p <  <p0 by the 

flow o f water, and consequently the pressure ak between the 

particles o f the soil has increased. Always

ak +  y w<P =  P (vw =  sPec- weight o f water).

Than: d o k =  —  y w ■ dtp.

The increase o f ak causes a compression o f the soil and means 

a decrease of the voids-ratio with:

d2<p dm
K — -  ■ Fdx  =  —— 

d x 2 d T
F d x

E

or:

d2<p

d x 2

Vw

K E

d Ip

H r

Supposing E  being a constant, Terzaghi and Fröhlich (1936) 

calculated this case by means o f a Fourier-series. In this 

paper, however, is supposed, that E  is not a constant, but 

that E  =  C a k +  a, where C  =  the constant o f compressibility 

and a =  a small initial pressure. We put ak =  y x  (ak increasing 

with the depth) and thus:

E  =  C y x  +  a =

d a t dw  
------- ± F d x  =  y w ^ F d x .

Within the time-interval d T  the decrease o f the volume Fdx

1 . Vw e i -

IS equal t o --------—  • F d x  .
E  dT

According to Darcy's  law the quantity o f water, flowing out

d2tp
o f  the volum e Fdx  during A T  equals: k —----- Fdx .

o x 2

Both quantities have to be equal, thus

For brevity we p u t-----  =  a (cm) and consequently the diff.
C y

equation becomes:

32<p 1

K C y  x  

Putting t =

3 V  1

d rp 

~a ~3T

T C K ----- (t is a length), we obtain:
Yw

dx2

d<p 

x  +  a d t
(1)
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We want a solution in the shape: <p =  f i x )  ■ F(t) where f ( x )  

is a function, independent o f  t, and F it)  is another function, 

independent o f x. Equation (1) becomes:

x  +  a d 2f  1 d F

Solution o f  the P artia l D ifferential E quation

f  d x 2 F  d t

Thus on the left-hand side we get a function o f the single 

variable x, and on the right-hand side a function o f the other 

variable t. This can only be true, if both sides o f the equation

p 2
are equal to som e c o n s t a n t : ---------. Thus we obtain two

4 a

equations: 

x  +  a d 2f

f  d x 2

P2 1 d F
—  a n d -----------
4 a F  d t 4 a

d *f  1 df  ^  t  n A d F  P*— — ------- — + / =  0 and —  =  — —  d t
d v ‘ v d v  F  4a

where v =  j i ----- h i

The solutions are:

/  =  vZx(v) and F  =  e~ ia ‘

Z\(y) =  Q / .W  +  C2 fli(v)

Ji(v) is the Bessel function o f the first kind and first order. 

iVj(v) is the Bessel function o f  the second kind (Neumann- 

function) and the first order.

Thus the solution o f equation (1) becomes:

_ JL
<p =  ve ia  Zx(v) . .

Boundary Conditions

(2)

( le )  When x  =  0, always <p =  0; or when v =  P, <p =  0. 

This condition is satisfied when Z X(P) = 0 ;  or:

C M f i )  +  C M P )  =  0

dtp

(3)

(2e) When x  =  D,  always —— = 0 ,  or: 
ox

From the equations (3) and (4) we derive 

M P )  C2 , J0{vD) C2

N M  Cj 

C onsequently: 

M fi)  M vd)

and
N 0( v d)

N r(P ) N 0( v d) 

Putting q =
1

we obtain ¡3 =  gvD and thus:

+ 1

•A) (vb) M e v D)

N 0 ( v d )  N ^ q V j j )
(5)

For each value o f vD, satisfying equation (5), we obtain a 

solution o f the partial diff.-equation which satisfies the first 

three boundary-conditions. These values o f vD can be found  

in tables, f.i. in Jahnke and Emde (1945). (Here q  is named K.) 

Every value o f vD gives one solution, which can be written:

_ vp‘e‘ t t 
<p =  A e  4a ■ v ■ |7x(v) ■

Jo (vd )

N0(vd) )

By addition o f  these solutions (every solution with its own A) 

we obtain a series, and we will choose such values for A, that 

the series satisfies the fourth boundary-condition.

Thus
OO

Jr> (VDn)
9 = /  A ne

n =  1

L v |j j (v ) - ^ (V ) |

Let be v =  vDe then s =  q +  1

(when x  =  0 is e =  g; when x  =  £> is £ =  1)

Thus:

-  VDn 'Q*
<p =  7  A ne

n =  1

in which:

Z i(yDn e) =  Ji(yDne)

4a viB e Z i(» J „E)

Jo ( vDn)

N 0 (.Vp„)
W i(v Bae)

D  dtp
when v =  vD = p ------ 1-1 is —— =  0.

N a o x

Since:

3 tp P2 -  1— t
=  JL. e Q / 0(v) +  C,N0{v)\ , 

ox  2a

the second boundary-condition is satisfied when:

C i / o W  +  C 2N „ ( v d)  =  0  (4)

(3e) Wh$n t =  oo, everywhere <p =  0. This boundary-condi

tion is always satisfied by the equation (2).

(4e) W hen t =  0, everywhere <p =  <p„. This leads to:

9o = v { Q A M  + CaA^(v)] ,

and this is impossible. Thus the solution

q) =  ve  4 a Zj(v)

does not satisfy the fourth boundary condition.

The fourth boundary-condition is satisfied if the constant tp0 

can be written in the form

OO

for e < £ < l

n = 1

The theory o f the Bessel functions shows that this is possible 

when the constants A n are probably chosen. The determina

tion o f these constants is similar to the determination o f the 

constants in an ordinary Fourier-series, using in our case the 

property o f  orthogonality o f the Bessel functions. The nth 

coefficient A n is given by the formula:

An = 9o ■
2Z o(e vDn)

n Zi (vzJ}2—{e vBn z 0 (g v£„)}2
(6)

Thus the solution o f  the equation, which satisfies the Jour 

boundary-conditions is :

VDr. e ■
i a  vZj(v)
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wherein An has to be calculated from the equation (6)

v =  q v d

1

D
------b 1
a

z 1(v) =  J M
Jo(vDn)

Ni(v)
No (vDn)

and the values o f vDn have to be calculated from the equation:

Jq (vD„) =  MeVpn)

N0(vd„) N ^gv^ ,)

Settlement

The settlement zD o f the soil layer (thickness D), is equal to

x =  D

i
i  =  0

wherein:

ak =  Yw(<Po —  <P) and E  =  C y ( x  +  a)

Thus:
x = D

y w(<Po— <p) 

C y (x + a )I
c = 0

d x  =

x =  D

f  Vw<Po_ d x  _  f  <p d x

J Cy x  +  a J Cy x  +  a
=  0  x = 0

Since

I x  d x  2
v =  evo J ----- h 1 > — I—  =  — d v  ;

\  a x + a  v

thus

2 y w<Po

y C

thus

V = QVj)

2 y w<Po, i 
Zn =  ----- —  lg -

= Vj) v = Vj)

f  d v  2 y w [ < P

J v y C  J v
V = Qvd

V = VD___

J Z—t <Poy C  q y C
v = evD

Z 0(v) =  0,  when v =  vD, thus

y e

1K1 V  2 {Z0(o
. e ¿ J , vB„^i(vfln)}2-

^ n )l2

{svDnZ a{QVDn)

~vDnQ,

Z<x> —
2 y w<Po

y C

z  =  0 when t =  0 , thus: 

y lg -
2 9 Z—l \vDn^l

i g -  =  - ^ l g  ( —  +  i )  
e y C  \  a J

\ z 0(evDn)}2

Calculating the first four terms o f the series we obtain :

n Z 0(qvd„) {Z0(gvD„)}2 {vDnZl(vDi)}2 [evD„Z0(gvD„)}2 nth term

1 0.83 0.69 1.90 0.31 0.434

2 1.22 1.48 17.60 4.10 0.110

3 1.15 1.33 40.00 9.40 0.044

4 0.41 0.17 9.70 2.30 0.024

The first four terms give: 0.612

U sing only the first four terms we obtain an error o f 12%.

However, when t is not equal to zero, but reaches greater

values, the convergence is better. Since the e-coefficient

contains the form (vfl)2, this coefficient will increase very soon
_  , , t

in the further terms o f the series, thus e VD" e 4a will decrease 

very soon. For not to small values o f t it may be sufficient to 

calculate only a few terms o f the series.

Thus it may be possible to calculate the time-settlement- 

curve with sufficient precision, except for small values o f t. 

The course o f the curve for these small values o f  I, however, 

is not very interesting, this part o f  the curve being very steep; 

errors o f 10% or 20% will not be perceptible here,

Example

Let be: a =  5 kg/cm 2; C =  50; y  =  y w =  1 g/cm3 

D  =  15 m ; K  =  1.48 X 10-9 cm/sec (clay).

Thus a = ----- =  1 m  and q =  0.25.
Cy

W ep u t

The table gives values o f A for different values o f n and T.

(v)dv

( v DJ * n
T  = 1 

days

T  = 7 

days

T  = 30  

days

T  =  1 5 0 T  = 3 6 5  T  = 1000  

da ys d a ys days

7.20 1 0.007 0.05 0.22 1.08 2.70 7.20

4 3 .— 2 0.043 0 .30 1.30 6.45 15.70 4 3 .—

113.— 3 0.113 0.80 3.40 17.— 41.50 113.—

218.— 4 0.218 1.53 6.60 33 .— 80.— 21 8 .—

wherein y w<p0 =  p  =  the increase o f loading.

The final settlement Zoo is reached after an infinite time 

period (/ =  o o ) .  Thus:

O v )}2 —  {evDnz 0(QvDn)}‘

This equation allows to draw som e conclusions concerning 

the convergence o f  the series. We try: g =  0.25, therefore

^ - l g -  =  0 .6 9 3 .
2 Q

When A =  1,0 we obtain e ~ x =  0.0005. This is very small 

and consequently we may stop when A <  5. W hen T  =  30 days 

the first three terms are sufficient already.

W e calculate:

when T  =  1 7 30 150 365 1000 days 

=  2.85 13.— 25.—  43.60 53.20 55.35
P

When r  =  oo is — =  55.4 (zD is measured in cm  
P P

and p  in kg/cm2).

The figure shows this time-settlement curve; within 5 weeks 

the layer o f clay consolidated to 50%, within 5 months to 

75%, within 8 months to 90% and within one year to more 

than 95% o f the final settlement.
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Fig. 1 H ydro-dynam ic T im e-Settlem ent C urve 

C ourbe de tassem ent hydro-dynam ique

F inal Form  o f  the F orm ulae  

We know:

Q =

Also:

/ n
J  — +  1
V  a

T C K
y

, so —  
a

1 — e2 

D

4 D ya

2Vu,<Po , 1 ,
zoo = -----—  lg — and YwVa —P-

y C  g

For brevity we put:

4 \Z » { q v d „)Y
F„(e) = 

Thus:

( z o o  ~ / j )  '

K ^ l O ’z J ) “ ~  D„Z0(çVB„)}2

VD" (1~el)T ' T T 7 T Fn (e) .
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