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The Consolidation of a Layer, which Modulus of Elasticity

is proportional to the Depth

Le tassement d’une couche, dont la compressibilit¢ diminue linéairement avec la profondeur

by Ir. T. EDELMANN, Chief-Engineer, Directie Algemene Dienst van de Rijkswaterstraat, Van Hogenhoucklaan 60, Den Haag,

Netherlands

Summary

This paper deals with the hydro-dynamical consolidation of a soil
layer, supposing, that the compressibility of the soil decreases in a
linear way with the depth. The formulae of the time-settlement-
curve is derivated for this case.

Physical Problem

A soil-layer, with thickness D, a coefficient of permeability
K (cm/sec) and a modulus of elasticity E (kg/cm?), confined
above by the free air and at the bottom by an impermeable
layer, is loaded at the time 7' = 0 by a load p (kg/cm?).

At the first moment the water within the voids bears this
load, and at once this void-water becomes an increase of head:
@,. After a little time the head has decreased to ¢ << @, by the
flow of water, and consequently the pressure o, between the
particles of the soil has increased. Always

o, +v,¢ =p (¥, = spec. weight of water).

Than: do, = —y,-do.
The increase of o, causes a compression of the soil and means
a decrease of the voids-ratio with:

do, do
Fdx=y,— Fdx.
E X =%, z dx

Within the time-interval dT the decrease of the volume Fdx

. Yw 09
s equal to —-—- Fdx .
is equ E T X
According to Darcy’s law the quantity of water, flowing out

o

of the volume Fdx during AT equals: k Pyl Fdx .
x

Both quantities have to be equal, thus
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Sommaire

Dans cette communication le tassement d’une couche est étudié
comme phénoméne variable dans le temps, et dépendant de I’écoule~
ment des eaux souterraines. En admettant que la compressibilité
du sol diminue linéairement avec la profondeur, ’auteur établit une
formule donnant le tassement en fonction du temps.

22 2
Ka—;-Fdx =a—;’i-y—é”pdx
or:

g Yo 09

axt KE oT

Supposing E being a constant, Terzaghi and Fréhlich (1936)
calculated this case by means of a Fourier-series. In this
paper, however, is supposed, that E is not a constant, but
that E = Co, + o, where C = the constant of compressibility
and ¢ = a small initial pressure. We put 6, = yx (0, increasing
with the depth) and thus:

E=ny+a=Cy(x+i)
cy

g .
For brevity we putC— = a (cm) and consequently the diff.
v
equation becomes:

e Y 1 de
axt  KCy x+a T

Putting ¢ = TCKyL (¢ is a length), we obtain:

¢ 1 dg
axt  x+a ot

m



Solution of the Partial Differential Equation

We want a solution in the shape: ¢ = f(x) - F(¢) where f(x)
is a function, independent of ¢, and F(r) is another function,
independent of x. Equation (1) becomes:
dzf 1 dF

x+a

Thus on the left-hand side we get a function of the single

variable x, and on the right-hand side a function of the other

variable ¢, This can only be true, if both sides of the equation
2

are equal to some constant: — 4z Thus we obtain two
a
equations:
x+a df P 1 dF B
=—— and —— =——
f dxr T 4a F dr 4a
or:
df 1 df d il
— =0 and — =—"
dv? v dv +/ 4a

where v=ﬂN/i+l
a

The solutions are:
f=vZy(v)
Z,(v) = CiJy(») + CoN (v)

ﬁ
and F=¢ 4

J1(v) is the Bessel function of the first kind and first order.
N;(v) is the Bessel function of the second kind (Neumann-
function) and the first order.
Thus the solution of equation (1) becomes:
;g
p=ve @' Z© .. 2

Boundary Conditions

(le) When x =0, always ¢ =0; or whenv =8, ¢ =0.
This condition is satisfied when Z,(f) = 0; or:

GLB + CGNMB =0 .. .. 3)
dp
(2¢) When x = D, always— =0, or:

whenv—vD—A/—+ is —(p-=0
dx

Since:
E : B
% _ —E—e 4a '{Cllo(v) + CN, (),
0x 2a

the second boundary-condition is satisﬁed when:
ClJo(VD) + CyNo(vp) =0 @

(3e) When r = oo, everywhere ¢ = 0. This boundary-condi-
tion is always satisfied by the equation (2).

(4e) When ¢t = 0, everywhere ¢ = ¢,. This leads to:
Po =V {CIJI(V) + Cle(V)} s
and this is impossible. Thus the solution

ﬂn

p=ve ' Z)

does not satisfy the fourth boundary condition.

From the equations (3) and (4) we derive

J(B) =_& Jo(VD) =__C_2
N (B) & No(vp) G
Consequently:
(B _ Jo(vp)
N (B) No(vp)
Putting ¢ = ; we obtain f = ev, and thus:
D
JE+
a
Jo(vp) _ Ji(evy) (5)
Ny(vp) Mlevp)

For each value of v, satisfying equation (5), we obtain a
solution of the partial diff.-equation which satisfies the first
three boundary-conditions. These values of v, can be found
in tables, f.i. in Jahnke and Emde (1945). (Here ¢ is named K.)
Every value of v, gives one solution, which can be written:

Jo (VD) l
N
AR I

By addition of these solutions (every solution with its own A)
we obtain a series, and we will choose such values for A4, that
the series satisfies the fourth boundary-condition.

Thus

vpte? [

(p=Ae_ da t'v-l.fl(v)—

o0
~ upatel — Jo(vp)
= e v{J () — =2
L ' Nopn)

et
n=1

x
Letbe v = vpe then e=gA/;—|—l

WA (V)}

(when x =0ise =p; whenx =D ise =1)

Thus:
oo

@ =ZA,,e_ vout @ vD,,eZl(vD,,a)
n=1

in which:

Z,(vp,8) = J1(vp,e) —]{/—oo((‘;—l;% N (vp,€)

The fourth boundary-condition is satisfied if the constant @,
can be written in the form
o0

@o =ZA,,aneZI(vD,,e) for o <e<l

n=1
The theory of the Bessel functions shows that this is possible
when the constants 4, are probably chosen. The determina-
tion of these constants is similar to the determination of the
constants in an ordinary Fourier-series, using in our case the

property of orthogonality of the Bessel functions. The nth
coefficient 4, is given by the formula:

2Z,(ov
A, o(0vpy) )

’ (VonZi(vp)}2—{evpn Zo(e Vpa) )

Thus the solution of the equation, which satisfies the four
boundary-conditions is:
(e o)

ro. L
4 =ZA,.e‘ ETRA Q)

n=1

359



wherein 4, has to be calculated from the equation (6)

Jo(vp,)
No (an)

and the values of v, have to be calculated from the equation:

Jo(vp,) _ Ji(evp,)
NO (an) Nl (Q an)

Zy(v) = L, (v) — N (v)

Settlement

The settlement zj, of the soil layer (thickness D), is equal to
x=D

oo

=0

wherein:

0. =y,(po— @) and E =Cy(x+a)

Thus:
x=D x=D =
Yu(Po—P) YuPo  dXx @
Z,= o dx= . d
p f Cy(x+a) f Cy x+a Cy x+a x
xr=0 x=0 =0
Since
2
v=gvpy [ — = —dv;
e DA/ x+a y 20
thus
v=vp v—vD
2y, 90 [ dv ka
P yC v yC
v=Qvup v—va
thus
v=1vp
29,90 . 1 2y % o Vot
= Zfwi0, —  STwro tpae? — Ap
D >C g . Zl(v)dv
v—-QvD

Zy(v) =0, when v = v, thus

27, Po [ Z 2{Z,(evp)}? e—vp,.'e"ﬁ:l
(DnZ1 ()} 2— {0V Dy Zo(eVp,)

= p = the increase of loading.

Zp=

wherein y, @,

The final settlement z.. is reached after an infinite time
period (f = o). Thus:

2yw(p0 D
Zoo = e = 2 g (2 11
®T7yC Ce C g( * )

z =0 when ¢ = 0, thus:

_1_ _ z {Zo(evpa)}?
vonZy (Vnn)}2 — {evpnZo(evpy))®

This equation allows to draw some conclusions concerning
the convergence of the series. We try: ¢ = 0.25, therefore

1 1
—lg— =0, .
ZgQ 0.693
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Calculating the first four terms of the series we obtain:

n ZO (Qan) {ZO (QVD")}Z {anZI (an)}2 [QanZo (QVDH)}2 nth term

1 0.83 0.69 1.90 0.31 0.434
2 1.22 1.48 17.60 4.10 0.110
3 1.15 1.33 40.00 9.40 0.044
4 041 0.17 9.70 2.30 0.024
The first four terms give: 0.612

Using only the first four terms we obtain an error of 12%.
However, when ¢ is not equal to zero, but reaches greater
values, the convergence is better. Since the e-coefficient
contains the form (v,)?, this coefficient will increase very soon

in the further terms of the series, thus e ~oa'® 37 will decrease

very soon. For not to small values of ¢ it may be sufficient to
calculate only a few terms of the series.

Thus it may be possible to calculate the time-settlement-
curve with sufficient precision, except for small values of ¢.
The course of the curve for these small values of f, however,
is not very interesting, this part of the curve being very steep;
errors of 10% or 20% will not be perceptible here.

Example
Let be: 0 =5kg/lcm?, C =50; y =y, =1g/cm?
D =15m; K = 1.48 X 10-% cm/sec (clay).

Thus 2= — = 1m and o = 0.25.
Cy

t e 14
Weput A =v, 20— =v,2—.C-K—T
p Dn @ %a Vbn 4a "

The table gives values of A for different values of » and T.

(v e T=1 T=7 T=30 T=150T =365 T = 1000
Vpa)* n days  days days days  days days
720 1| 0.007 005 022 1.08 2.70 7.20
43— 2| 0043 030 130 645 1570 43—
113.— 3| 0.13 0.80 340 | 17.— 4150 113.—
218.— 4| 0218 1.53{ 6.60 33— 80.— 218.—

When A = 1,0 we obtain e—* = 0.0005. This is very small
and consequently we may stop when 4 << 5. When T = 30 days
the first three terms are sufficient already.

We calculate:

whenT = 1 7 30 150 365 1000 days
%’ = 2.85 13.— 25— 43.60 5320 5535
When T = oo is -2 = 22 _ 554 (zp is measured in cm
p p

and p in kgf/cm?).

The figure shows this time-settlement curve; within 5 weeks
the layer of clay consolidated to 50%, within 5 months to
75%, within 8 months to 90% and within one year to more
than 95% of the final settlement.
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We know:
5
B 1 ez 1 ___92
10 e= D » 8O a D
—+1
13 A
D.15m = i s iy Y
20 C. s t=TCK—, so e oty PR U daly Yo |
w
a« 1m.
25 \ k « 1.48 « 10" cm/sec Also
+ 025 27, %o
i Zoo lg and y,@ =p
30 vC
55 \ , 7/ For brevity we put:
\ S ‘mEES.!‘lf?.SBl%A%.«. SR L 4{Zy(evpn)?
A 1 " v0aZi (Vp)}* — [evp.Zo (evp,))?
i Thus:
N\ b4 | — vp,t(l1—g? )JZ Xrr T
(Coo—zp)—=— De ™ 4 D v Fyuo).
\ (& "
50 \\ p
59
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