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Determination by the Theory of Plasticity of the Bearing
Capacity of Continuous Footings on Sand

Détermination de la force portante d’empattements sur sable par la théorie de plasticité

by H. LUNDGREN, Professor, Dr. techn., and KNUD MORTENSEN, M.Sc., Soil Mechanics Laboratory, Technical University of

Denmark, Copenhagen, Denmark

Summary

By means of the theory of plasticity, methods are developed for
the exact determination of the rupture lines as well as the bearing
capacity of continuous footings on a horizontal sand surface for any
value of the surface load. The methods are applicable to rough as
well as to smooth foundations.

For a rough base and ¢ = 30°, Ny is found to be 14.8, which is
only 70% of the value generally applied in the Terzaghi formula.
This formula is based upon a linear combination of two terms con-
taining ¥ (unit weight) and ¢ (surface load), respectively. This paper
shows that the linear combination is up to 17% conservative.

General Principles

Fig. 1 shows an infinitesimal element of a sand mass, which
is assumed to be in the state of two-dimensional plastic flow
with the intermediate principal stress o, perpendicular to the
paper plane. The major and minor principal stresses at a point
satisfy the relation
01— 0y
0, + 03
where ¢ is the angle of internal friction. The plane contains
two systems of rupture lines, the a-lines and the f-lines, which
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T
intersect at an angle of > + @. The element in Fig. 1 is en-

closed by two sets of consecutive rupture lines.
From the equations of equilibrium the following relations
may be derived after some calculation:

)
2 (nt+206tan ) =~ sin (6 + ) @)
95, t

Sommaire

Cette communication étudie I'’emploi de la théorie de la plasticité
pour la détermination de la force portante des fondations de lon-
gueur infinie reposant sur du sable. En appliquant la théorie de la
plasticité les auteurs ont developpé des méthodes pour la détermina-
tion rigoureuse des lignes de glissement et de la force portante des
empattements reposant sur une surface de sable horizontale avec une
surcharge arbitraire. Les méthodes sont applicables a des fondations
rugueuses aussi bien qu’a des fondations lisses.

Pour des fondations rugueuses et ¢ = 30°, N, est calculé a 14,8;
cette valeur représente seulement 70% de la valeur généralement
employée dans la formule de Terzaghi. Cette formule est basée sur
une combinaison linéaire de deux termes contenant respectivement y
(poids spécifique) et g (surcharge). Dans cet exposé, il est démontré
que I'’emploi de la combinaison linéaire donne une marge montant
jusqu’a 17%.

Fig. |

Stresses Acting on an Infinitesimal Element between Rupture
Lines
Contraintes d’un élément infinitésimal entre des lignes de glisse-
ment
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Here 95, and 9s, are the length elements along the rupture
lines; ¢ is the total stress on the faces of the element (forming
the angle ¢ with the normal); 0 is the clockwise angle from
the horizontal to the positive a-direction; and y is the unit
weight of the sand. Egs. (2-3) may be considered as a trans-
cription of the well-known Kétter’s equation, Korter (1888).

If the points a and b (Fig. 1) are given, as well as the values
of 6 and ¢ at these points, the point ¢ can be found by inter-
secting the f-line through a and the a-line through &, and Eqgs.
(2-3) can be used to determine the values of 6 and ¢ at point c.
By repeated application of this procedure it will be seen that
the whole system of rupture lines between a given a-line and
a given f-line can be found, provided that the values of ¢ along
these lines are known. This method of constructing the lines
of rupture is a special example of “the general method of
characteristics’’, which is commonly used for solving partial
differential equations of the hyperbolic type. The method of
characteristics has been applied to plastic flow problems in
purely cohesive materials by several authors, for example
Ischlinsky (1944).

As shown below the method of characteristics can be used
to find the whole system of rupture lines under a centrally
loaded footing of width & resting on a horizontal surface of
sand which, outside the footing, carries a uniform surface load
g. The system of rupture lines depends partly on the roughness
of the base and partly on the dimensionless ratio ¥ 4/q. In the
sections below the whole range of this parameter from zero to
infinity will be considered.

Weightless Sand with a Surface Load

When y = 0 and the base is smooth, the bearing capacity
problem is easily solved. The solution shown in Fig. 4a was
found by Prandt! (1920). Each a-line consists of two straight
elements and a part of a logarithmic spiral, whereas all the
B-lines are straight. The two triangles where all rupture lines
are straight present Rankine zones.

For a rough base the same system of rupture lines applies,
the only modification being that the Rankine zone under the
footing will be in an elastic state (Fig. 4b). Since elastic de-
formations are neglected in comparison with plastic deforma-
tions, the triangle under the footing may be considered rigid.

For y = 0 the right hand sides of (2) and (3) vanish. Hence
t is a constant along straight rupture lines. In the Rankine
zone above 04

— LRI
t—qtan(4+2)_ @)

In the zone OA C the following relation can be derived from
(3), AC being a f-line:

t=qtan(%+%)-exp[Z(G—%%—%)tanth, %)

where 0 = %—— % along the a-line OA4 will reduce (5) into (4)

and thus satisfy the boundary condition along this line.

The Sand Has Weight and Carries a Surface Load

In this case (Figs. 4c-d) it will be a question of the plastic
flow properties of the sand whether the plastic zones will ac-

410

tually reach the surface outside the footing. Since this dis-
cussion is beyond the scope of this paper, it will simply be
assumed that the plastic zones do extend to the surface. Then
it follows that Rankine zones exist above the lines OA.

The construction of the rupture lines by the method of
characteristics must start from OA and in all directions from O.
It is evident that in the immediate vicinity of the edge O the
weight of the sand has negligible influence, the stresses being
determined only by the surface load, for which the Prandtl
(1920) solution is known. Therefore, the subsequent considera-

Q.
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Fig. 2 Rupture Lines near the Edge of the Footing

a = Smooth Base b = Rough Base
Lignes de glissement prés du bord de la fondation
a = fondation lisse b = fondation rugueuse

tions will deal with the state of stress near the edge; cf. Fig. 2
where the width of the footing is assumed to be very large.
Along OA the stresses are given by the expression

Y8 n
L= — | tan | — s 6
(q+2) n(4+w) )
where s, is measured from O. At the point of singularity O the
values of 6 and ¢ will be designated 6, and ¢,. From this point,
for a smooth base (Fig. 2a), a family of a-lines radiate covering

the right angle between the lines OA4 and O-3-7, i.e. for these

’ i 7 @ 3xn @ .
a-lines 0, varies from iy to - T3 The corresponding
values t, can be found from (5) if 8 is substituted by 6,. The
a-lines to the left of O-3-7 start from the base under the same
angle as 0-3-7 (cf. Fig. 4a). A f-line in the vicinity of O con-
sists, as in the Prandtl case, of two straight parts and a loga-
rithmic spiral. With these remarks sufficient boundary con-

ditions are given for the construction of the whole system of

rupture lines (cf. the sequence 1, 2, ... 9 of points). When
moving away from O, the a-lines curve because of the influence
of ».

For a rough (and very wide) footing, Fig. 25, the logarithmic
spiral near O continues to the base. The ¢-lines radiating from O
cover the whole angle between OA and the base with 0,-values
varying from %—% to #. On the whole, the construction of
rupture lines proceeds in the same manner as for the smooth
base (cf. the sequence 1, 2, ... 13). The curve 0-5-11 is the
last a-line radiating from O. The subsequent a-lines start from
the base to the left of O, and since the base is rough, they are
all tangential to the base at their starting points. The curve
6-12 is one of these a-lines.



Figs. 2a-b show the rupture lines only in the vicinity of the
edge (cf. the length g/y indicated in the figure). The system of
lines in a larger region will appear for a rough base from Fig. 3
(for which the scale is about 1/10 of that for Fig. 2).

For a footing of finite width b, the width must be plotted
in Fig. 3 to the same scale as g/y. When this is done, a similar
system of rupture lines must be imagined to exist under the left
side of the footing. The result of this symmetrization is the
failure conditions illustrated by Fig. 4 ¢ for a smooth base and
Fig. 4d for a rough base. Fig. 4¢ requires no further expla-

e
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Fig. 3 Rupture Lines under a Rough Base for ¢ = 30°
Lignes de glissement sous une fondation rugueuse pour ¢ = 30°

nation. In Fig.4d the “triangle” O O Ccan be considered rigid.
The point C is found on the axis of symmetry by the condition
0= %:—Z——-% for the a-line O C from the right edge, thus giving
a smooth transition at point C between the lines from the right
and the (symmetrical) lines from the left.

It should be mentioned that all figures in this paper are
drawn for ¢ = 30°, The solution in Fig. 3 has been carried so
far that it can be used for footings with values of yb/q less than
11.4. For smaller values of this parameter the a-line in Fig. 4d
that forms the boundary of the rigid zone will extend from C
to the edge O. For values larger than 11.4 the a-line from C
will not extend to the very edge, but it will become tangential
to the base at some distance from the edge where it will stop
(cf. the a-lines in Fig. 2b).

The wider the footing, the less influence has g on the failure
load. Therefore, the deepest S-lines in Fig. 3 must be expected
to be very similar to the rupture lines for the case ¢ = 0. As
a matter of fact, the construction in this figure has been carried

Smoorh base Rough bose

Q 23 Y b

o
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79 %0-r

Fig. 4 Rupture Lines under Smooth and Rough Bases for ¢ = 30°
Lignes de glissement sous des fondations lisses et rugueuses
pour ¢ = 30°

so far that the difference in failure load is relatively small.
However, it would not be feasible to continue the construction
to infinity. Therefore, the case g = 0 is discussed separately
below.

The Sand Has Weight, but Carries no Surface Load

This case can be solved by means of the differential equa-
tions and the boundary conditions by the method used by
v. Kdrmdn (1926) for the problem of active earth pressure on
a vertical wall without surface load. In our problem the wall
is substituted by the footing and active pressure by passive
pressure. The edge O of the footing (Figs.4e-f) corresponds
to the topmost point of the wall.

The problem is mathematically simple because it depends
upon the solution of ordinary differential equations only. This
is due to the fact that all rupture lines are similar with O as the
point of similarity.

From the equations of equilibrium and the condition of
failure the following two differential equations can be derived
after a good deal of calculation:

d
(cos 2w — cos 2a)7’:i + msin 2w = 2 cos®a - cos (0 — 2w),
7]

d d
( —-cosZw\|—m+2msin2w—w—3m sin 2w =
\ cos 2a ] dé do
2 2
. _w 050 .
cos 2a

4 @ . :
Here a = 7T + 7 and m = — , while r denotes the radius vec-
yr

tor from O, w denotes the angle between o, and r, and 6 de-
notes the angle between the horizontal and r.

The boundary conditions for 6 = %——;—J (at the Rankine

zone) are: w = n —a and m = cos ¢; and for 0 = = (at the
base): w = x for a smooth base and w = n — a for a rough
base.

The numerical integration must start from the base, where
only one boundary condition is given. Therefore, the value of
m at the base must be estimated and improved by trial and

L .
error until the boundary conditions for 6 = 7_% are satis-

fied (Damgaard, 1951).

For a smooth base the lines of rupture are sketched in Fig. 4e.
For a rough base the result of the calculation is shown in
Fig. 4f. Through O only one a-line (OA) passes. The a-lines
to the left of OA are all tangential to the base at some distances
from the edge.

For a footing of given width the symmetrization is done in
the same way as in Fig. 4d. Let Q be the point where the
a-line boundary between the plastic and elastic zones touches
the base. Then the calculations have given the following

b b
values: OQ = 0.1047; 0c = 140.8°; and 04 = 2.13—2—.

Bearing Capacity

Since now the system of rupture lines is known for any value
of vb/q, Fig. 4d giving a completely smooth transition between
45 and 4/, the corresponding bearing capacities can be easily
computed.
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Fig. 5 Variation of x« in (7)
Variation de u dans la formule (7)

If, in analogy to Terzaghi’s formula, the bearing capacity
is written as

Pule. = p (qu + y% Ny) ) M
\

the coefficient # will depend upon ¢, the ratio yb/qg, and the

roughness, whereas N, and N, are the bearing capacity factors

corresponding to ¥y = 0 and g = 0, respectively.

For ¢ = 30° the values N, = 14.8 and N, = 18.3 have been
found. The coefficient u is plotted as function of y b/g in Fig. 5.
It is noteworthy that the value of N, amounts to only 70% of
the value usually applied (e.g. Meyerhof, 1951). In the Terzaghi
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formula x is neglected; from Fig. S it appears that this gives
safe values with an error not exceeding 17 %.

Finally, it must be emphasized that all the systems of rup-
ture lines in this paper have been derived from pure stress con-
siderations. Therefore, they are statically possible, but they
may be or may not be kinematically possible depending on the
actual strain properties of the sand during plastic flow.

Therefore, the bearing capacities found may be slightly con-
servative because the ‘““actual” figure of failure (which would
include several rigid bodies) must correspond to a higher load
(cf. Prager and Hodge, 1951).

At the present stage of knowledge, however, we think that
the bearing capacities found by the theory of plastic stresses
must be considered a satisfactory approximation to the true
values.
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