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Stability of a Non-Cohesive Soil Under Elliptic Upward Seepage

Stabilité d’un sol pulvérulent dans le cas d’infiltration elliptique ascendante

by Z. B a z a n t ,  Jr., Professor o f  Foundation Engineering, Technical University, Karloro näm. 17, Prague, Czechoslovakia

Summary

The authors study the stability of non-cohesive soils under weirs 

and cofferdams subject to seepage. The object o f the investigation 

was to find methods of preventing piping. A mathematical solution 

is given for the case where stability is governed by shear and when 

the flow lines are homofocal ellipses with the toe of the structure 

as their focus.

The required depth of foundation is given by equations (19) to 

(22). Table 2 and the graphs in Figs. 5-6 obviate the need for 

calculation. We are able to neglect the angle of internal friction 

in equilibrium studies of structures not subject to vibration but this 

angle has a marked effect on weirs which are subject to vibration.

The stability of structures with shallow foundations depends also 

on the contact pressure. The results obtained theoretically were 

checked by tests.

Sommaire

Nous considérons l’équilibre limite des sols pulvérulents sous les 

barrages et batardeaux dans les cas d’infiltration d’eau. Le but de 

notre étude est la recherche de mesures propres à empêcher la for

mation du renard. Une solution mathématique est proposée pour le 

cas où l’équilibre limite peut se développer par cisaillement et lors

que les lignes de courant sont des ellipses homofocales dont le pied 

aval de l’ouvrage est le foyer. L’estimation de la fiche, soit la pro

fondeur de la fondation se fait au moyen des équations (19) à 

(22), du Tableau 2 et des graphiques des Fig. 5-6, qui remplacent 

complètement le calcul. Nous pouvons négliger l’angle de frottement 

interne dans l’étude de l’équilibre des ouvrages non vibrants, par 

contre les barrages vibrants sont affectés d’une manière sensible par 

cet angle. L’équilibre des ouvrages de faible profondeur dépend en 

outre de la pression à la surface de contact. Les résultats obtenus 

théoriquement furent contrôlés par les essais.

We shall consider the stability o f a weir or sheet pile wall 

founded on a non-cohesive subsoil. The failure studied here is 

known as piping. In order to avoid piping, the foundations 

o f the structure on the downstream side must reach the proper 

depth. The design o f this depth is the purpose o f  the following  

article.

H i s t o r y

The first solution o f stability was worked out in India in 

1902. This is the well-known Bligh creep-head theory which 

was improved by E. W. Lane (1934). The second solution, the 

liquefaction method, was developed by K. Terzaghi (1922). He 

assumed the liquefaction due to the seepage pressure to be the 

cause o f failure. L. F. H arza  (1934) derived from this solution  

the method o f critical gradient now in general use.

The author studied the case o f an elliptic seepage under a 

sheet pile wall, where the exit gradient is not the maximum  

gradient (Bazant, 1940). He came to a result similar to that o f 

K. Terzaghi (1943) in his new solution.

F a i l u r e  b y  S h e a r

The solution studied in this article is known as the shear 

method, and assumes that the failure is due to shear. Let us

consider a weir or cofferdam founded on a stratum o f non- 

cohesive soil (Fig- 1). The seepage follows the course o f flow  

lines and causes the seepage pressure. The seepage pressure 

is dangerous only on the downstream side, where it shows 

an upward direction, and therefore lifts the soil grains. We 

assume that the failure by shear occurs along the circular 

cylindrical surface at the right o f  the hatched segment-shaped 

area in Fig. 1.

The forces acting on the segment are the total weight o f  soil 

and water, the neutral forces on the perimeter and the weight 

o f the riprap filter on the surface o f the segment. These forces 

are in equilibrium with the effective forces along the wall on

Fig. 1 Failure at the Toe o f Weir

Rupture d’équilibre dans la région avoisinant la base aval du 

déversoir
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the left and along the failure surface on the right. The concept 

o f forces using the total weight and boundary neutral forces 

supersedes the original concept o f submerged weight and see

page pressure, and simplifies the solution ( Taylor, 1948).

The stability condition o f the segment requires that the shear 

strength along every possible failure surface should be greater 

than the shear stress. The shape o f the failure surface was 

assumed to be cylindrical. This shape o f  the failure surface 

is com m only used in the'analysis o f the stability o f slopes and

Fig. 2 Elements o f  the Stability Analysis

Eléments de calcul de la stabilité à l’équilibre limite

weights ¡V,, W2, the neutral forces Uly U2 and effective forces 

P i, P2. Total weights and neutral forces are in equilibrium with 

the effective forces P u P2 (Fig. 2).

Each effective force has three unknowns: amount, direction 

and point o f application. There are altogether six unknowns 

for which we have only three fundamental equations o f equi

librium. The case is therefore three times statically indetermi

nate. We chose as the static indeterminates the amount, the 

direction and the point o f  application o f  the force P2. We re

solve them from the deformation conditions independently 

from P i. Considering P2 as known we determine P x by three 

fundamental equations o f equilibrium.

The equilibrium moment about the axis 0X o f the circular 

failure surface is given by:

P  — P2 (t -*) +  U2( d - f  -  Xi) -  WiVi -  W2v* (1)

was also suggested by Grishin (1938) for our case. Grishin as

sumed that the structure on the surface o f the soil and the arc 

o f failure passed through the heel. The tests showed that this 

was not correct. The author suggests a structure founded be

low  the surface and the arc passing through the toe o f  this 

structure. This concept was found to agree with the tests and 

also was easy to solve by charts.

To render our solution applicable it was necessary to make 

the following assumptions:

(1) The structure o f  soil is stable with proper filter charac

teristics.

(2) The soil is hom ogeneous and the cavities under the base 

are refilled or the erosion stopped.

(3) The horizontal thrust o f water is not taken into account 

and is transmitted to the subsoil along the base o f  the weir, 

or in the case o f a sheet pile wall it is counterbalanced by 

bracing.

(4) The failure is caused by shear.

(5) The flow is two-dimensional.

(6) The failure surface is cylindrical.

(7) The stability o f downstream side is the governing factor.

(8) The cylindrical surface passes through the toe.

(9) The surface o f the downstream side is horizontal.

The validity o f these assumptions was proved by tests and 

by application o f the theory in practice.

M ath em atica l A n alysis o f  E quilibrium  (Bazant, 1953)

The author has worked out a graphical method for the 

general case o f seepage using the friction-circle method. The 

procedure is rather cumbersome and the results are not ac

curate enough. To avoid this difficulty he analysed the case 

mathematically. The mathematical analysis is based on flow  

lines on the downstream side which are assumed to be ellipses 

with a comm on focus at the toe.

The forces and distances considered in the analysis o f  equi

librium are shown in Fig. 2. The fundamental case does not 

take into account the riprap filter. Thus the forces are: the total

From the equilibrium o f horizontal and vertical components 

follows the resultant:

Pi = (P2 + u2-  uyy + (WI+W2- U xy ...........  (2)
Inserting Pi into (1) we obtain the radius o f the friction circle 

=  P t(d l2  —  xQ +  U2(d  —  I —  x t) —  WiVi —  W2y t

V (P *  +  u 2-  Uyf  +  (W 1 +  w 2-  uxY

The central angle o f the segment being small we assume Pi 
tangential to the friction circle. Thence we obtain for the given 

radius r o f the circular arc the angle q>d o f obliquity o f force P x

sin <pd =  —  (4)
r

The angle <pd is the developed shear characteristics. We in

vestigate several trial circles with centres in the upper left 

quadrant. Then by a special method we find the trace o f the 

superficies whose heights are q>d assigned to the respective 

centres o f circles. This enables us to determine the angle max g>d, 
expressing the greatest stress which the soil may withstand for 

the given structure.

Analytical Determination of Forces.

The forces and distances entering into the analysis are shown 

in Fig. 2. Axis + X  is going downward, and +  Y  leftward. 

The total weights are:

f y i = Y y ‘b id

fV2 =  y  —  sin P) 

The arms are:

v i = —  + y i ,

(5)

(6)

bi
Va = ~ + y i  +  r

4 sin2 /î/2
-cos/S/2

3 ft —  sin |

The sum W rfi +  W2i]2 is simply given by the equation:

W ifh +  Wiv* d K ~

y t expresses the unit weight o f  combined soil and water.

The neutral stress isfound by the theory o f seepage as follows:

(7)

uw =  r t (8)

199



The neutral force along the wall which is the resultant o f  neu

tral stresses, is given by:

d

Vi =  Yw J{ ~ ~  ® +  hT +  x )  d x  ■ ■ (8 a)

=  1
d 2 cos2 0  d 2 sin2 0  

A long the wall y  =  0 and the potential 

^  *0  =  —  arccos —  
d

The integration o f  equation (8) follows: 

d d

U2 =  —  y ----- — arccos d x  +  y w \ (hr +  x )d x
w n J d  J

The .first integral is:

d

\
arccos —  d x x  arccos — —  d 2 —  x 2 

d

a

Because

d

J
x  arccos — d x  =

2 x 2 —  d 2
a r c c o s - - -  d ,

it follows that

'ihr { Ì7 i—  8) +  2 n d

\2 h r ( t i —  2) +  6 7id

A p p roxim ative D eterm in ation  o f  Ux, Uy

from which follow s in our quadrant the potential given by the 

equation:

0  =  —  arctg

y w is the unit weight o f water and hr the pressure head at the 

toe. hT is represented by the distance between the segment sur

face and the water surface in the imaginary standpipe, hr being 

the resting fraction of h. 0  is the potential. For elliptic flow  

lines with a comm on focus at the toe the potential 0  is the 

parameter o f the hyperbolic equipotential lines whose equa

tion is:

—  [—  (x2 —  y 2 —  d 2) +  V  ( * 2 —  y* d 2) +  4 x 2y 2] ( l3 )

(8 b)

(9)

(10)

This equation gives for + X  and x  >  d  the potential 0 = 0  

and for — Y  the potential 0  =  — n j2 which both are the 

known results.

According to (8) the com ponent o f  the neutral force Ux in 

the X  direction is :

0+0i

Ux =  y wj 0  +  hr +  x ĵ sin (ft +  8)rd8  (14)

01

where the coordinates o f points along the circular surface

*  =  r sin (ft +  d) +  x x

y  =  —  r cos (ft +  <5/ +  .Vi

The integration o f (14) gives for the first term:

0+0,
2 h

— -  0  sin (ft +  S) rdd  ■■
J  71 n

0i

/j  being the sign for integral which it is not possible to express 

simply with elementar functions. The second term

0+0,

2 h
- h d

hr sin (ft +  ¡5) rdô  =  —  hr r fcos (ft +  5)]
0+0.
0. hrbx

(11)

and then the neutral force along the wall 

U2 =  ^ 1 —  y whr d  +  \ j - y wd 2 ..

The moment arm o f U2 is given by d  —  f  —  x 1 in which 

the term f  can be derived from the equilibrium o f static m o

ments about ax:

x) arccos — d x  +  y w | (d —  x) (hT +  x )d x

J
0.

The third term

0+01 0+0i 0+0i
¡x  sin (ft +  6) rdS  =  jV2 sin2 (ft +  6)dd +  \x xr sin (ft +  6)dd  
0i 0i 0.

J = - y  [(ft +  <5)—  y  sin 2 (ft +  — x ^  [cos (ft +  <5)]̂ +i3‘ 

J =  y r 2/?— y / - 2c o s (2 ft  + /3 )s in ^  +  2 x 1rsin  f̂t + y j s i n - y

On inserting 2 x 1r =  —  2r2 sin f t  developing the goniometric 

functions and adding —  %r2 sin /9 +  £r2 sin ft we obtain after 

some transformations:

: y  r2(fi —  sin P) +  y  r2 [cos f t  —  cos (fi +  ft)]

[sin 03 +  ft) —  sin ft]

Using the geometric relations (Fig. 2) we obtain simply

J-
; y  r2 (P —  sin P) +  y M

(12) These three terms together multiplied by y w finally give:

UX = ~ V ;

It is not possible to solve exactly the components Ux, Uy o f 

the neutral force U1 along the circular surface, the potential 0  

being intricate. W e obtain 0  from (8 b). Multiplying it by 

sin2 0  and replacing the goniometric functions by tg 0  we 

obtain:

y '  _  ^  

d 2 d 2 1 +  tg2 0  

This gives the equation: 

x 2 tg4 0  +  (x 2 —  y 2 — d 2) tg2 0  —  y 2 = 0

2h I d \  r2
h d  +  y wbx i hr +  — \ + y w —  (P —  s in P) (15)

The com ponent o f the neutral force Ux in the Y  direction

0 + 0,

Uy =  Vw J { ^ -  0  +  K  +  x) COS 0?! +  S)rd6

0.

The integration gives for the first term

0+0.

 ̂— 0  cos (ft +  (5) rd6  ------------- I2d

0.

where / 2 is again the sign for unsolved integral. The second 

term is given by:
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0 + 0 1

,0 + 0 ,
=  h .d\h r cos (ft +  S) rdò  =  hrr [sin (ft +  <5)]

0.

The third term:

P + Pi 0 + 01

¡x  cos (jSi +  <5) rrf<5 =  ¡r2 sin 09x +  <5) cos (ft +  <5) ¿<5 +
0i 0i 
0+ 0,

+  J jqr cos (ft +  <5) rf<5 
0,

|  =  - J  [sin2 (ft +  ó ) ] ^ '  +  Xir [sin (ft +  < 5 )]^ ‘

J
On inserting 2 ^ r  =  — 2r2 sin f t ,  and developing the gonio

metrie functions we obtain:

=  —  r2 sin (2 ft  +  0) sin /3 +  2 ^ /-  cos I f t  4- y  I sin ÿ

J’
I , ’
2

2 sin2 f t  (1 —  cos /9 — j- sin2 /3) +

Function Function / 2

x j d
y j d

30 20 10 0

y \ ld

30 20 10 0

— 55

— 45

— 30

— 20 

— 10

0

1,99 3,01 

1,607 2,44 4,61 

1,592 3,10

2,07 7,93 

1,037 5,39 

0,039 0,785

1,112 1,165 

1,088 1,139 1,235 

1,089 1,177

1,123 1,413 

1,054 1,367 

1,001 1,183

D e t e r m i n a t i o n  o f  P 2

The statically indeterminate effective force P2 along the wall 

requires special investigation. From the deformation condi

tions o f the segment which are comparable to the deformation 

o f the soil behind the sheeting o f the trenches (Ohde, 1938) we 

conclude that the amount o f P2 equals the active earth pressure

P* =  \ v " bd H z (45”-x ) (16)

where the un it weight reduced by seepage pressure is: 

Ur
y b =  Yt-

y  M  +  y '■Mft

(17)

The angle <pd is the angle we sought. We attribute to it an arbi

trary value and correct it by trial until the assumed <pd 

equalled the computed one. The direction o f P 2 is assumed 

to be horizontal which neglects the friction along the wall. 

The point o f application o f P2 was chosen in the centre o f  

the wall.

R e s u l t  o f  t h e  M a t h e m a t i c a l  A n a ly s i s

The analysis o f max <pd was made for the chosen specific 

gravities G, =  y t l y w and the chosen relative pressure heads 

hTld . The result is advantageous by plotted in the form:

Gt) (18)

This function is shown in Fig. 3. On the limit o f equilibrium  

the developed maximal angle max <pd may equal the angle o f

+  2 sin f t  cos ft  sin /J (cos /? —  2) +  cos2 ft  sin2

These three terms together multiplied by yw give:

Uy =  — Yw^ - h d  +  y whrd  +  j  y wd 2

In equations (15) and (16) the terms are 

0+0.

A =  I ® sm (ft +  <5) rdò  
0i 

0+0,
I2 =  J Ò cos (ft +  5) rdò  

0,

which we were not able to integrate analytically and therefore 

computed them approximately. Table 1 shows the extract o f  

the detailed tables for It and /¡¡.

Table 1

sin P)

Fig. 3 Chart o f  Relative Pressure Heads hrld

Diagramme de charge relative au pied hr ! d

internal friction <p which is therefore inserted into (18). Fig. 3 

shows the maximal relative pressure head hr/d  for a soil with 

given <p and Gt. The broken line represents the case o f a soil on 

whose surface a surcharge (riprap filter) o f the magnitude o f 

y wd l 2 is applied.

D e s i g n  o f  t h e  D e p t h  o f  F o u n d a t i o n

The method o f limit design is advocated because it com 

bines the greatest load and the smallest strength. The coexi

stence is considered admissible offering only very slight pro

bability. The load is represented by the pressure head hr at 

the toe. We assume that the limit load is the load at the 

beginning o f greater displacements o f  soil grains. We con

clude from the result o f stereophotographic measurements 

(Bazant, 1949) that the coefficient o f  loading, the ratio K r 
o f the head hT on the limit o f stability to the head he at the 

beginning o f grater displacements is 1.4 for temporary struc

tures and 1.7 for permanent ones. For a sheet pile wall we 

choose K l =  2, which takes their flexibility and permeability 

into account. W e take approximately K j =  1 for cohesive 

soils. A s h is the real head, we insert K xh the head at the be

ginning o f greater displacements into the design.

The strength is characterised by Gt and <p. We suppose 1.8 

to be the smallest Gt. The smallest angle o f internal friction <p 
for wet soils can be taken to be 38° for well graded sandy 

gravel, 33° for well graded angular sand, 21° for uniform round 

sand, and <p < 20 ° for consolidated-quick shear o f silt.

The head hT which it is necessary to know for designing the 

depth d  o f  sheet pile walls can be obtained from the M andel 
charts (1951), taking into account the different soil levels up

stream and downstream and the variable depth o f the perme

able stratum. If we read hrih  =  K 3 in M andel's charts and 

the value hTj d  =  K 2 in Fig. 3, we obtain the permissible re-
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lative head

k X  = f ( < P , G t , h l d s )  =  •• 0 9 )
a  A 3

Equation (19) holds for a sheet pile wall the horizontal thrust 

of which is counterbalanced by bracing. For <p >  12° we can

h

b

4 Fig. 4 Braced Sheet Pile Walls

—L Ecrans ¿tan<;onnes de palplanches

neglect the influence o f q>. Equation (19) holds for each K x

for certain h id  only. These relative heads h id  are given for

Gt =  1.8 in Table 2. In this table h =  the design head, d  =

Table 2

h lds 0 0,5 1 1,5 2

Ky =  1,4 1,96 1,92 1,85 1,67 2

h /d JCi =  1,7 1,57 1,52 1,45 1,5 2

&  =  2 1,28 1,25 1,18 1,5 2

depth o f sheet pile wall, ds =  depth o f permeable stratum. The 

sheet pile wall is illustrated in Fig. 4 a. For the sheet pile wall

Fig. 5 Charts o f  Permissible Relative Heads K J i/d
Diagrammes des différences relatives de niveau admissibles 

Kih/d
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driven in a permeable half-plane in Fig. 4  b we have simply

* 1 7  =  2.2  (20)

and for the same case with surcharge y wd l 2 on the down

stream side we have:

tfi-J- =  4.3 (2 1)

The design o f the downstream depth d  o f double wall coffer
dams and nonoverflow sections o f  weirs uses the charts in Fig. 5, 

5 a and 5 b, which b represents the function

k X  = f ( d l 2 b ,  <p, G, =  1.8) =  - p -  (22)
a K q

The charts were derived from Fig. 3 where hrj d  =  K 2 and 

iro m h rlh =  K e computed by Khosla, Bose and M alhotra  (1936). 

In these charts besides the known notation 2 b denotes the 

width o f the weir or o f the cofferdam base. Similar charts can 

be computed for every possible soil and type o f weir founda

tion. As can be seen from Fig. 3 the maximum value is ob

tained for q> 12°. In order to improve the stability we can 

take any measure which reduces hr, such as horizontal drainage, 

sheet pile wall, filter layer or drainage wells.

The charts in Figs. 6a, b are used for the design o f structure 

on soil whose Gt =  1.8 and with a riprap filter which is equal 

to the overload y wd j 2 on the surface o f the soil.

The design o f the downstream depth d  o f the spillway section  

o f  weirs differs with the angle <pv o f internal friction and the 

depth used. The angle <pv is the angle at vibration. The vibra

tion is caused by the overflow which vibrates the apron and 

the downstream soil. The angle <pv diminishes alm ost to zero

0 0.1 0,5 1

2b

Fig. 6 Charts o f  Permissible Relative Heads K^hld  for Soil Loaded

with Riprap Filter

Diagrammes des différences relatives de niveau admissibles 

K yhld  pour un sol avec enrochement à la surface aval



for a small effective pressure and a great vibration. This is 

the result o f  tests made by Tournon (1948), which are repre

sented in Fig. 7. We suggest provisionally the following values 

o f <pv:

(1) gravels 9?„ =  <p,

(2) coarse sands (d  >  0.5 mm) <p„ =  5°,

(3) fine sands,suchas in the river Indus (d50 =  0.3 mm) <pv =  3°,

(4) sands as are found in the river Volga (rf60 =  0.15 mm) q>v =  2°,

(5) fine sands and silts such as in the N ile delta <pv =  1°.

It is o f course necessary to carry out further tests on q>v. 

The foundation depth d  o f an overflow section o f weir is

diminished by scour which can only be predicted by tests. The 

author believes, however, that the tests carried out with over

flow but without seepage do not furnish a reliable depth o f  

scour.

V erification  o f  T heory  (Bazant, 1953)

The stability o f a cohesionless soil in seepage pressure was 

tested by the author in  a flume 30 cm in width, 103 cm in 

length and 65 cm in height which could be heightened by 

100 cm by a special extension element. The flume allowed a 

head o f  80 cm and a weir width o f  30 cm. 752 m odel tests were 

carried out from 1948 to 1951, firstly to find out the suitable 

technique o f  preparing an homogeneous sand with the re

quested angle o f internal friction and then in order to verify 

the theory. The model tests furnished relative pressure heads 

hTl d  as shown in Fig. 8 . For comparison the theoretical curve 

is drawn as a broken line.

The result o f model tests are satisfactory for d j l b >  0.1. 

Some disagreement occurs for d j l b  <  0.1. It was found ne

cessary to take into consideration the contact pressure p  on  

the downstream side o f the base for these shallow foundations. 

This is shown in Fig. 9 which presents the result o f model tests 

for the limiting case d  =  0, ftp denoting head at piping. The 

variables used in Fig. 9 were determined by dimensionless 

analysis.

Nevertheless, the computation o f stability in seepage of  

existing structures (Indus, N ile, Volga) disclosed that the theory 

holds for all practical values o f d j l b ,  beginning from d /2 b  

^  0.05.

Fig. 7

6" kg / cm 3

Mohr Diagram for Vibration o f  Sand (after Tournon) 

Courbes intrinsèques pour sable vibré (d’après Tournon)

The tests disclosed also the mechanics o f piping. The stereo- 

photographic measurements (Bazant, 1949) o f the grains dis

placement showed that the paths o f  grains on the downstream  

side take the direction o f  the assumed shear lines. This holds 

until piping takes place. The tests with models founded on  

surface with model width 300 mm and over distinctly showed  

the shear o f the strip o f soil underlying the structure. The shear 

lasted from 3 to 5 seconds and was sometimes divided into two 

motions, the initial under the downstream third, and the follow 

ing under the whole base.

The tests and the successful application o f the theory 

justify the conclusion that the shear method is the useful 

way o f designing the downstream depth o f foundation in see

page. The advantage o f the shear method is that it furnishes 

the solution for dynamic cases, with vibration, and so explains

Fig. 8 Results o f Piping Model Tests for 

Deep Foundations 

Résultat d’essais sur la formation 

de renard dans le cas de fonda

tions profondes

satisfactorily the influence o f  grain sizes on piping which has 

not bean solved so far. However, for static vibrationless cases 

the results o f analysis using the shear method shown in Fig. 3 

are in agreement with the assumption o f the liquefaction me-

Fig. 9 Results o f  Piping Model Tests for Shallow 

Foundations

Résultats d’essais sur la formation de re

nard dans le cas de fondations de faible 

profondeur

thod, that is that the angle o f internal friction, which is greater 

than 12°, does not exercise any influence on stability. Here 

liquefaction method appears as a special case o f the shear 

method.
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