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Session 8/6

The Influence of the Compressibility of Soil on Some Problems 

of Ground-Water Flow

L’influence de la compressibilité du sol sur certains problèmes de l’écoulement des eaux 

souterraines

by Ir. T. E d e l m a n , Chief Engineer, Directie Algemene D ienst van den Rijkswaterstaat, Van Hogenhoucklaan 60, D en H aag, 

Netherlands

Summary

This paper deals with some complications in hydrological practice, 

due to the compressibility of the soil. First (chapter II) the pheno

menon of the apparent resistance of a layer is discussed. In chapter

III the author gives a method for the determination of a characteristic 

constant (the product of the permeability and the modulus of elas

ticity) from measurements of ground-water head in a shore with tidal 

movement. In chapter IV the influence of the compressibility on 

pumping tests (retardation-effect) is discussed. Chapter V. at last, 

deals with the piezometer test. The unexpected fact is demonstrated, 

that the compressibility of the soil has no influence on the results 

obtained by this test. Therefore the piezometer test proves to be 

a very simple and useful method for the determination of the permea

bility (Sf-value) of a soil layer.

Sommaire

Cette communication traite de quelques phénomènes d’hydrau

lique souterraine dus à la compressibilité du sol. L’auteur donne 

d’abord (chapitre II) un exposé sur la résistance apparente d’une 

couche du sol. Dans le chapitre III il établit une méthode permettant 

l’évaluation d’une constante caractéristique du sol (le produit de la 

perméabilité et du module d’élasticité) se basant sur des mesures 

obtenues dans des terrains au bord de la mer où l’influence de la 

marée se fait sentir sur l’eau souterraine. Dans le chapitre IV l’auteur 

examine l’influence de la compressibilité du sol sur les essais de pom

page (l’effet de retard). Le dernier chapitre est consacré à l’examen 

de l’influence de la compressibilité sur les mesures de perméabilité 

obtenues par l’observation des variations de niveau dans un tube 

piézométrique. L’auteur arrive au résultat inattendu que ces varia

tions sont indépendantes de la compressibilité.

Introduction

It is often taken for granted that in hydrological problems 

the compressibility o f  the soil is negligible. As a rule, this is 

right. But there are som e cases, in which such an assumption 

does not seem to be valid. In this paper the influence o f the 

compressibility w ill be more closely investigated.

It is a well known fact, that the total, vertical soil pressure 

ag consists o f  two com ponents: the water pressure aw and the 

effective pressure ak.

? -  °w  +  ° k

If a is a constant,
daz

dT
equals zero, and therefore

da,._______

d T  d T

Let <p be the piezometric head o f the ground-water, then:

dtp daw d<p 1 dak

Yw J T  ~  I t  ’ or J ¥  ~  ~  ~ d f

(Yw =  spec, weight o f  water).

Therefore: an increasing head causes a decrease o f  the 

effective pressure, and this causes an increase o f the voids 

ratio: the soil will absorb water. On the other hand: a de

creasing head will decrease the voids ratio and the soil will 

expel its surplus o f water.

Let E  be the modulus o f elasticity o f the soil and V  the 

considered volume, then

dak

d T

d V

E  d V

~ v J f

V dtp

and therefore

d T  Yw E  'd T

or
dtp

~ d ¥

E  1 d V

v ’ j f

(1)

(1)

The Apparent Resistance o f a Layer

We consider a layer, with thickness D  and with a (vertical) 

permeability K , and resting on a layer o f coarse gravel (K  =  —).
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A t the time T  =  0 the head o f water in the gravel may be de

creased at once with <pa, and this value may be maintained.

The continuity o f water flow and the D arcy law leads then 

to the equation

d2cp 1 dip 

d y2 es d T

wherein e =
K E

Ys

<P =  <P o'
y j.2 V  1 . / y------1----- > — e D' sin \n  n  —
D  t i  /  { n \  D

n =  1, 2 . . .

For brevity we put: t =  es T  and we calculate y  as a 

function o f time, when y  =  % D. We obtain:

when t =  0 .01 0 .1

<Po

The time interval T„, during which
<Pi p

has decreased from

1 to 0.550, may be named the “ period” o f the layer. After this 

“ period” the influence o f the compressibility has vanished, 

roughly taken, over 90%. The table above indicates, that

Tp =  2.5 •
D 2

(4)

CO

¡1 +  2 Z  e-"*'}
n  =  1

and therefore the apparent resistance 

1_  <p0 _  D  

C a ~  Q e ~ K

(3)

00

1 +  2 Z e ~ n'‘
1

We calculate from this:

=  aC

when T  =  i  Tp 

then a = 0 . 3 1 6

iT p

0.447

IT p

0.680 0.860

The solution o f the Equation (3) satisfying the following  

boundary conditions:

y
(1) When T =  co, is <p =  <p0 —  (steady state o f flow)

(2) When y  =  0, is always <p =  0

(3) W hen T  =  0, everywhere q> =  <p0 (except when y  =  0) 

was given by Terzaghi-Frdhlich in the form:

0.5 1 2 3 4 5 

=  0.996 0.992 0.884 0.744 0.586 0.532 0.511 0.504

This means: estimating the resistance o f a clay-layer with 

Tp =  2.4 hours by measuring the outflow at the lower side after 

18 minutes Q  Tp), one obtains a resistance, which is less than 

^ o f the real one. Measuring this after one minute, the ap

parent resistance will appear to be only a fraction o f the real 

one. Therefore, estimating the resistance o f an overlain layer 

in this way, one has to wait until the steady flow has established 

itself. This waiting period is proportional to the sqauare o f  the 

thickness D  (4). Dealing with clay we may expect a waiting- 

period o f som e hours, with very thick layers perhaps o f som e 

days.

Determination o f es from Measurements

A  layer, with a thickness D  and a (horizontal) permeability 

K , resting on an impermeable base may be overlain by a layer 

with thickness D u  and permeability K x (vertical), above which 

is maintained a constant head <pp. At x  =  0  the open water 

(e.g. a river) may confine this aggregate o f  layers by a flat, 

vertical boundary. The level o f the open water alternates ac-

71 T
cording to : <pb =  tp0 +  A b sin — • — .

L J q

In this case the flow o f  the ground-water is ruled by the 

partial differential equation:

d2ip

Example (wherein D  =  2 m ):

(1) Sand may possess es =  106 m 2/day, thus Tp =  0.086 sec. 

Here Tp is very small: within 1 sec the steady flow has es

tablished itself. In this case therefore the influence o f  the com 

pressibility is negligible.

(2) Clay, which may have a permeability 10-4  A ând and 

the compressibility o f which may be ten times greater, has an 

es — 10 m 2/day. N ow  Tp =  2.4 hours and therefore in this 

case it will not be allowed to neglect the compressibility. The 

steady flow in this clay layer does not appear until som e hours 

later.

The decrease o f head at the surface o f the layer (y  =  D) 

during the period Tp is very small. We calculated ( i  =  2 m) 

in sand: A tpD =  2.10 _s <p0 and in clay: A q>D =  2.10 -4  <p0.

From  all this we may deduce the following conclusions:

If the resistance o f the layer is derived from the decrease o f 

head at the upper side o f the layer, a nearly infinite resistance 

will result. If however the permeability is derived from the 

quantity o f water, that flows out from the lower side o f the 

layer, one may obtain a far too small value for the resistance, 

if measuring within the non steady flow period.

A t the steady state Q  =  —  q>0, therefore the resistance (the

real-one): C =  —  =  .
K  Q

During the non steady flow, however,

d x 2 A2

1 dtp 

T / Jr

where A =  /  K D D l  and ss =  —
K , s y w

For tidal movement at x  =  0  we know the solution: 

<p =  tpp +  A be~Px sin {n T  —• ax)

The following relations exist between a, ¡3 and n:

f}2 —  a2 =  —  , therefore A =  —
A2 y / p  _  a2

n n
a/3 =  i  ■ — , therefore es =  — —  

e s  2 a p

. *  1
and n =  ----------

2 Ta

It is possible to estimate a and ft from the graph o f an 

observation well at a distance x  from the shore.

However, it is very difficult to estimate the distance x  be

tween observation well and shore exactly. Therefore one has 

better arrange two wells, with distances and x 2 from the 

shore, and deal with the difference x 2 — x 1( which can be es

timated exactly.

According to this method, es and A have been determined 

in Holland (on the river Rhine, province o f South-Holland). 

The object was a coarse sand layer, with a thickness o f about 

20  m, overlain by a semi-pervious layer, with a thickness of 

about 3 m. W e found: e, =  1.65 x 108 m2/day and A =  440 m.

Remarks: (1) The possibility, that the overlaying layer has
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a period Tp o f som e importance (vide p. 220) has not been 

taken into account here. If Tp has about the extent o f the 

tidal period, the above derivation may not be valuable.

(2) When the level o f the river fluctuates irregularly (no 

tidal-movement) it is impossible to determine ss and A from  

measurements in observation wells on the shore, the formulae 

being far too intricate.

The Non-Steady State during a Pumping Test

A  layer, with thickness D  and horizontal permeability K  

may rest on an impermeable base and may be overlain by a 

semi-permeable layer with thickness D 1 and vertical permea

bility K x, above which is maintained a constant head <pp. A  

well, screened in the layer D  (the length o f the filter equals D) 

is pumped. If the level within the well is maintained at a con

stant depth, the induced flow will be a steady flow. This steady 

flow has been calculated by de Glee (1930), and according to 

his formulae it is possible to determine two hydrological con

stants I a =
i a

from observations made

in som e observation wells, the output o f the pumped-well being 

known.

It is well-known however, that the steady state o f flow, 

according to de Glee's formulae, does not manifest itself at 

once. The compressibility o f the soil causes a retardation. 

The non-steady state o f flow during this retardation-period 

may be investigated in this chapter.

The flow is ruled by the partial differential equation:

d̂ cp 

dx2
+

1 d q> 

x  dx

<P —  <Pp 

A2

wherein A =
K D D i

K I

1 dtp 

1 ~ J t

and =  K -

X  £
Let be g =  —- and I =  —s-  T, we obtain:

A A2

32 rp 1 3 ®  d<p
— —  H-------------- — ( <P— <P*) =  —
V  e 3 q  P St

W e want a solution in the shape:

<p —  cpp =  f i t )  • F(u), wherein : u  =
2 \ / '  2 y / e sT  

Putting this solution into (5), we obtain:

1 d 2F

F  du2

/  1 \  1 d F  , / I  d f  \
\2 u  + — j — • ^  -  f \ j '  d t +  )

This may be true only when both sides o f  the equation are 

equal to a constant. Let this constant be: 4 m2. We obtain 

two equations:

d*F

du2 

and

+ 4 m 2F

When m =  0, we obtain the solution

X

F =  i C 2j  ^ e - » ‘ d(u*) =  i  C2Ei ( -  k2)

CO

and therefore:

<P— <P p=b Ce~‘E d — tt2)

(when T  =  0 is cp =  <pp ; when x  =  o o  is <p =  <pp too). 

The flow through a cylindric surface with radius x  is:

Q  =  K D -  2 n x  =  2 n K D C e ~  ( .T ,+ 4 ^ r ) ,

A2
wherein T0 =  —  .

The output Qp from the pumped well therefore will be (x =  r): 

Qp =  2 n K D C e ~  ( t ^ + 4b, t )

dQt,
This Q h reaches its maximum value when — =  0 

j_  d T

Qm =  2 n K D C e  ~i , and this value is reached at the time 

T  =  & — T0, therefore:

—  -  ( — r‘ }  
■ e u , + 4b,tJ

(5)

Qp =  Q m -e*  ■ e

r
The value r being very small compared with A, the value —•

r r X

will be a small one, and therefore e l »  1. We put =  1. 

r
The value — being small, the maximum Qm will appear after

A
r

a very short time-interval: T  =  % — T0. Applying the for-
A

r
mulae only: when T  » £ — T0, it is allowed to neglect

A

\ T  2A /
against unity.

(6)

With all this we obtain finally: Qb =  Q m e t „ and C  =  ■

et be 

obtain:

Q v

~p ~ ' " 2 n K D

Let be hx the fall o f the level within the pumped-well, then we

h . = Qm e r0 E, ( -  ux2)
4 t iK D

(10)

(7)

(8)

(9)

The Equation (9) has the general solution: /  =

The general solution of (8) depends on m, and we are not 

able to write it down at once. However, if we choose m =  0, 

the thus obtained solution proves to be apposite to the con

sidered case.

and this solution holds good if a pumping will be maintained 

according to

T_

Qp — Qr>e T" (11)

This condition seems to be inconvenient, for we don’t know  

A2
the value T0 =  —  (indeed we try to estimate it by our pump-

ing-test) and so it seems impossible to set up a pumping scheme 

in accordance with this condition (11). This difficulty, how

ever, is only apparent, because we apply the formulae only in 

the non-steady period, during which T « T0. Therefore Qp 

will be a constant during the first hours o f pumping. Our 

solution therefore is a useful approximation.

Jacob (1946) derived the exact formulae for this case. The 

calculation according to his formulae however is a very intri

cate one, especially in the initial period. In practice we prefer 

therefore our above-mentioned formulae.

A  calculated example follows here.

Let be: A =  500 m, es =  6,25.104 m 2/day and r =  0.20 m, 

r„ =  4 days.

r
Qp reaches its maximum after T  =  $ — T0 =  1.15 mm.
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the quotient =  0.99 0.98 0.96 and 0.92.
Qo

The values —  (wherein q0 =  —■" ■?— ) for: x  =  0.2 m 
g0 \  A n K D  ]

(pumping well), x  =  25 m, x  =  50 m and x  =  100 m are

given in the next table.

When T =  1 2 4 and 8 hours,

T (in hours) x  = 0,2 m * = 25 m x = 50 m x = 100 m

i 10.60 1.08 0.23 _

i 11.30 1.86 0.59 0.06

i 11.70 2.03 0.95 0.14

1 12.00 2.30 1.07 0.23

1.5 12.40 2.68 1.41 0.42

2 12.70 2.96 1.66 0.59

3 13.10 3.35 2.03 0.86

4 13.40 3.70 2.30 1.08

6 13.80 4.04 2.68 1.41

8 14.08 — 2.96 1.66

From observations the value o f es can be determined in a 

easy manner. We remember, that

X

hx =  — q0E i(—  u2) and u = ------- = -  ; therefore

2 \ A  J

log hx —  log ga =  log {—  Ei (—  u2)} and 

log u =  log *  —  log 2 \ / esT

Build up an (/-diagram, by plotting — E{(— u2) against u, 

both on a logarithmic scale.

Build up, on a transparency, an /-diagram  by plotting for 

several values o f T  the observed hx against x, both on a loga

rithmic scale too. Each /-lin e  corresponds with one value o f T.

Put the transparency down upon the {/-diagram and let one 

o f the /-lines coincide with the [/-line, the axis o f both dia

grams being parallel to each other.

Then the values: log q0 and log 2 \ / e sT  can be determined 

from the displacements o f the origin. As Qm and T  are known, 

K D  and es can be determined.

By moving the /-diagram  in a direction parallel to the /-ax is  

it is possible to bring another /-lin e  in coincidence with the U- 

line, ga being a constant. This manipulation has to bring out 

the same value for e s .

T h e  P i e z o m e t e r  T e s t

With the help o f a soil auger a pipe o f small diameter R  is 

driven into the soil. A t the lower end o f the pipe, the auger 

drills out a small, spherical cavity with diameter r (r > R ). 

After som e pumping (in order to remove impurities) the in

stallation is left to itself for som e hours and the soil water is 

allowed to rise to its former piezometric head. Then the water 

within the pipe is pumped out as quickly as possible, whereafter 

the soil water is allowed to rise in the pipe. During this rise the 

pumping ceases. The rate o f rise is determined with the aid of  

stopwatches and the like. And now the problem arises, how to 

derive som e characteristic hydrological constant from these ob

servations.

In a field o f flow, with a boundary, that does not change its

d2 <p d2<p d2<p
shape, and in which Laplace's equation —— +  —------1- ——  =  0

o x 2 a y2 d z2

is available, the flow Q through some surface is proportional

to some determinate difference o f head: y. Dealing with a well 

in phreatic groundwater we choose for y:  the difference be

tween the phreatic surface and the level within the well, and 

for Q: the flow into the well. In that case: Q =  eby; eb being 

the constant o f proportion.

S y

The level within the well rises with a v e lo c ity --------- , so

Sy d T
Q  =  — n R 2 - j jj; , and therefore:

J?2 S}>71R  -----  =  £lV
S T  b

(12)

Integrating this equation (and minding the condition: when 

T  =  0 is y  =  y 0) we obtain

Eh =  n R 2

1 y » 
lg —  

y
(13)

It can easily be seen that when the well is placed in a distance 

h from the phreatic surface or the impervious base (h » r), the 

presence o f the phreatic surface or o f the impervious base can

not affect practically the flow into the well. We can therefore 

compute the coefficient £b supposing that the well is placed in 

an unlimited medium

<P =

e 
c

Vo —

The flow into the well Q0 =  — 4 n r2K  

or Q =  A n K C .
m .

We know Eh =
_Go_

<Po

therefore Eh =
[A n K C

lg

and from ( V 2) we derive: n R }-
(f )

(7)

=  A n K r

4 r

lg (?)
T

y 0

(14)

By plotting —  on logarithmic scale against T  on linear scale
y

we obtain a straight line. So it seems very simple to determine 

K  (or at least: r2K )  from observing the rate o f  rise o f the level 

within the pipe.

On page 221 we found, that, dealing with a pumping test, 

we have to wait until the steady flow has established itself, in 

order to avoid errors, due to the compressibility o f the soil. 

W e found too, that these errors will occur to a significant 

extent, if we measure within a short time after the beginning.

Surely, our piezometer-test is a pumping test; surely we are 

not able to wait the required time period; surely we are dealing 

with a non steady flow and surely we are measuring here within 

a very short time after the beginning.

Obviously we have to fear, that our Formula (14) cannot 

be true, except if applied to soils, whose compressibility is 

negligible. And therefore, we have to derive a new formula, 

taking into account the compressibility o f  the soil.

From page 220 we learned, that the decrease o f head, which 

occurs within a relatively short time is negligible at relatively 

great distances. Therefore the supposition seems to be allowed,
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that in our case the decrease o f head at the phreatic surface is 

negligible during the whole period o f our test. This supposition  

allows to get rid o f  all intricate boundary-conditions. It will 

be sufficient to calculate the flow towards a spherical cavity 

within a hom ogeneous and isotropic soil, which is unconfined 

in every direction.

The flow field is described by the partial differential equation

32<p 2 dip dip 

3g2 q dg 3 1

wherein t =  e ,T  and e, =

(15)

K E

The solution has to satisfy the boundary conditions:

(1) when q  =  r is n R 2e =  A n K r2
W e - r  W e = r

(2) when e =  °° is =  0

and the initial condition: at t =  0  is (1) <p =  y 0 when q  =  r

(2) q> =  0  when q  >  r 

The solution which satisfies these conditions may be omitted 

here; we found for the head <pT =  y  within the weel the fol

lowing intricate double-series:

y_

y<>
- iP

+
1

8 x 4 8
(1 — i P ) 1 +  I P 2 (1—  I P )  —  P ( P  +  l ) }  z ‘

— .. .  a.s.o.
P z 2 —  i P

z  +

{ ( i - t P ) 2+ 2 - P }  { ( i - i p y - i P ( i - i P ) + 3 )  |

3 x 5  

+  . . .  a .s .o .

3 x 5 x 7

. . D 8 r3 y w 8 r K
wherein P  =  —  —  and z  =  —  T.

unity. Thus we obtain:

y_

yo

____ oo

- 2  )» ( «  +  ! ) (« !) ■n + i

(2 n +  1)!

— =  e~u  —  A R ( z )  . . (16) 
y  o

E  y
A =  0 when —  =  oo (incompressibility) and then: — =  e~°'50z 

Yiv y a
E  y

A =  0.02 when —  =  12.7 m (and r =  0 .10m ), and then: —  
Vw y«

is about e~°’51z.

E
In nature, —  will probably never reach such a low  value

y  w
as 12.7 m, and it will be evident that practically in (16) the term 

A R (z )  may be neglected against e~iz for the whole area of 

existing soils therefore:

i y <> 
lg —

y  i R  y
— =  e - u  or K  =
y  o 4 r T

(16)

E  4 rd
Because always —  »  —  it is allowed to neglect \ P  against

v w ■ R 2

The two equations (14) and (16) proveto  be identical, though  

their derivation started from an absolutely different point o f  

view. Our fear that the compressibility o f the soil might dis

order the results o f the piezometer-test proves not to be true. 

From  this somewhat amazing result, we may conclude that 

the shape o f the flow-field at greater distances has practically 

no influence, and that obviously only the radial flow-field 

within the nearest proximity o f the spherical cavity matters. 

So the value o f K, which is determined by our piezometer-test, 

will be the AT-value o f the soil at the base o f the pipe. There

fore we fully agree with J. N. Luthin and Don Kirkham  (1949), 

who point out that the advantage o f the piezometertest is 

that the permeability o f any layer in the soil can be measured. 

In this paper we may have proved their statement even in an

other, more extensive respect.
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