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The Stability of Slopes of Dams Composed of Heterogeneous

Materials

Stabilité des talus dans les barrages hétérogénes

by ErwiN NonveILLER, C.E., Chief Engineer, Soil Mechanics Division P.I. B., Gregorjanéeva 28, Zagreb, Yugoslavia

Summary

The stability analysis of slopes is generally based on cylindrical
sliding surfaces. If a dam consists of two materials of different
properties the failure will occur along the line of minimum resistance
which is shown as a sharp break at the border between these ma-
terials. This result has been obtained in investigations carried out
by the author on models consisting of a cohesive core supported by
a bank of non-cohesive material.

Based on the results of tests the author suggests a new method
of analysis for the stability of earth dams in heterogeneous materials.

Generality

The failure of a slope generally occurs along a continuous
curved sliding surface. The analytical computation of the
position of the sliding surface and of the stability is possible
only with certain assumptions making this computation
simple and easy.

The problem can be solved, in a much simpler way by the
Swedish method, and by adopting further simplifications to
compute the equilibrium of forces on the sliding body as a
whole. The material is assumed to be homogeneous, the sliding
surface circular, and the sliding body rigid.

These approximate suppositions and simplified computa-
tions give results accurate enough for the practical work but
are justified only where there is a homogeneous material in
which more or less circular sliding surfaces occur and where
large movements are possible without causing deformations
of the sliding body. As such it can also be applied to non-
homogeneous sections, if the differences of strength and
elasticity between the layers are not great, so that the sliding
surface is approximately circular or spiral.

Large earth dams are often composed of different materials,
the core being of cohesive material, and the rest of gravel or
stone. When the differences in strength are small, the sliding
surface is more or less continuous, and the analysis can be
carried out according to the Swedish method. But when the
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Sommaire

L’étude sur la stabilité des talus est basée en général sur la
supposition de surfaces de glissement cylindriques. Si un barrage
en terre se compose de deux matériaux de caractéristiques différen-
tes, la rupture se produira le long de la ligne de résistance mini-
mum qui présente un point de discontinuité a la limite de deux
matériaux. Ce résultat a été obtenu par des essais que 'auteur a
exécutés sur des modéles comportant un noyau en matériau cohésif,
soutenu par un talus en matériau non cohésif.

Se basant sur les résultats obtenus dans ses essais 1’auteur propose
une nouvelle méthode d’analyse de la stabilité des digues en terre a
coupe hétérogéne.

differences between the materials are great, the sliding surface
will be formed along the line of minimum resistance, often
with a sharp break at the border between the two different
materials. In this case sliding is possible only with the deforma-
tion of the sliding body, which influences the play of forces
competent for the stability analysis.

There are various proposals for the application of the
Swedish method to such cases, but they are all based on
empirical assumptions which do not take into account the
deformation of the sliding body. According to this, Clarke
(1946) gives a simplified scheme for the stability analysis of
non-homogeneous sections with circular sliding surfaces.
Daehn and Hilf (1951) give also circular sliding surfaces for
the analysis of the stability of large non-homogeneous earth
dams in the U.S.A. It can be stated that for the stability
analysis of non-homogeneous dams the continuous circular
sliding surface is used.

It is shown in Fig. 1 that the sliding surface at the border
between the clay core and the gravelly or stony retaining body
must change its direction, because the resistance to movement
along the dotted circle B-C in the non cohesive material would
be greater then along the straight surface B-C. Ehrenberg
(1931) takes these facts into consideration and proposes the
analysis shown in Fig. 2. The sliding body is divided into two



separate parts by the vertical planes A-B. The weight and other
forces acting on the part ABC are the displacing forces, the
passive pressure of the part ABD and the shear strength along
the sliding surface AC are the stabilising forces. The slope
is safe if there is an equilibrium between the displacing and
stabilising forces (the resultant R is within the circle r sin ¢ + a).
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Fig. 1 Sliding Surfaces in Non-Homogeneous Section

1 Bank of Rock

2 Clay Core

A-B-C Possible Sliding Surface

Surface de glissement en section non homogéne
1 massif en roches

2 noyau en argile

A-B-C surface de glissement possible

There is no theoretical explanation for such a partition of the
sliding body. The deformations that occur in the sliding body
while sliding along the surface D-A-C will be competent for
the determination of the relationship of forces in the moment
of the disturbance of the equilibrium.

Experiments

These deficiencies are the reason for the uncertainty in the
stability analysis of large dams. For the design of a rock dam
with a clay core, 50 m height, it was decided to investigate by
models the kinematics of the failure of the combined section
and, on the basis of the results, to determine the method of
computation. The models were made in a glass box 16 cm
wide. .

The first series of model tests were carried out to determine
the behaviour of the retaining body of rock under different
deformations.
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Fig. 2 Stability Computation after Ehrenberg in Scheme
Rock—Clay—Dumped Rock Fill
Schéma de I'étude de stabilité d’aprés Ehrenberg
Roche - argile — massif en roches

The retaining body in the model was made of quartz sand.
By moving in different directions the inclined support, which
represented the core, the position and the shape of the sliding
surfaces formed were determined. Controlling analytically the
results obtained using only the earth pressure theory it was
found that the sliding surfaces act in accordance with the earth
pressure theory, and thus the pressure of the retaining body
acting on the support (core) can be computed using the same
theory.

The second series of investigations on models was carried
out on a ‘“mechanical” dam model with a non-homogeneous
section consisting of a core with a retaining body. The sliding
surface in the core was predetermined by a solid greased
cylindrical surface. The models were made of uniform sand
of grain size 0.2-0.5 mm, and the boundary between the core
and the supporting body was fixed by a thin layer of grease
which was differently placed in the different models. A
model of homogeneous sand was also examined. It is seen in
Fig. 3 that the discontinuities of the deformations occur at the
boundary between the core and the retaining body, while these
are continuous in a homogeneous section. According to this,
the discontinuity of deformations recorded on the models of
non-homogeneous section does not occur because of the break
in the sliding surface, but because of the non-homogeneity of
the section. The discontinuity occurs at the boundary between
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Fig. 3 Deformations of *“Mechanical” Models of Non-Homogeneous
Sections
a-b Greased Layer
b-c Greased Sliding Surface
P Load
Déformations de modéles «mécaniques» a4 sections non homo-
genes
a-b couche graissée
b—c couche graissée de glissement
P charge

the different materials. Consequently it could be concluded
that the non-homogeneous section is divided into two parts
along the boundary between the different materials. The active
forces in the core produce the primary deformations which
activate the passive pressure of the whole retaining body.

Since the analysis of the stability can be based on such a
relation of forces, an attempt was made to verify the results
on ‘“‘physical” models of a non-homogeneous section, com-
posed of two different materials in which, under the action of
a load, the sliding surface could freely be formed. Models
were built with very different material properties for the core
and for the retaining body. The core was formed of grease
with an angle of internal friction ¢ = 0°, cohesion ¢ = 6-12
g/cm2 The retaining body was built of sand (0.2-0.5 mm),
with an angle of internal friction ¢ = 40°. The top of the
model was loaded with a uniformly distributed load which
was gradually increased at a speed of }/,, of the bearing capacity
per minute, until the bearing capacity was exceeded.

Figs. 4 and 5 show the sliding surfaces which occurred in
some of the models. The sliding surface is approximately cir-
cular in the core and straight in the retaining body, with a sharp
break at the boundary between the two materials. The vectors
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of deformation show also a sudden change of direction on the
transition from the core to the retaining body, a proof that
each of the materials deforms according to its own laws, and
not as an individual body. The retaining body of the models
is most deformed on the top, while at the lower end it remains
in its position even after failure. In the model 34, Fig. 5, the
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Fig. 4 Deformations and Sliding Surfaces of ‘‘Physical” Models of
Non-Homogeneous Sections
A Grease B Sand

Boundaries belore Sliding

— - - Boundaries after Sliding

—+—-~ Sliding Surfaces

Déformations et surfaces de glissement des modéles «physiques»

A graisse B sable

limites avant glissement

— — — limites aprés glissement

—+—-- surface de glissement

MODEL 34

5 10 em

©. 11,1952

MODEL 35

10,11 1952
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Fig. 5 Deformations of Models Nos. 34 and 35
P Load

Boundaries before Sliding

— — — Boundaries after Sliding
Déformations des modéles Nos 34 et 35
P charge

limites avant glissement

- — — limites aprés glissement
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retaining body lies on a thin layer of grease. The retaining
body is only slightly deformed, but removed as a whole in the
direction of the slope in accordance with the smaller shear
strength at the bottom of the retaining body. We may conclude
that the deformations of the core, resulting from the applied
load, are transmitted to the retaining body along the contact
plane and that the retaining body counteracts according to its
elastic properties.

Fig. 6 shows the settlement measured in the middle of the
loaded section for a few models of different shape. The de-
formations, resulting from the first loading, increase gradually
until the exceeding of the bearing capacity. When unloading the
model, the deformations diminish elasticly, and by reloading it,
up to approximately 70% of the bearing capacity of the model,
the slope of the line of deformation is equal to that of the un-
loading deformation line. The elastic behaviour of the model,
when unloaded or reloaded, results from the action of the
passive pressure of the deformed retaining body acting even
after the unloading until a new state of equilibrium is reached,
on account of the diminished deformation and with a dimi-
nished passive pressure. The very slight elastic deformation
of the model 21, consisting of a grease core only, proves the
correctness of this observation.

From the pictures of deformations and settlement diagrams
it can be concluded that at the boundary between the core and
the retaining body, in a loaded dam, the earth pressure at rest
becomes active thus causing corresponding stresses in the core.
When the core is loaded it starts to deform, the earth pressure
at rest on the contact surface gradually increases to the full
value of the passive earth pressure of the retaining body, the
deformations increase rapidly, and the bearing capacity is ex-
hausted. For the stability analysis, which always represents
a certain approximation, it is sufficient to determine the force
that the retaining body can take over along the contact plane
with the core, and that is the passive pressure.

The magnitude and the point of application of the passive
pressure of the retaining body depend on the deformations of
the contact plane with the core. It can be seen from the picture
of deformations in the test models that the minimum deforma-
tion occurs at the lower end of the sliding surface in the core,
then increases and can thus be represented by a straight line
as in Fig. 4, which corresponds to the Coulomb case of earth
pressure. The magnitude of the passive earth pressure can be
determined according to Coulomb, and the point of application
assumed in the lower third point of the height which is fairly
correct considering the deformations.

The direction of the action of the passive pressure can be
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Fig. 6 Settlements of Loaded Models
P Load 4 Settlement
Tassement des modéles chargés
P charge 4 tassement



taken approximately at a right-angle to the contact plane. This
supposition is mostly proved incorrect. The direction of the
passive pressure is a function of the mutual displacement on
the contact face, which shows in dams the tendency to divert
the resultant downward; consequently the security is greater
than estimated.

This fact justifies the assumption of the right-angle direction
of the passive pressure action.

With these suppositions the bearing capacity of the models
was controlled, as shown in Fig. 7 for the model No. 33. The
core carries the corresponding part P; of the load P. The

Fig. 7 Computation of the Bearing Capacity of Model No. 33
I. Polygon of Forces for Determination of Passive Pressure E
1I. Polygon of Forces for Equilibrium of Core
Calcul de la force portante du modeéle No 33
I. Dynamique pour la détermination de la résistance passive E
II. Dynamique et funiculaire pour I’équilibre du noyau

superimposed load P; and the weight of the sliding body G,
give the moment of displacement M; = G, -r, + P;-r,. The
cohesion K in the sliding surface, and the passive pressure of
the retaining body also act on the body and produce the
stabilising moment My = E-ry + K- r,.

When computing the passive pressure E (polygon of lorces 1),
the friction between the sand and the glass walls was also taken
into consideration with ¢ = 30°.

The model is stable if M; = M,. The ultimate value of the
force P with which the model is still stable, was found gra-
phically (the polygon of forces and the funicular polygon II).
The following table shows the results of these computations
for a few models. The bearing capacity computed with the
Ehrenberg supposition is also given: (Table 1).

From the table mentioned above, it can be seen that the
results of the computed bearing capacity based on our supposi-
tion coincide fairly well with the ultimate load of the model,
whereas the bearing capacity computed according to the pro-
posal of Ehrenberg is considerably smaller then the actual one.

This fact confirms that, for practical purposes, our supposition
reflects fairly well the play of forces at the moment of failure
of the slope.

It is seen from these investigations that for the stability of
a slope of 2 non-homogeneous dam the passive pressure of the
retaining body in front of the core is competent. The com-
putation of the stability is to be conducted in the following
way:

(a) A cylindrical sliding surface in the core, and a straight
sliding surface in the retaining body, corresponding to the
minimum passive pressure, are chosen.

(b) The displacing forces acting on the core are determined:
the weight, the seepage forces (if existing) and other loads.

(¢) The stabilising forces acting on the core are determined,
i.e. the passive pressure of the retaining body and the shearing
strength in the sliding surface in the core.

The section remains stable as long as the passive pressure of
the retaining body is not surpassed, although the stress in the
sliding surface already reached the shear strength. Greater
deformations, and thus failure, are not possible until the re-
taining body is pushed away regardless of the magnitude of
the stress in the sliding surface of the core.

Based on the fact that the slope is stable until the passive
pressure of the retaining body is exceeded, the factor of safety
can be expressed with:

s=2n

E,
E, = passive pressure of the retaining body necessary for the
maintenance of equilibrium;

E,, = maximum possible value of passive pressure.

This expression of the factor of safety is in accordance with
the mechanics of failure and with the conditions of the deforma-
tions established on the models. Only if the pressure at rest of
the retaining body at the border with the core is sufficient for
the maintenance of equilibrium, the core is not deformed under
an increased load for the restoration of the equilibrium of
forces, and the stress in the sliding surface in the core does
not attain the limit shear strength. The design of the retaining
body with such a high value of pressure at rest would not be
economically justified, and furthermore it is unneccessary for
the stability and security of the dam. In order to keep the
deformations within reasonable boundaries it is necessary that
the factor of security be s = 2.

Good compaction of the retaining body is of great importance
for the unchangeability and thus for the stability of such dams.
The equilibrium of forces for the additional load of the core
of a dam with less compacted banks, is attained after greater

Table 1
Model No. 18 19 20 21 22 32 33 34
Dimensions, see Fig. 7 (a) cm 21 21 21 21 21 29 25 24
®) cm 30 30 30 30 25 25 30 31
(©) cm 30 30 30 30 a5 28 30 33
Cohesion of grease g/em? 6 6 6 6 6 6 8 12
Unit weight of sand gjem?® 1.28 1.28 1.17 - 1.30 1.39 1.32 1.40
Load at the beginning of flow kg 8 5 8.6 4 14 15 13 8.5
Deformation at the beginning of flow mm 1.1 0.7 0.9 1.0 1.0 0.7 0.6 0.4
Bearing capacity kg 20 18.5 17.5 8 30 26 18 20
Deformation at failure mm 6 7 8 4 6 6 4 4
Computed bearing capacity kg 17 17 16 8 27 27 17 22
Bearing capacity after Eirenberg kg - - - - - - 12.7 15.7




deformations than those with well compacted banks. The
ultimate bearing capacity differs only very slightly (see the
diagram of deformations for the loading and reloading of the
models, Fig. 6). ;

Such a stability computation is certainly still an approxima-
tion, but it is based on results obtained with model investiga-
tions. For that reason the method can be regarded as a step
forward as compared with the Ehrenberg computation or other
applications of the Swedish method.

Further investigations on models for the determination of
the distribution, the point of application and the direction of
the action of the passive pressure, are in progress. We hope
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that these investigations will throw more light on these un-
solved questions.

References

Clarke, R. C. (1948): Stability Analysis in the Design of Earth and Rock-
fill Dams. Proc. 2nd Int. Conf. S. M. and Found., I. Rotterdam.
Vol. III, pp. 240-242.

Daehn, N. W. and Hilf, J. W. (1951): Implications of Pore Pressure in
Design and Construction of Rolled Earth Dams. Trans. 4th Congr.
L. D., New Delhi. Vol. I, R. 39.

Ehrenberg, J. K. (1936): Standfestigkeitsberechnung von Staudimmen.
Trans. 2nd Congr. L. D., Washington. Vol. IV, p. 331.



