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SUB-SECTION 1 e

SHEARING STRENGTH AND EQUILIBRIUM OF SOILS

ON THE LAW OF FRICTIQON OF SAND

le 1

Takeo Mogami

Prof., Tokyo University, Japan

1, The law of friction of sand tells us that
the shearing stress on the sliding sur-
face is proportional to the normal stress on
it, when the failure of the sand mass is go-

ing on. On the other hand, Mr, Reynolds 1)
has pointed out that the characteristic pro-
perty of sand concerning the motion of it is
what he called "dilatancy", namely that the
volumetric change in sand occurs when the
shearing motion begins. Mr, Jenkin paid his
serious attention to this property 2), and
he performed careful experiments, He pointed
out that the friction angle between sand lay-
ers varies as the compactness changes, He
concluded that these facts show what is call-
ed "dilatancy". Mr. A. Casagrande 3) has
also shown that the "critical demnsity" is ob-
served when the sand mass begins to rail.
Mr., Casagrande's "critical density" may be
closely related to Mr. Reynolds's dilatancy.
We intend to investigate in detail the
nature of failure of sand mass along these
lines of idea,

2. EXPERIMERTAL FACTS.

a) We performed the so-called shearing tests

with various kinds of sand. The apparatus
is that described by Mr. N, Yamaguchi in the
Proceedings of the international conference
on s0il mechanics and foundation engineering,
held in June 1936, vol. II p. 42.

Our experiments were performed for the
following kinds of sand; two kinds of sand
used for the standard tests of cement mortar,
in our country; the one finer, (0.3 mm in
diemeter), the other coarser (1.2 mm in dia-
meter); a kind of river sand (larger than
2.%8 mm 15.6%, 2,38 mm to 1,19 mm 30,15%,
1,19 mm to 0,59 mm 28,05%, 0,59 mm to 0,297
mn 16,70%, smaller than 0,297 mm 9.10%).

All kinds of sand are tested in dry and
wet conditions,

b) Tests performed.

The shearing test of soil usually perform—
ed in our country is executed as follows. At
first, the soil sample is placed in a shear-
ing box of our apparatus and then applying
a constant load vertically on the upper sur-
face of the sample, then the middle box 1is
pushed laterally, the soil sample 1s sheared
off at the boundary plames which separate the
middle box from neighbouring upper and lower
boxes, There are meny defaults about this
method of test in case of sand; then the new
method which is effected by the same equip-
ment is proposed. This method is verified to
be very satisfactory by experiments, But the
most important point is that the mechanism
of motion of sand may be investigated close-
ly by this method of experiment, A new method,
we proposed, is as follows., No load is applied
vertically on the upper surface of the soil
sample at first, shearing off the soil sample
as above stated, At the same time, the
heaving up motion of the upper cover plate is
measured. As the shearing motion advances the

upper cover plate ig heaved up by sand, this
shows the property "dilatancy"™. Some results
obtained are illustrated in the figures 1 to
fig., 3 and fig. 5.
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¢) The motion of sand.

The motion of sand near the shearing plane
is observed closely and the conclusions as
described below are obtained. In the first
stage of the shearing motion, the sand layer
near the shearing plane is made to be loose,
in this stage the motion is similar to that
of viscous liquid and this layer of motion
has a finite breadth and the cover plate on
the upper surface is heaved up by send con-
tinuously. But when the second stage which
we call it as steady state of motion is reach-
ed, the motion becomes stationary and the
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heaving up motion of the cover plate and the
generation of the vertical force will stop.
And the shearing force becomes constant, In
the first stage the angle of intermal friction
calculated by the following formula, namely
tan 0 = T/n
y Where
Y = S/2A : The shearing stress,
S The shearing force,
A : The sectional area of
the shearing box,
n = N/A : The vertical normal stress,
K s The developed vertical
force due to shearing mo-
tion,
is not constant, and in the steady state it
atteins a constant value, spproximately equal
to the angle of repose of the sand tested or
in some cases, after reaching a minimum, it
increases a little,

This shows that the Coulomb's law of
friction does not hold when the state of mo-
tion of sand is not steady. But it holds in
the steady state of motion of sand. When the
steady state of motion is reached the region
of motion is confined in a very thin layer and
then it may be concluded that the sliding sur-
face 18 found in the steady state in place of
sliding layer,

3, THEOHETICAL CONSIDERATIONS.

a) As the relations between stresses and strain
velocities of the sand in motion, we
assumed the following formula,
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, where u, v, W are the velocity components

and p is the mean pressure, namely

{
“p= —(ox+oy+o0z). (3)

and m ia a constant, 3

In the above relations, if we comsider u,
v, W as the displacement components, these
formulae are the same as those due to Bousgsi-
nesq in his theory of the pulverulent masses,
When the motion is not steady, the above men-
tioned formula are considered as to be a rough
approximation, because the rate of the volume
dilatation is not zero.

The validity of these relations would be
inferred from the results which are stated in
the followings.

b) {he principle of minimum rate of energy
088,

When the motion of sand is steady it may
be verified that the possible manner of motion
is determined from the principle. above stated.
The tiwe rate of the loss of energy in the
sand in motion is formulated from the rela-
tions (2) as follows.
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Form the equation-(2) and (3) we can obtain
6/bu bv  dw)

—+———+——-I=O
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If the body force has the potential 2
(The components of the body force are
X, 1, ;g
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If we combire the formula (5), (6). and (7)
we get
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If we put this variation to be zero,remember-

ing that P=“mk/-‘£+é_\/—+6_w\.
k30 \ox 6y bz / (9)

y where = ﬂ +2+ ow ,k = a constant,
6% éU dz

we can obtain the egquations of motion of sand
in the steady state. namely when the accelera-
tion terms in equations,are zero.

In these egpations, if we consider the
formulae (2) we have the well known equations
of motion in case of the steady state, i, e.,
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¢) The law of friction and the above theorem,
When the motion is considered as 2-dimen—-
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sional and we can assume that,
Tul=o, Tz‘=0 ; bW/bZ:O

the variation of the time rate of the energy
loss in a moving layer of ssnd is written as

follows.
Elz_mfp [2( 9£)1+2(91)z+
dt Ax oy

LB B2
\ ox by} }dV.

In case of 2-dimension, the formulae (2) be-
comes very simple and we get
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Then we can transform the eauation of the
time rate of energy loss as follows (refer—
ence may be made to Mohr's circle, figure 4)

LI Jpsin‘ude, (12)

From the formula (9) we can say dp=0 ghen
applying this formula to the elementary
volume of sand mass, we can conclude, that if
the motion of sand is steady the angle between
stress and the normal to the surface which
the stress acts is minimum, say, ¢ .

If the real angle between stress and the
normal is larger than 4 the motion is not
steady and if it is less than ¢, the motion
of sand cannot occur,

This conclusion is not other than the
Coulomb's law of friction,

d) Formation of the sliding surface in sand.
We amssume the motion as 2-dimensional and
we take the axes X and Y as shown in the fig,

5.

And we consider that the sand layer be-
tween y = O and y = h is moving from left to
right and the sand masses which lies in the
region y {0 and y > h, are in motion as a
whole,

In this case we can put

Ox=~p Oy=-p+2mp E’— o'z.:—P)
>3 (13)

ng=0 Tzl’o 'r-u=mPELi
oy
and then the equations of motion of sand mass
is as follows,

bT"’ :O i(pgg)=0
oy dyl’dy
»nemely )
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2y dU i
and av .00 (5)
dy

Solving above fundamental equations of steady
motion of sand between y = O gad y = h under
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the boundary conditions
at u = Up
at y=nh u = ullTnJ/crul=l‘an ¢, (17)

, where ¢, and ¢, are the angles of friction
at y = O and y = h respectively, we can get
the following results,

lWag/oUi=ran ¢. (16)
y=0

—p=-a(h-y)-p, (18) (18)
Rl
- 2 (ran% 1)(19) 19)

From the eqguation (18) we can conclude
that the pressure distribution in the moving
sand layer is hydrostatic and the equation
(19) tells us that if the friction angle at
Yy = 0 is less than that at y = h we get
h ) O and in the reverse case we have h ( O,

And if these angles are equal we have
0.

Then we can say that if the angle of
friction at y = O is larger than the angle

of friction at y = h the steady motion of
8and irn a layer of finite breadth cannot
occur and if both angles are equal with each
other the breadth of the layer of the sand ir
motion reduces to zero.

0f course, the theoretical calculation
is for the.steady motion of sand, but we may
consider that its results are approximately
true when the motion is not steady.

Then from these theoretical considerations
and the facts obtained from experiments we can
conclude the following results,

When the layer is put in motion by the
shearing action of the lower sand mass, the
layer between AB and CD in the figure 5 ex-
pands (dilatancy). The nearer the sand mess
lies to AB the more it expands,

Then the effective friction angle of sand
near CD is larger than that for the neighbour-
hood of AB. In this stage the moving portion
is approximately confined by CD and AB, As the
layer between AB and CD expands the frictional

angle in this layer may become more and
more uniform and then breadth of the moving
layer of sand becomes thimner,

At last the expansion reaches to its
maximum then this layer reduces to a very thin
sheet, the sliding surface may be formed in
this way. rrom these considerations we expect
that the effective angle of friction of sand
decreases from a larger value to a smaller
constant, namely the angle of repose of the
sand tested.

The results of experiments verify this
expectation as shown in the figure 6.

In this figure the angle & is calculated
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by the following formula,
tan 9= 1/o
= S/2N

s Where
S : the shearing force applied,
N : the vertical force generated,

In case of some kind of sand, after de-
creasing the angle calculated as above from
the date of experiments t0 a minimum then it
increases a little, This phenomena may be in-
terpreted as follows,

In this case the layer becomes too loose
when the state 6 = a minimum is reached, then
it must contract a little,
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