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LIMITATION OF THE VAL1DITY OF APPLICATION OF THE FORMULAS

FROM PRANDTL -BUISMAN AND FROM ANDERSEN FOR THE ULTIMATE

BEARING CAPACITY OF THE.SOIL UNDERNEATH FOOTINGE,

E.DE BEER and M. WALLAYS -Ghent (Belgium)

The formula of Prandtl gives the value of
the ultimate bearing capacity of an incompress-
ible material with a cohesion ¢ and an angle
of friction ¢ , not subjected to gravity and
loaded at its surface. The surface of failure
has the shape of a logarithmic spiral situated
between two straight lines (fig. 1). Buisman
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FIG. 1

first completed the formula of Prandtl for the
case of an uniform overload pp on the surface
of the material beside the loaded area. The
existence of such an overload doesn't alter
the shape of the surface of feilure.

Going further, and with the purpose to
take into account the own weight ¥ of the mate-
rial, Buisman assumed that, even if the mate-
rial is subjected to gravity, the shape of the
surface of failure is not altered; thus 1t
becomes easy to find an expression for the
part of the ultimate bearing capacity produced
by the own weight of the soil located above
the surface of failure.

With the assumption that the most danger-
ous surface of sliding is a logarithmic spiral
with two straight extensions, Prandtl-Buisman
found for the ultimate bearing capacity dg the
following expression:

dg=Vips+Vec +Vgyb (1)
where 2
dg = the ultimate bearing capacity (t/m“)

the overloadzexisting beside the

footing (t/m<) 2

the cohesion (t/m”)

that part of the volume-weight of

the soil, which is to be taken into

. account for the computation of the
effective stresses.
b = the width of the footing.
Vb, V., and V_ = three functions of the angle
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N € of frict;ion I
V =Q"9’l’ :(_71_‘__)
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VC =e1'(|:g¢ —Zﬂ+{e"'5°_1) Cot¢ (3)
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For V, the following analytical express-
ion was foﬁnd by Prof. Raes: ye s
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‘Fhen the foundation is established at a

depth h underneath the surface of the soil,
the phreatic level being located at tane sur-
face of soil or at a great depth underneath

the foundation level, oae gets (5)
B = YR
thus
ds=byh+vcc+vsyb ]
The formula (6) is the expression of the
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ultimate bearing capacivy for the cuse of fig.
2. The only arbitrary assumptions are that the
material is incompressible and that the most
dangerous surface of sliding is a logarithmic
spiral with 2 straight extensions.

On the other hand prof. Andersen of the
University of Minnesota established an ana-
lytical expression for the ultimate bearing
capacity of a material c, » underneath a
footing with a breadth b established at a
depth h, starting from the arbitrary agssump-
tion that the most dengerous surface of slid-
ing is composed by two circles with radius r
and r + h (fig. 3).

FIG.3

The radius r of the most damgerous circu-
lar surface, and the value of the ultimate
bearing capacity corresponding to circular sur-
faces d'g' are given by the following system

of equations:

Zr“tgq”*[ (2tg4+1)h- "?C]*E%m ! ?
|

' 7
2y 4y \ 2

z_z,r[N(2t9¢—1)*(““)’(”9¢”)]+ ]

+nc[r"+(r+h)z]=bd'9 [P(Z— lztgt))-b] J

The formulas of Prandtl-Buisman, as well
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as those of Andersen are based on an arbitrary

assumption: namely the shape of the most danger-

ous surfaces of sliding. Thus it is necessary
to compare in each particular case the values
obtained by the 2 methods. Indeed, in this way
can be found wether of the two values dg ardb

is the smaller for the given case, and thus
has to be retained.

Here is considered the case of a material
without cohesion, ¢= O, and for this case the
limits of the Zones of applicability of the
formulas of Buisman and Andersen are determin-
ed.

Eliminating r between the equations (7)
and (8) for ¢ = O, an equation of the follow-
ing shape is obtained:

3 L] L6
b=, T smzbh-mis L. «myh® me Lo 4
d'g d'gb d'g‘b1
dab
~me——=0 (s)
where
By By ecresccnas W = 6 functions of the

le .
Instead of considering tég ultimate bear-

ing capacity for the unit of area d'g. the
computations become in this case more simple,
when the ultimate bearing capacity per unit of
length D'8 is introduced.
D' =D 4
8 g (i)
Thus (9) becomes
2
b*~m, i ) bh3s+m,bh-m, lh°+m4h’+m I h¢s
D' Dv SD, a
9 q o

-

When the width b is taken as an abscissa, and
the depth h as an ordinate, it is found that
by varying paremeter Dg/7Y. the curves repre-
sented by the equation™(11) are in the first
quadrant (b> 0, h> 0) nearly straight parallel

lines going through the points

0,

b

hi

ho=0

h,

&

FIG. 4

bo=Vm, 3$L(seefigzq

b

(2

For different values of the angle ¢ the

values of mg an
The wvalues of

Vmg are given in the table I.
mg are also given in the dia-

-m _ll'?:o gram of fig. 6. .
5 () The relation (12) gives the possibility to
7. draw next the scale of b, a scale of the para-
TABLE I
? 5° 10° 15° 20° 25° 30° 35° 40°
mg 4,10306 | 1,61166 | 0,81641| 0,44473| 0,24262| 0,12568 0,05786 0,020997
Vg 2,0256 | 1,2695 | 0,90%6 | 0,6669 0,4926 0,3545 0,2406 0,1449
l:mg | 0,24372 | 0,62048 | 1,22487| 2,24855 | 4,12167| 7,95671 17,28310 47,62585
Vv, | 02476 | 0,7233 | 1,es1 | 3,452 7,163 | 15,190 33,868 81,748
Vg 0,498 0,8505 | 1,281 1,858 2,676 3,897 5,82 9,0u414
S 1,568 2,302 3,939 6,396 10,654 18,384 33,258 64,109
n, |-0,000974 -0,0867 | ~0,91485| -6,3777 ' | -37,8599 |-209,75739 |-1100,70379 | -4787,9311
n, 0,35998 | 0,96469 | -0,8645 |-17,12899 [-110,48116|-570,19586 | -2599,2943 |-9232,43796
ny 4,82986 | 10,8424 | 18,89922 | 29,26405 | 6,99743(-195,4788 | ~1086,29635 |-2999,91759
n, 22,09533 | 32,91564 | 57,77811 (124,62738 | 256,4690 | 542,50587 | 1205,81212 |+3056,75091
g 44,9478 | 35,7021 | 51,50323| 99,18038 | 188,61499| 379,14743 781,81827 | 1568,17301
D 36,2148 |12,5913%2 ( ?7,90396| 4,66799 1,3051 -3,60823 ~11,73941 1 -25,17112
n, 3,41013 | 0,68499 | 0,19658( 0,04634 | 0,00217| 0,00926 0,05234 0,13016
tgt | 0,16 0,317 0,472 0,633 0,79 0,9 1,231 1,748
(Brerit | 0,003 | 0,053 | 0,185 | o0,u0u 0,695 1,025 1,453 1,82
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FIG.5
meter Dg/y , S0 that the value of D'q/ cor-
respondi to an arbitrary line of the net can

instantaneously be found. On the other hand,
putting DS = b ds (13), the equation (6) gives:

%1=vb bh + Vg b* (14)

For each value of Do/y , the equation (14) re-
presents an hyperbold, with the asymptotes b =
Oand b = - h (gee fig. 5). The hyperbolas cut
the axis of the b*'s at the points

b:\[:‘__\’gﬁ— (15)
hcATE SU

With the relation (15) it is possible to
draw, next to the scale of the b's, a scale of
the parameter DG/J; thus the value of Dg/\/
corresponding to’ & given hyperbola of thé det,
can be found. The values of Vg andVVS are
given in the table 1.

Let us now determine the locus of the
points (b,h), for which the formulas of Ander-
sen (11) and of Buisman (14) give the same
value of the ultimate bearing capacity DG- D's.

Eliminating D_ = D' _ between the equations
(11) eand (14) one B gets®:

nb*+n, b h+nyb*h?+n,b*h*nsb*h“+ ngbh®n,h®=0

where n,, Dy eeesesess Do = SEVED functions
= of the angle ¢ .

The equation (16) is homogeneous and of the 6th
degree. It can be comomposed in the equation of
real or imaginary straight lines going through
the origin (b = O h = 0), In the first quad-
rant there is but one real straight line. The
equation (16) cen be written:

n,+ nz% . n,(%)‘* Na (—%)3+ ns(%)‘i n.(%Ym,(—'l’;Y= o
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The values of the coefficients ny till Do

are given in function of ¢ in the table I.The
equation (17) has been solved by trying; in
this way the values h/b glven in the table I
were found.

Finally in a diagram b,h, the zones of
applicability of the formulas of Andersen and
of Bulsmen are separated by a straight 1line
going through the origin. For small foundation
depths h, combined with large footing widths
b, the formula of Andersen gives smaller values
and therefor is determining; on the contrary
for high values of the ratios h/b the formula
of Prandtl-Buisman must be retained.

The critical values of the ratio h/b are
given in the table I, and also in the diagram
of fig. 6. These critical values increasing
with the angle§, it means that the range of
applicability of the formula of Buisman be-
comes narrower when the value of the angle ¢
is increasing. With the data of the table I
it will be possible to verify rapidly in each
real case in what zone it is located and what
formula has to be applied.

For practical purposes it is sufficiently
correct to assimulate the curves of Andersen

Dg/y= cte to straight lines. These straight
lines arg determined by the point ( =0
bo=Vm>I ) and by their anglet (fig. 4),
The value %of the angle £ can easily be found
from the consideration that the curwe of Ander-
sen cuts the straight line h/b = (h/b) in

crit
the point blh1 where D -D'g. This point is de-
fined by

g

hy _(h \
b'l h b2rit

D > (18)
_1 =Vbh1b1 _.,'\/S,b1 2
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4 |
h, = = (19
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Fig. 4 gives tg £ = s;:%TE———— (Zﬂ

The equations (12) (19) 20) and (21) give:
i
(22)

b b\Z b ¢
L T
VFR&V b(hcrik* 3 h/ erit h Jerit

The values of tg £ are given in funection of ¢
in the table I and in the fig. 6.

For the cases ¢ = 209, 25° and 30°, the
fig. 7, 3 and 9 give the straight laws of
Andersen Dg/y = ¢t and the hyperbolas of Buis-
man DgJZ = ¢t , and also the straight separa-
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tion be n the respective zones of applicab-
ility.
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The use of the fig. 7, 8 and 9 is direct,
and doesn't need any other explanation.

It is worthwhile to note that the straight
lines Dg/Y = ct intersect the hyperbolasDg/y-ct
under a certain angle; this would correspond
to an abrupt change in the law of variation of
the ultimate bearing capacity.

As this capacity is a physical phenomena such
an abrupt change is excluded. Thus the indicat-
ed combination of the formulas of Andersen and
Buisman 1s itself but an approximation of the
problem.

The circular shape adopted by Andersen for
the surface of failure is only strictly valid
for very small values of h/b; on the other hand
the surface of rupture consisting of a logarith-
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mic spiral with two straight extensions, is
only valid for very high values of h/b; for

values of h/b approaching the critical value,
the surfaces of fallure must have a more com-
plicated shape, intermediate between that of
circular surfaces and that of the spiral sur-
faces; the shape of the surface changing grad-
ually, there will be_a smooth junction between

-the two laws I%/y- ct and Df/¥-= ct in the
1

neighbourhood 6f the critica ne. This junc-
tion is necessarely located beyond the point

A (fig. 10), and will have the shape of the
dotted line. In the neighbourhood of the crit-
ical line the formulas of Andersen and of
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Buisman both will give too small values; thus
it is indicated to take this into account by
the choice of the factors of safety.

REMARKS.
1) Instead of considering the ultimate bearing
capacities per linear meter D8 and D' _(t/m),

the ultimate bearing_capacities per unit of
area d_ and a (t/m2) can also be used.

Then the equgtion (9) is maintained, but
this equation doesn't represent straight lines,
but more complicated curves.
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The equation (6) becomes dg=V,yh+Vyyb (23)

In the diagram b,h the equation (23) re-
presents a net of parallel straight lines.

The elimination of the parameters dg/y =
=dg/y between the equations (9) and (23),glves
agaln the equation of a straight line.

The advantage to consider the parameter
dmﬁg(t/mz) instead of Dg/y (t/m) consists in
the Tact that the formula Of Buisman is now
represented by a straight line, what is easier
when the problems to solve are frequently locat-
ed in the range of applicability of this formu-
la. For this reason the fig. 11, 12 and 13 re-
present the diagrams h in function of b for the
parametersdg/y . Apart from that these diagrams
are indentical to those of the fig. 7, 8 and 9.
2) When the value of h/b becomes very targe,

then the problem is no longer one concerning
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a direct fundation, but one of a deep fundation
(piles, fundation-pits). For thease latter prob-

lems neither of the considered formulas is

applicable, but direct information can be ob-
tained from the results of deep penetration
tests in situ.

~0=0-0-0-0-0=

IMPROVEMENT OF THE METHOD QOF CAICULATION QOF THE

I es EQUILIBRIUM ALONG SLIDING CIRCLES.
H. Raedschelders - Ghent ( Belgium ).
INTRODUCTIOR.

In controling the equilibrium of slopes,
one has to consider two possible fallures. The
first is in relation to a failure of the base
and can be examined by the theory of the bear-
ing capacity of the soil. The second, called
slope fallure, will occur when the shearing
resistance of the earth along a certain sur-
face is not large enough to make an equilib-
rium with the own weight of the slope and the
waterpressure acting upon it.

We will consider the possibility of a
slope failure in case of a well-defined toe-
circle and we will propose a method for the
determination of the factor of safety of that
given slope in case of an homogeneous soil
mass,

The shearing resistance of the earth is
determined by the equation

T= °+d—t8? .

Often the control of equilibrium along
sliding circles is limited to the verification

of the equation of the moments about the cen- .

tre of rotation. The method becomes very simp-
le in case of en angle of internal friction
¢ = O. Then we have the equation (fig. 1)

W. 1

w = cooloaR-

where:
¥ = weight of the body of eerth in tons
per unit of length of the slope.
lg= lever arm of the weight W with refer-
ence to the centre O of the toe
circle in meter.

¢, = cohesion in t/m° required to have an
equilibrium.

1, = length of the sliding surface in me-
ter.

B = radius of the sliding circle in meter
On the fig. 1 are also shown the quantities
Q and E,

Q = resultant of the normal effective

stresses (in toms)

E = resultent of the waterpressures on

the sliding circle.

The dotted line ADD' represents the hy-
drostatic pressureline above the sliding
circle.

The factor of safety can then be found by
the comparison of the required cohesion with
the existing cohesion ce 0of the soil. The
latter has to be determined by means of labo-
ratory-tests on undisterbed samples.

The factor of sefety can be written :

et

The control of the equilibrium of rota-
tion is insufficient, because each state of
equllibrium is controled by three conditions:
the equilibrium of translation along two
mutual perpendicular directions (for instance
a vertical and an horizontal direction) and
the equilibrium of rotation.

In the different methods of controling
the stability of slopes, one or two of the 3
conditions of equilibrium are often overlooked.
For instance in the method consisting of
cutting the sliding mass lnto slices by means
of pseudo-sliding surface, often only the
polygone of forces is drawn, thus taking only
into account the conditions of trenslation.To
take notice of the condition of rotation, it
is necessary to draw also the pressure line,
thus teking into account the value, the direc-
tion and the point of application of all for-
ces involved. Fig. 2 shows an example of this
method.

The control by means of slices, even when
complete, still presents a few inaccuracies :
1) one admits that the effective soil reac-

tions Kj... on the pseudo-sliding surfaces
between the different slices are parallel to
the tangent on the sliding circle and that
the points of application of these forces are
located 1n the middle third of the height.
Thus the point of application is not exactly
known and a more or less arbitrary assumption
can be made on its account.

2) The reaction Q is assumed to be a tangent
of the H sin¢ circle. This is only true
for an element part of the surface but not
for a certain length : this inaccuracy can be



