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a direct fundation, but one of a deep fundation
(piles, fundation-pits). For these latter prob-

lems neither of the considered formulas is

applicable, but direct information can be ob-
tained from the results of deep penetration
tests in situ.

~0=0-0-0-0-0=

IMPROVEMENT OF THE METHOD QF CAICULATION QOF THE

I es EQUILIBRIUM ALONG SLIDING CIRCLES.
H. Raedschelders - Ghent ( Belgium ).
INTRODUCTIOR.

In controling the equilibrium of slopes,
one has to consider two possible fallures. The
first is in relation to a failure of the base
and can be examined by the theory of the bear-
ing capacity of the soil. The second, called
slope fallure, will occur when the shearing
resistance of the earth along a certain sur-
face is not large enough to make an equilib-
rium with the own weight of the slope and the
waterpressure acting upon it.

We will consider the possibility of a
slope failure in case of a well-defined toe-
circle and we will propose a method for the
determination of the factor of safety of that
given slope in case of an homogeneous soil
mass,

The shearing resistance of the earth is
determined by the equation

T= °+d—t8? .

Often the control of equilibrium along
sliding circles is limited to the verification

of the equation of the moments about the cen- .

tre of rotation. The method becomes very simp-
le in case of en angle of internal friction
¢ = O. Then we have the equation (fig. 1)

W. 1

w = cooloaR-

where:
¥ = weight of the body of eerth in tons
per unit of length of the slope.
lg= lever arm of the weight W with refer-
ence to the centre O of the toe
circle in meter.

¢, = cohesion in t/m° required to have an
equilibrium.

1, = length of the sliding surface in me-
ter.

R = radius of the sliding circle in meter
On the fig. 1 are also shown the quantities
Q and E,

Q = resultant of the normal effective

stresses (in tomns)

E = resultent of the waterpressures on

the sliding circle.

The dotted line ADD' represents the hy-
drostatic pressureline above the sliding
circle.

The factor of safety can then be found by
the comparison of the required cohesion with
the existing cohesion ce 0of the soil. The
latter has to be determined by means of labo-
ratory-tests on undisterbed samples.

The factor of sefety can be written :

et

The control of the equilibrium of rota-
tion is insufficient, because each state of
equllibrium is controled by three conditions:
the equilibrium of translation along two
mutual perpendicular directions (for instance
a vertical and an horizontal direction) and
the equilibrium of rotation.

In the different methods of controling
the stability of slopes, one or two of the 3
conditions of equilibrium are often overlooked.
For instance in the method consisting of
cutting the sliding mass lnto slices by means
of pseudo-sliding surface, often only the
polygone of forces is drawn, thus taking only
into account the conditions of trenslation.To
take notice of the condition of rotation, it
is necessary to draw also the pressure line,
thus teking into account the value, the direc-
tion and the point of application of all for-
ces involved. Fig. 2 shows an example of this
method.

The control by means of slices, even when
complete, still presents a few inaccuracies :
1) one admits that the effective soil reac-

tions Kj... on the pseudo-sliding surfaces
between the different slices are parallel to
the tangent on the sliding circle and that
the points of application of these forces are
located 1n the middle third of the height.
Thus the point of application is not exactly
known and a more or less arbitrary assumption
can be made on its account.

2) The reaction Q is assumed to be a tangent
of the R sin¢® circle. This is only true
for an element part of the surface but not
for a certain length : this inaccuracy can be



FIG. 2

neglected when a sufficient number of slices

is considered.

3) The method takes much more time than the
control of the moments.

4) The factor of safety s has to be taken on
the two elements of the shearing resistance

T. For each considered sliding circle one has

to repeat the total calculations and drawings

for several values of 8 and this with newy va-

v C
lues of C and ¢ given by the relations ¢’ = ==

Foe %3 s
and ' = arc.tg tﬁﬂi%
s |

One has to make at least two or three
trials for each surface.

THEORY OF THE NEW METHOD.

In case of an homogeneous soll masa we
will suggest a more rapid method, nevertheless
taking into account the three conditions of
equilibrium.

The simplified method consists in the
consideration of only one slice.

The advantage of the method lies in the
rapidity of the examination of the equilibrium
along a sliding circle without neglecting some
important points on theoretical view.

On the same time there are no longer
difficulties with the reactions between the
different slices, because they are no longer
to be considered.

On the other hand the resultant of all
the reactions Q is no longer a tangent of the
R singy -circle, but it can be proved that the
error is on the side of safety.

We will now consider all the Tarces act-
ing on the sliding mass of earth :

1) The weight of the earth located above the
arc is W tons per unit of length of the
slope. This force is acting along a vertical

line through the centre of gravity of the
area of the slice.
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2) The resultant of the cohesive forces can

no longer be approached by multiplying the
cohesion per unit of length of the sliding
surface by the length of the surface of the
sliding circle. In case of a consatant cohesion
on the whole surface of sliding, the fig. 3

0

)

FIG.3

shows that the resultant can be determined by
the equation
C = co . chord A-Bo

The direction is that of the chord AB and the
point of application can easely be found by
the method of moments about the centre O. By
that way we find : 1B

arc

OP =R . or

For the method of slices this correction
had not to be made because for each slice of a
limited length the

factor %%%5%§I§ is nearly equal to l.

3) The waterpressure E can be computed by means
of a flow net, which values make it possible
to determine the waterpressure in each point of
the .81liding surface. This is an exact method
for a permeable soil-mass., For cuts in a clay
stratum it is safe to consider in each point
of the sliding surface an hydrostatic water-
pressure corresponding to the surface of the
slope and the free water-table existing befare
the cut was digged, the adaptation of the
g{oundwater to the new situation being very
slow.

All these elementary forces are directed
to the center. of the sliding circle. E can be
found graphically by composing all the element-
ary forces. By this way we know the resultant
in velue and direction. The point of applica-
tion follows from the fact that E has to go
through the centre of the circle.

4) The resultant Q can be found by mesns of
the polygone of forces which must be clos-
ed with it,

Since the factor of safety will be ap-
plied on the two elements of the shearing
resistance, one has to do a little "trial and
error" work to find that factor. But now the
trials are very quick and without any serious
calculation.

By means of comparison it will be poss-
ible to estimate the importance of the error
introduced by the fact that the resultant Q
is not exactly to the R.sing-circle.
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PRACTICAL APPLICATION OF THE NEW METHOD.

1) Computation of the weight W of the sliding
earth mass. Since we consider a slope with

a width of 1 meter, we must only determine the
slice in m2 and multiplicate it with the unit

weight ¥ . In all cases the considered surface
of the slice can be represented by a sum of a

circle-segment and one or more tri les with

a positive or negative value (fig. 4). The

W,
[

FIG.4 b

formula for the surface of the segment, with
the angle o« and a radius R, being

X mRa%  R2 sino
s = 73/ - 2
AB%
OT = -
s
The resulting force W is the algebraic
sum of the components, Its direction is vert-
ical and its points of application is easily

found by graphical integration, as indicated
on fig, 4.

2) Computation of the resultant of the cohe-
sive forces C' (fig,4), We saw already that
this resultant C is given by the equation

C = ¢co « chord AB

Its direction is parallel to the chord
and the point of application P is given by the

formula arc. AB

OF = Rehord IB

3) The general method to find the resultant
of the waterpressures on the sliding sur-
face has already been outlined in the theory.
This general method is a graphical one and is
illustrated by the example of fig. 4b.
In some cases an algebraic method can be more
rapid. When a diagram of the waterpressures
is made by drawing the pressure in each point
of the sliding surface upwards on the vertic-
al through that point, it often happens that
the so obtained diagram of waterpressures
consisSts on one or more straight lines. For
instance in fige. 5 it is assumed that in a
few pervious layers the original waterlevel DD'
is not altered and that in each point the wa~
terpressure is given by the vertical distance

and

FIG. 5

of the considered point to the soil surface.
In that case the diagram of waterpressures
consists in the two straight lines AD and DD°’.
Considering the vertical through the centre O
of the sliding surface, we define on this
vertical the points of intersection Ij and Lo
with the two straight lines DD' and AD of
the waterpressure diagram. The %Gngths b1 =0L.,
by, = OLp, and the engles A, d2, A3 as indicated
on fig. 5 are considered. The factor tg i is
often known or can be measured, 1 being the
angle of the considered straight line of the
waterpressure diagram with the horizon. In
case of fig. 5, tg i, = 0 and tg ip =2/3 =0,666
The vertical and horizontal components V
and H of the resultant of the waterpressure E
‘are then given by the formulas:

H:Z {blz [sin Jz-sinﬁ|]+%2[cosz 3,~cos 2'31]-1'

_Rz‘;qi[ﬁz_ﬁ” 55“2'322‘53" 25,}} (1

R2 5in23;~sin24,
sz {-bR €05 J,~C0S ,3,]—? [z,-:,- —%——’}+

R3tg i

+

[cos 28,-cos 2 A,]] (2)

The two components H and V with their
value and direction give, by composing, the
resultant of the waterpressures on the sliding

> Sinp 5111 | ARC. 10 | Ji E "




surface also in velue and direction. The point
of application follows from the fact that this
resultant has to go through the centre O of the
sliding surface.

4) Now we make a graphical composition of all
the previous determined forces :

We draw first W known in value, direction =and

point of application as indicated under 1), We
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FIG.7
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compute the value, direction and point of ap-
plication of E as explained under 3). We know
the direction of C, and also its point of ap-
Elication, because these two quantities are

ndependent of the unlmown required cohesion
Coe
On the other hand composing the two known
forces iy and E, as done in fig.,7b we get the
force R, The working line of R goes through
the point of intersection M (fig. 7) of the
forces W and E., This line cuts the working
line of C in the point L. The unknown force Q
must go through this point L, Farther this
game force is assumed to be tangent to the
circle R sing¢'

Now we adopt an arbitrary value for the

safety coefficient s, and obtain then easily

Ce
c°= 3 ,
From that, one gets C = c., . chord AB,

which is put on the line NN' ofofig. 7b. Now
we try to close the polygone with a direction
of Q given by a tangent on the circle R qinq'
through the point C (fig. 7), the angle ¢ being
given by the equation

§'= al“"1’3[ te’ ]
Sin®' can be found immediately by the graphs
of fig. 6. Generally the diagram of fig. 7b
will not close, because the value of s has
been arbitrarely adopted. But with a few try-
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ings one finds rapidly the value of 8 closing
the diagram and thus corresponding to the real
margin of safety.

EXAMPIE,

Figures 8 a and b give an example of all
the computations snd drawings necessary for

the determination of the factor of safety for
a determined sliding-circle., We find s = 0,8,

The same examination has be done with the
method of slices, also giving s = 0,8, :

The method of slices asked 2 hours, for
one trial. The complete determination by three
trials asked 5 hours.

The proposed method gives the real value
of the coefficient of safety within 1% hour,

= 0=0=0—0~0—0—

THE @ = O ANALYSIS OF STABILITY

AND ITS THEORETICAL BASIS,

A, W, Skempton M.Sc,, A M,I.C.E., F.G.S.

University Reader in Soil Mechanics and
Assistent Professor at Imperial College,
University of London.

I. INTRODUCTION.

It is known that saturated clays when
tested under conditions of no water content
change behave, with respect to the applied
stresses at failure, as purely cohesive ma-
terials with an angle of shearing resistance

@ equal to zero. This experimental observa-
tion is the basis for a method of stability
analysis which is now becoming widely used
and which is known as the @ = O analysis of
stability.

Experience is showing that the analysis
is reliable in practice; leading to correct
estimates of bearing capacity of clay soils
and of earth pressure, and giving satisfact-
ory results for the factor of safety of clay
slopes. Yet there are important limitations
to the range of application of the P = 0 ana-
lysis and to the soils in which it can be ap-
plied. These limitations must be fully appre-
ciated in the application of the method to
practical problems.

II. EXPERIMENTAL EVIDENCE OF @ = O.

In 1915 Langtry Bell carried out a series
of shear box tests on various cohesive soils
in which a restricted opportunity for water
content change under the normal pressure was
allowed. These tests showed that, at least
for the softer clays, the angle of shearing
resistance @ was small.

Bell also presented equations for active
and passive earth pressure in cohesive soils
and for thei: bearing capacity. He did not,
however, conclude that @ should be taken as
zero for clay soils in the analysed of these
problems.

So far as the author is eware this as-
sumption was first made explicitly by Felle-
nius in 1922 in connectipon with the stability
of clay slopes, when he put forward the equa-
tion shown in Fig. 5 (a). Later, in 1927,
Fellenius dealt with the problem more fully
end, in particular, he derived the .concep?t
“of the stability number c¢/yH which of great
significance in earth pressure and slope sta-
bility in clays.

But at this time little was known of the

shear properties of cleys and there was in-
sufficient evidence for the acceptance of an
analysis based on the @ = O assumption. The
problem was, in fact, not placed on a firm ex-
perimental basis until 1932 when Terzaghi pu-
blished the tests results shown.in Fig. 1.
These demonstrated that when a saturated clay
is tested in the triaxial apparatus, under
conditions of no water content change (the so-
called "immediate™ of "quick" triexial test),
the angle of shearing resistance is zero; al-
though the angle of shearing resistance ob-
tained in a test where the clay is allowed to
consolidate under the applied stress is very
considerably greater than zero.

Subsequent work has confirmed this re-
sult (see,for example, Jurgenson 1934a, Golder
and Skempton 1948), and it follows that in
saturated clays, tested under conditions of
no water content change, the criterion of
failure may be expressed in the form

o) -0z = 2¢ (1)

where o1 and 0'3 are the major and minor ap-

plied principal stresses at failure and c¢ is
the "cohesion" or sheer strength of the clay
at the particular water content of the test.

An analysis of stability can therefore
be based upon equation (1) and will lead to
correct results with respect to the applied
stresses at failure, provided the basic con-
digﬁons implicit in this equation are complied
w .

It should be noted that (o, - o;) is the
compression strength of the cla} end’there-
fore ¢ = ¥ compression strength
This result provides a ready meens of deter-
mining the cohesion of a clay sample, since
the compression strength can easily be mea-
sured.

III, THE # = O ANALYSIS OF STABILITY.

Based upon equation (1) the = 0 ana-
lysis has been developed for the calculation
of active and paessive pressure and bearing
capacity of clays and the calculation of fac-
tors of safety in clay slopes. The methods &re
summarised in the followihg paragraphs:




