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Here the equilibrium equations will take the
following form:

B . p, (24)
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In the case under cgnsideration it will be
.a
€ = 2- - -5 ’

where the distance -z-, as well as the ox will
be defined on the basis of the above mentioned
fomulae, '

From the solution of the equations (24),

(25) and (26) we will obtain

p= 2p? (27)
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Thus when determining the necessery founda-
tion depth exerting non uniform pressure on
the soil, one mgy practically speaking, apply
formula (17) or (18) (teking into account the
safety factor 1,25), in which fomulas the
height of the column of earth H should be taken
for the meximum pressure on the soil. This
pressure is determined by the formula (23) or

(27).
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COMPUTATION OF BEAMS RESTING ON SOIL.

E. DE BEER - Ghent (Belgium)

INTRODUCTION

The computation of beams resting on soil
is genersally made by considering the soil as
a perfectly elastic material, defined by a
modulus of soil reaction K (kg/cm?). Doing so,
the soil is supposed to be a perfect liquid
with a specific weight K, or an infinity of
independent springs.

The method of the modulus of soil reaction
has first been introduced in railway-construc-
tion, to define the settlement of the sleepers
resting on the ballast.

The seme method is currently used in the
U.S.A. to determine the thickness required for
concrete pavements of airfields. The modulus
of s0il reaction is defined by means of a
loading test on a slab of 30" diameter which
nearly corresponds to the contact area of the
tires of large planes.

When it 1s necessary to compute beams
with arbitrary contact areas and subjected to
arbitrary loads, the problem is to find which
value can yet be attributed to the figures odb-
tained by the method of the modulus of soil
reaction, this method being based on assump-
tions which differ largely from the real prop-
erties of the soil. Another problem is how,
for arbitrary contact areas, arbitrary dimens-
ions and arbitrary loads, the modulus of soil
reaction can be deducted from real, directly
measurable soil properties.

The question of the exactitude of the
method of the modulus of soil reaction has
already interested many technicians. For in-
stance Wieghardt and Schiel believed to have
found a more exact solution by assuming the
8011l to be a perfect liquid with non neglige-
able superficial tensions. On the other hand
Borowicka gave the exact solution for a cir-

cular slab resting on a material with a con-
stant modulus of ‘elasticity.

GENERAL SOLUTIOR.

.One can try to base the computation of
beams resting on soil on the real properties
of the soil itself. Consider a beam with an
arbitrary stiffness, subjected to arbitrary
forces, and resting on a s0il with an arbitra-
ry compressibility (fig. 1). Under tbe effect
of the forces, the beam and the soil will
deflect. These deflections are a priori un-

" known, but it is kmown that the deformations

of the beam and the soil are to concord in
each point of contact. Thus the reactions soil-
beam must be so distributed that in each point
this condition is fulfilled. Beside the usual
equations of the equilibrium of forces, one
disposes of an infinity of relations express-
ing for each point of contact the equality of
the deformations of the soil and of the beam.

Theoretically the problem thus is solved.
Practically one can proceed as follows: one
adopts arbltrarely a distribution of the re-
actions soil-beam, but which satisfies the
normal equation of equilibrium. For this s61-
licitation the deformations sp of the beam and
8y of the soil are computed, on the base of
the real properties of deformability of the
latter. As the law of distribution has been
arbitrarely adopted, the values of will
generally be different from those of st. Then
A new law of distribution can be chosen, to
obtain values 8'p and 8'y, which better agree,
and by successive approximations each desired
degree of exsctitude can be obtained.

For laterally confined soils the deform-
ability is expressed by the law of compress-
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ibility of Terzaghi. The foundation beeams are
generally located at a sufficlient depth under-
neath the soll surface; on the other hand, as
long as the effective loads are but a fraction
of the ultimate bearing capacity of the so0il
underneath the beam, the settlements of the
latter produced by lateral displacements of
the soil-particles are small in comparison
with those produced by the compression without
lateral displacement.

A simple derivation of the formula of
Terzaghi indicates that, if the lateral dis-
placements are prevented, the modulus of elas-
ticity E; of the soil can be expressed by :
where Eg = the modulus of elasticity (kg/cm

C = the constant of compressibility,
which can be determined by consolidation tests
O = the effective stress at the con-

sidered point and on the considered plane
(kg/ cm2) 0

The law (1) indicates that, according to
the nature and the history of the soil, it is
possible to have a material with a constant
modulus of elasticity, or a material that 1is
heteregeneous and/or anisotropic in relation
with 1ts compressibility.

If, in view of the simplicity, the tan-
gential reactions soil-beem are neglected, the
increase of the stresses in the soil produced
by the arbitrarely chosen law of sollocitation
can be easily computed on the base of the law
of Boussinesq or any other similar law. For
thig furpose the diagrems of Newmark are very
ugeful.

)

APPLICATION TO RECTANGULAR BEAMS SUBJECTED TO
CENTRAL LOADS.

The described general solution has been
systematically used for the computation of

rectangular beams with an arbitrary length 1
and a width b, subjected to a central load P
and resting on a soil with a constant modulus
of elasticity Eg. Assuming that the unknown
distribution of the reactions soil-beam is a
parabola of the 2nd degree, one relation of
deformability is sufficient. It is obtained by
expressing that the maximum deflection of the
beam has to be equal to the difference in
settlement of the centre and the borders. An
example of calculation is given on fig. 2. It
sppears that the deformed surfaces of the soil
So and of the beam Po only concord at the
centre and at the borders; thus the parabolic
distribution of the 2nd degree is only a first
approach to the problem.

By defining the law of distribution by the
formula /x \4 v \2 / oy

p=A(7) + 27 +c-Dln\ﬂ—- —-) )
£ 4 peaoo A

it is possible, by a judicious choice of 3
parameters, to obtain practically the exact
distribution,
In the formula (2) are:

P = the reaction soll-beam in the point
with abscissa x

x = the abscissa of the considered point,
the origin being at the centre C of the
beeam.

2 = the length of the beam.

Pc = the reaction at the rentre.

Pcyoo = the reaction at the centre under the
same beam and the same load, the stiff-
ness of the beam being supposed infin-
ite.

A,B,C,D= coefficients having the dimension of a
stress.

As 1t is necessary to know pu,=, the
formula (2) must first be applied to the case
of the beam, supposed to have an infinite
stiffness.

The fig. 3 represents an application of
the formula (2).

Although the parabolic distribution of the
second degree is not an exact one, the values
of the moment at the centre given by this dis-
tribution differ only very little from the
moments corresponding to the distribution of
the formula (2).

The case of rectangular beams resting on
soils with a modulus of elasticity linearly
increasing with depth has also been considered.
One gets practically the same conclusions as
for a s0ill with a constant modulus of elastic-

ty.

COMPARISON OF THE RESULTS OBTAIKED BY THE
METHOD OF SUCCESSIVE APPROXIMATIONS WITH THOSE
OBTAINED BY THE METHOD OF THE MODULUS OF SOIL
REACTION.

The modulus of soil reaction K being no
physical constant for a given so0il, it is fin-
ally necessary to define this quantity.

In cases of a soil with a constant modulus
of elasticity K is defined by:

4 E
K=— 2 (3)
3 39?71
In case of a soil with a variable modulus
of elasticity, K 1s defined by

k= Lm (4)

where p, = mean value or the reactions soil-
beamn,
s_ = the settlement of the beam, suppos-
“® ed to be of infinite stiffness.
This settlement is computed on the
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base of the real properties of com-
pressibility of the soil.

The value of K having been defined, it is
now possible to utilise the method of the mo-
dulus of soil reaction to computé the moment
at the centre.

Comparing the values obtained for the
moment at the centre by the method K with
those obtained with the formula (2) or with
the parabolic distribution of the 2nd degrese,
it is found that for a high stiffness I the
method K gives for the moment "C values smaller

than the exact ones, while for very low stiff-
nesses I it is the contrary. Thus for high
stiffnesses the application of the method K
can furnish values which are to low and thus
could become dangerous.

The negative divergence beingtmaximum for
I =00, fig. 4 gives in case EB = ¢c2, the values
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of the divergence e in function of the ratio
L for I =00. The di¥ergence becomes larger,

en the ratiol/bdecreases, thus when the shape
of the beam approaches that of a square slab.
Since only "beams" where considered, for which
the length is much larger than the width, the
curve on fig. 4 is limited to values £/b>2,

For these values, the maximum negative diver-
gence between the moment at the centre given
by the method K and the one obtained by the
parabolic method is smaller than 18 %.

In case of a beam subjected to an axial
single load and resting on a soil with a con-
stant Egq, a safe value of the moment at the
centre can easily be found. Indeed, it is suf-
ficient to compute the mean value of the modu-
lus of soil reaction by means of the formula
(3). One applies the method K to obtain M'..

For the ratio{/lof the given beam, the fig. 4
gives the value of ey Finally Mc is computed

by the formula
M, = M' 100 (5)
c - ¢ 100 + e'M

The value MC so computed will be larger

than the real moment, whatever the value of the
moment of inertia I and of the ratio £/b will be.

Another way, which is a little less rapig,
but gives a more exact value, 1is to assume
that the reactions soil-beam sre distributed
according to a parabola of the 2nd degree, and
to apply the general method.

In case of a soil with a variable modulus
of elasticity, the computations show that the
maximum value of the negative divergence be-
tween the moment at the centre given by the
method K and the exact moment is amaller than
30 %; the negative divergence attains its maxi-
mum value, when the stiffness of the beam is
infinite. For every small stiffnesses the
method K gives safe values. A more exact value
for the moment at the centre can again be ob-
tained by assuming the law of distribution of
reactions soil-beam to be a parabola of the
second degree.

Finally for rectangular beams, subjected
to a single central load, the moment at the
centre obtained by applying the method of the
modulus of soil reaction - this latter being
‘defined by the formulas (3) or (4) - is never
more than 30 % smaller than the exact value.
Since the safety factors adopted for the com-
putation of the dimensions of a beam are at
least 2, it follows that, by using the method
of the modulus of soil reaction for the con-
sidered case, dengerous errors in the choice
of the dimensions of the beam are excluded.

For the rest it is worthwhile to note
that this conclusion is not longer valid, when
it is necessary to compute the moments and the
shear forces in an arbitrary section.

~0-0-0-0-0-0~-



