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by the la t e  P ro f. I r .  A .S. KEVERLING BUISMAN, 
adapted by I r .  T.K. HUIZINGA, D irector o f the 
Laboratory of S o il  Mechanics, D e lft ,  Holland.

computation of a quay wall.

INTRODUCTION.

Buisman considered th is  computation scheme fo r  these and s im ila r  problems 
to be a so lu tio n , which, although i t  may not be mathem atically p erfect,m ight 
give an in sigh t in to  the various fo rces  w ith th e ir  re su ltin g  s tre sse s  and 
s tra in s  and which provides a r e s u lt , in  which at le a s t  the e s s e n tia l propert­
ie s  o f the foundation s o i l  are expressed.

I fe e l  th a t, although the computation dates from 1931» the contents are 
as yet in s u f f ic ie n t ly  known. Therefore the basic  thought i s  here given fo r  
p u b lication  without paying undue a tten tio n  to the ca lc u la tio n  o f s tre s s e s  in  
the various p arts o f the construction.

T.K. Huizinga.

DESIGN OF THE QUAY WALL.

The design o f the quay w all i s  given in  
f i g .  1 . The s la b , ca rrie d  by timber p iles ,w as 
la id  on the o r ig in a l ground su rfa ce , which was 
afterwards ra ised  to  1.50 m + NAP. An over­
burden o f 4 ton/m2 i s  allowed fo r .

DATA NEEDED FOR THE COMPUTATION.

The inform ation necessary fo r  a complete 
computation on s t a b i l i t y  and strength  consists 
o f: s p e c if ic  g r a v it ie s  o f  the foundation s o i l  
la y e rs  and o f the future sand f i l l ,  f r ic t io n  
p ro p erties o f these s o i l s ,  and, in  view o f the 
combined action  o f s o i l  and p ile  groups, the 
e la s t ic  p ro p erties o f the p i le s  and of the 
s o i l  a f te r  the d riv in g  o f the p i le s .  Another 
fa c to r  which has considerable in fluence on the 
re su lt  o f  the computation i s  the h o rizo n ta l 
pressure in  the s o i l  p rio r  to the dredging in 
fro n t of the quay w a ll. One can only in d ica te , 
on the b a sis  o f th e o re tic a l consid erations, 
the higher and lower lim itin g  values o f th is  
pressure, and only in v e stig a tio n s  in  the field  
can extend our knowledge in  th is  resp ect.

HORIZONTAL PRESSURE.

Owing to the 5 m f i l l  on the area behind 
the quay w a ll and a lso  to the expected over­
burden, the s o i l  mass behind the w a ll i s  load­
ed with about 10 ton/m2. The a c tiv e  earth 
pressure in  the sand f i l l ,  occurring w ith a 
s lig h t  y ie ld in g  o f the superstructure can be 
f a i r ly  accu rately  determined (cohaesion = 0,
0 " 30°). The a ctiv e  earth pressure in  the 
s o i l  below 3« 50 m -  NAP w il l  be more d i f f i c u lt  
to c a lc u la te . Probably one i s  on the sa fe  side 
i f  one n eglects  cohaesion and keeps to the me en­
sured angle o f in tern a l f r ic t io n  o f  27°. In 
the usual way a diagram can now be drawn o f 
the a ctiv e  earth p ressure, assumed to act ho­
r iz o n ta lly  on a v e r t ic a l  plane through the 
back o f the slab  ( f i g .  1) (Also in  th is  plane 
an appreciable v e r t ic a l  f r ic t io n  w i l l  be a ct­
ing. This w i l l  in fluence the h orizon tal fo r ­
ces only to an extent o f e .g .  10-20 %. This 
favourable e f fe c t  i s  here only mentioned pro 
memoria). Any other diagram showing the same 
or g rea ter surface area above any point o f the 
v e r t ic a l  w i l l  be equally  con sisten t w ith the 
maintenance o f equilibrium . The s tr e s s  d i s t r i ­
bution i s  in  fa c t  s t a t i c a l ly  undetermined and 
depends on the p o s s ib i l i t ie s  o f deformation. 
Where the p i le  groups show e la s t ie  bending un­
der the r ig id  superstructure the s tr e s s  d is ­
tr ib u tio n  w i l l  tend to  concentrate at the r ig ­
id  superstructu re, and along the p i le s  i t  w ill  
be as small as i s  con sisten t w ith the lo c a l

conditions o f equilibrium . These conditions 
require a re la tio n sh ip  between the p rin c ip a l 
s tre ss e s  o f t g a( 4 5 - ^ ) f but i t  i s  proved that

th is  r a t io , which g iv es  the lim itin g  conditiaa 
fo r  a s l ip  0, , i s  d iffe r e n t  from the r a tio  
lim itin g  a remolding <0a , which i s  the only de­
formation lo c a l ly  p o ss ib le . Terzaghi pointed 
to th is  d iffe re n ce  and fo r  sand he gave r a tio s  
between the p rin c ip a l s tre s s e s  of 0.288 to
0.106 fo r  s l i p ,  end r a tio s  o f 0 .15  to  0.16 
fo r  remolding. For c o llo id a l c la y  he fin d s 
p r a c t ic a lly  equal values fo r  both cases. For 
sand, d ire c t  measurements fo r  the determina­
tio n  o f the 02fo r  remolding i s  not fe a s ib le ,
and the only way out is  an experimental te s t  
fo r  the case o f a f le x ib le  w all w ith  la t e r a l  
earth  pressure. Even with very s lig h t  d e fle c ­
tio n s i t  appears that the pressure in  the mid­
dle o f the w all i s  very small so that one i s  
in clin ed  to su b stitu te  the usual s tr a ig h t-  
lin e  earth pressure diagram by a curved one.
In th is  case the values o f the bending moments 
drop to h a lf  the values obtained by the 
s tr a ig h t- lin e  method. For c la y  d ire c t  mea­
surements may be fe a s ib le . Here the difference 
is  sm all.

Therefore, w ith regard to  the la t e r a l  
loads o f p i le s ,  i t  i s  o f  great importance to 
f in d  out i f  there e x is ts  a great d iffe re n ce  
between 0̂  and 02*

COMPUTATION OF THE AXIAL PILE LOADS.

Computations o f the a x ia l loads on the 
p ile s  have been carried  out by means o f two 
methods:
f i r s t l y  by the approximate method, d ivid in g  
the p ile s  in  3 groups and assuming equal fo r ­
ces in  the p ile s  o f each group, secondly by 
the e la s t ic  method, assuming a r ig id  super­
structure on p i le s  o f equal e la s t ic  properties 
(method Nokkentved). I t  appears th at both 
methods give almost the same r e s u lt  (20 tons 
compression, 10 tons ten sion  in  the most un­
favourable ca se s). Only fo r  the purpose o f 
checking the dimensions o f the superstructure 
the e la s t ic  method i s  p re ferab le .

Next, the bending stre ss e s  in  the p ile s  
and in  the sheet p il in g  have to be in v e s tig a t­
ed, and new and important questions a r is e  in  
th is  resp ect. To s im p lify , a r ig id  la y e r  (sand) 
i s  assumed below 12 m -  NAP and the s o i l  above 
t h is  send i s  assumed to  be homogeneous.

COMPUTATION OF THE SHEET PILING.

Be the pressure in  v e r t ic a l  planes d i­
r e c t ly  behind the sheet p il in g  p; then the
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value a tta in ab le  by p at a ce rta in  depth w i l l  
be lim ited , because p cannot exceed a ce rta in  
va lu e. For i t  i s  c le a r  that w ith increasin g 
depth, the increment o f the weight o f  the 
earth mass I ( f i g .  2) i s  p a r t ly  ca rried  by 
f r ic t io n ,  so that the h orizon tal pressure from 
a ce rta in  point downwards does not increase 
any more. This is  the case as soon as

?.((,♦  2 j d ) F - V t 2 J

from which i t  fo llo w s that

p = -L
■ g _ 0 ,5  x  l x l

- = 0,6 ton/m
(i, + 2nd) F (l + O, S)x 0,6

In bay^fcl, between the f i r s t  and the 
second row o f p i le s ,  the h orizon ta l pressure 
w i l l  be g rea te r, because the f i r s t  row is  de­
f le c te d  by the excess pressure o f  I I  over I ,  
and a lso  because the r a tio  between area and 
perim eter Is  le s s  favourable fo r  I I  than fo r
I .  I f  the pressure in  the bays between the 
successive rows o f p ile s  would decrease l i n ­
e a rly  from E - 5 i 7 ton/m2 at the back to p • 
0,6 ton/m2 in  fro n t and i f  th is  pressure was 
evenly d istr ib u te d  over the 14 p i le  groups, 
then there would be a pressure in  bay I I  o f

p + jjj; " 1  ton/m2
which pressure per m' depth does not provoke 
s u ff ic ie n t  f r ic t io n  along the p ile s  to carry  
the weight o f a 1 m th ick  s o i l  la y er.

A favourable circumstance i s  th at the 
second row o f p ile s  i s  battered  and there­
fore w ith  in creasin g  depth approaches the 
f i r s t  row. I f ,  s ta r t in g  at the top , one t r ie s  
to fin d  out whether at a ce rta in  depth the 
v e r t ic a l  pressure w i l l  exceed 2.66 ton/m2 and 
th erefo re  the h orizon tal pressure w i l l  exceed 
2.66( tg  45 -  27/2) ■ 1 ton/m2 , i t  appears 
that at a pressure o f s l ig h t ly  more than 1 
ton/m2 a sta te  o f equilibrium  w i l l  e x is t .  A l­
so from the computation o f the p ile  fo rces  
(as shown below) i t  fo llow s by e la s t ic  con­
sid e ra tio n s, that in  bay I I  a pressure s l ig h t ­
ly  higher than 1 ton/m2 w i l l  occur, so that 
in th is  bay and even more so in  the bays fu r­
ther shoreward the s o i l  w i l l  be carried  by 
p ile  f r ic t io n  to such extent that i t  seems 
s u ff ic ie n t  to  assume a la t e r a l  pressure on 
the sheet p ilin g  o f only 0.6 ton/m^ as a re­
su lt  o f  the "bin  e f fe c t " .

I f ,  th e re fo re ,th e  h o rizo n ta l earth p res­
sure was evenly d istr ib u te d  over a l l  the piles, 
whereby each p ile  would carry 400 kg/m', then 
the sheet p il in g  would, under the in fluen ce 
of the b in  e f f e c t ,  d e fle c t  more than the ad­
jo in in g  row o f p i le s ,  so th at the sheet p i l ­
ing has to  r e s is t  u ltim a tely  only the "bin 
pressu re". With uneven d is tr ib u tio n  o f the 
earth pressure over the p i le s  and low i n i t i a l  
h orizon tal s tre s s e s  in  the s o i l  mass, the 
p ile s  at the back would have to r e s is t  more 
than the p i le s  in  fro n t and the la t t e r  would 
show le s s  d e fle c tio n . In that case the f i r s t  
reasoning with regard to the load on the 
sheet p il in g  i s  even more ap p licab le .

While computing the stren gth  o f  the 
sheet p il in g  the question a r is e s  to what ex­
ten t i t  may be considered to have a fix e d  end 
in the deep sand. From a ca lc u la tio n  (theory 
o f e la s t ic a l ly  supported beams) i t  appears 
that the bending s tre ss  in  the sheet p il in g  
amounts to about 150 kg/cm2 under the most 
unfavourable conditions.

HORIZONTAL PILE FOBOBS.

In order to  solve the problem of the 
p ile  d e fle c t io n s , we know the values o f  the

h orizon ta l pressures in  fron t and behind,but 
i t  remains to  fin d  a sen sib le  approximation 
o f the d is tr ib u tio n  o f the pressures over 
the p i le s .  This depends on the f l e x i b i l i t y  
o f the p i le s ,  the shearing modulus of the 
s o i l  and the h orizon ta l co m p ressib ility  of 
the s o i l  a f te r  the drivin g  of the p ile s .  To 
th is  end an in v e stig a tio n  into the e la s t ic  
p ro p erties o f the s o i l  in  the undisturbed 
s ta te  (E and G) i s  required, and also an in ­
s ig h t in to  the h orizon tal s tre ss e s  o f the so il 
a f te r  the d rivin g  o f the p ile s .  The higher the 
h orizon ta l s tre s s e s  were, p rio r  to dredging 
in  fro n t and f i l l i n g  up o f the area behind, 
the b e tte r  i t  i s :  the fu tu re h orizon tal com­
p ression  o f the s o i l  w i l l  be sm aller, but 
not the h o rizo n ta l re la x atio n  in  fro n t.
This re la x a tio n  however i s  not so e s s e n t ia l, 
so th at g en era lly  speaking a g rea te r  p re- 
s tre s s  w i l l  re s u lt  in  sm aller d e fle c tio n  d i f ­
feren ces o f the p ile s  and to  an eq u a lizatio n  
o f the in d iv id u al p i le  reaction s against the 
t o t a l  pressure d iffe re n ce . I t  i s  obvious that 
low co m p ressib ility  o f the la y ers  in  horizon­
t a l  sense in  i t s e l f  already (e .g . sand) would 
promote th is  eq u alization  and also that a 
high shearing modulus w i l l  lead to a s h ift in g  
o f the s tre sse s  to  the s o i l  and away from the 
p ile s .  Here a ls o , as was the case at the sheet 
p il in g , there i s  the un certain ty  about the 
p o sitio n  o f the point o f con traflexu re o f the 
p i le .  Without f ie ld  observations one can only 
go by on e's personal tech n ical fe e lin g .

The s o i l  mass under the foundation slab  
w i l l  be pushed forward i f  the re s is ta n ce s  o f 
the s o i l  and o f the p ile s  do not counteract 
t h is .  At the top the only re sis ta n ce  comes 
from the p ile s ;  at the bottom there i s  the 
re sista n ce  o f the s o i l  in  fro n t of the w a ll, 
but mainly the shearing re sista n ce  o f the 
h ea v ily  loaded s o i l  mass. The p i le s  w i l l  bend 
w hile try in g  to keep the s o i l  mass in  p lace 
and every p ile  has a point where the d e fle c ­
t io n  i s  g rea te st and the slope o f the p ile  
a x is the same as b efore. In th is  p a r t ic u la r  
la y e r , run through by p ile s  at an unchanged 
angle, square angles have su ffered  no change 
and shearing s tre ss e s  do not e x is t.1

I t  i s  o f prime importance to know at 
what depth d under the foundation slab  th is  
la y e r  i s  s itu ated  because -  apart from even­
tu a l small shearing fo rces in  the p i le s  which 
may be actin g at the points o f  the g rea test 
d e fle c tio n  -  the t o t a l  earth  pressure o f the 
la y ers  above must be re s is te d  e n t ir e ly  by the 
su p erstru ctu re.

Between th is  plane at depth d and the 
bottom o f the foundation s la b , the s o il  
la y ers  w i l l  be able to transm it shearing 
fo rce s. At the bottom of the foundation slab  
these w i l l  be very sm all, e ith e r  because the 
S o il may be free  from the foundation s la b , or 
because o f the low v e r t ic a l  e f fe c t iv e  s tre s s  
in  the s o i l  w ith the re su ltin g  very  small 
shearing strength .

The diagram of the shearing fo rces w ith 
the depth can be approximated by a p arabo lic  
curve, the ends o f  which, above and below, 
are determined by the p re v a ilin g  conditio'ns 
v iz .  below by the grad u ally  in c lin in g  p i le  
( fo r  ca lc u la tio n  purposes a l l  p i le s  are as­
sumed v e r t ic a l ) ,  above by the grad u ally  in ­
creasing power to  transm it shearing fo rce s .
The diagram o f the p ile  loads i s  then tr ia n ­
gu lar ( f i g .  3) and i t  dim inishes from the 
value 2T/d above, to  zero at depth d, where 
T represents the t o t a l  h orizon ta l reaction  of 
a l l  the p ile s  at the top, in  as much as i t  i s  
needed fo r  the equilibrium  o f the s o i l  mass. 
The bending moment \ ln  o f the p ile s  at the
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f ix e d  end at the top , i s  then 1/ 4 .Td and at 
depth d (1^ ) 1/12 .Td and the corresponding

d e fle c tio n  “ s 4* »S-*13 ■ • (T and d are as 
40 p ile s

yet unknown in  th is  expression ). In order to 
determine them, i t  i s  proposed to  n eglect at 
f i r s t  the la t e r a l  com pressibility  or expansion 
of the s o i l  and to  consider e x c lu s iv e ly  de­
formations caused by shear. In th at case a l l  
the p ile s  w i l l  d e fle c t  an equal amount and 
consequently o f fe r  the same re s is ta n ce , so 
that the reaction  T at the top o f the p ile s  
w i l l  be d istrib u te d  evenly over a l l  the p ile s .

One might proceed conveniently by assum­
ing f i r s t  that the s o i l  mass containing the 
p ile s  is  fre e  to move forward, as i f  a l l  the 
p ile s  were cu t, and then to determine fo r  th is 
case the deformation caused by the pressure 
o f  the s o i l  mass below 3*50 m -  NAP at the 
back. To th is  end the various shearing fo rces 
have to be determined f i r s t .  A d i f f i c u l t y  here 
i s  the choice o f the value fo r  the passive 
earth  pressure. However, i t  appears that th is  
has not much e f fe c t  on the r e s u lt  as the in ­
fluence o f the shearing fo rces  diminishes 
sharply with the depth (g re a te r  shearing mo­
dulus). In th is  way a ce rta in  displacement o f 
the la y e r  at depth d i s  found. Now we in tro ­
duce an imaginary counter fo rce  T w ith a cor­
responding couple, which, applied at the head 
o f the p i le s ,  bend these back to th e ir  o r ig in ­
a l p o sitio n , and during th is  actio n  not only 
the d e fle c tio n  o f the p ile s  above the layer 
concerned comes in , but a lso  the pushing-back- 
ward-again o f the s o i l  la y e rs . Thus a certa in  
value o f T may be found. However, w hile de­
term ining the displacements by shear, one 
should have taken T into account from the very 
beginning, because shear s tra in s  are not d i­
r e c t ly  proportional to the fo rces  but fo llow  
more complicated laws, and th is  precludes the 
ap p licatio n  of the p rin c ip le  of superposition. 
From te s ts  on undisturbed samples i t  i s  found 
that the shear can be approximately expressed

\

<r= «  7T-*\ ( " 8 « )

The re s u lts  of th is  in v e stig a tio n  may 
best be embodied in  a tab le  and afterwards i l ­
lu stra ted  by p lo ttin g  the successive deforma­
tion s o f the layers at an estim ated value of 
T on an exaggerated s c a le , in  order to d eter­
mine the deformation of the s o i l  mass. The de­
formation must check w ith the d e fle c t io n  of 
the p ile  at th is  estim ated value of T. I f  not, 
the same process must be repeated fo r  another 
value o f i .

DISTRIBUTION OF T OVEB THE PILES.

Up t i l l  now we assumed the s o i l  mass to 
be undeformable in  h orizon tal sense and we 
have only d ea lt w ith the e la s t ic  r e la t iv e  
deformations of the layers caused by shear. 
Under these condition s, and also  when lo c a l 
r ig id  sandlayers act as a bracing between the 
p i le s ,  re su ltin g  in  equal d e fle c tio n s , a l l  
p i le s  would carry  an equal share o f the ho­
r iz o n ta l earth pressure.

This i s  not the case, i f  we take account 
o f the fa c t  that the s 6 i l ,  before the dredg­
ing in  fro n t o f the sheet p ilin g  and before 
the f i l l i n g  up o f the area at the back, was 
in  a s ta te  of h orizon ta l s tr e s s , which s tre s s  
might be determined by f ie ld  te s ts  and which 
la t e r  on w i l l  decrease at the fro n t and pos­
s ib ly  increase at the back, re su ltin g  in  d ef­
in ite  expansions and contractions in  a h o riz­

ontal sense. Consequently the d e fle c tio n s  o f 
the p ile s  w i l l  be unequal and th erefo re  more 
dangerous fo r  the p ile s  that d e fle c t  most.
This points to the n e ce ssity  to  t r y  to  evalu­
ate the unevenness of the d is tr ib u tio n .

I f  one now assumes that the dredging in  
fron t and the f i l l i n g  behind i s  done, but that 
the s o i l  i s  s t i l l  undeformable i . e .  the co ef­
f ic ie n t s  A and B in  the formules fo r  the e la s ­
t i c i t y  moduli of the s o i l  fo r  compression and 
expansion (Ec=A.<r and Ee-B<r ) are in f in i t e ly  
la rg e , then the diagram o f 'th e  h o rizo n ta l 
earth  pressures between the su ccessive  rows 
o f p ile s  (which here again are assumed v e rtic ­
a l)  from back to fro n t w i l l  be a s tra ig h t 
lin e  and a l l  the p ile s  w i l l  show at depth d 
an equal d e fle c tio n  forward with respect to 
p ile  head and p ile  point.

I f  one assumes next th at the s o i l  sudden­
ly  acquires the deformations re su ltin g  from 
the changed conditions o f s t r e s s , then the 
d istan ces between the p ile  heads w i l l  remain 
constant owing to the foundation s la b , and 
also  between the p ile  p o in ts , because o f th e ir  
lo ca tio n  in  sandlayers w ith very large A.Any 
change in  the distances o f the p i le  points 
would fo r  that matter cause only sm aller stres­
ses in  the p ile s  so th at the f ix in g  o f heads 
and points i s  the most unfavourable assumption. 
The e la s t ic  lin e s  o f the various p ile s  w i l l  
now not be id e n tic a l any more.

Next we s h a ll t r y  to  determine which 
ra tio  w i l l  obtain fo r  any p i le  between the de­
f le c t io n s  at the depth d fo r  the case o f 
equal d e fle c tio n s  o f a l l  p i le s  (W) and fo r  
the case of the re a l d e fle c tio n s  (W » W +M ), 
or, between the o r ig in a l lin e a r ly  assumed d ia­
gram o f h orizon ta l pressures and the re a l 
one, where deformation i s  taken into account. 
The d iffe re n ce  o f  the d e fle c tio n s  o f two con­
tiguous p ile s  (dW ) must check w ith the ho­
r iz o n ta l s tr a in  o f the s o i l  in  between.Again, 
each d e fle c t io n  in  p a r tic u la r  depends on the 
pressure d iffe re n ce  at both sid es o f the p i le .

I f  we now consider the bays numbered x -1 , 
x and x + 1  ( f i g .  5)» then the p ile  x - 1 ,  x 
w i l l  show a d e fle c tio n  o f 
P_ -  P„ p„ -  px-1

"C"
. W , and p i le  x , x+1 : x+1. W

so that the d iffe re n ce  o f d e fle c tio n  w i l l  be

Px -1  -  ^ x  * Px+1 W,

where C represents the pressure increment in 
the s o i l  from p ile  to p i le ,  so th a t a d e fle c ­
tio n  W w i l l  correspond w ith a pressure in ­

i ’ 
wcrement of C and with a reactio n  of the

p ile  head of numt e r  of p ile s

Px i s  a function  o f x , the h orizon ta l

distance to a fix e d  o r ig in  in  the plane at 
depth d. By means o f the Mac Laurin s e r ie s  
fo r  and a d e fle c tio n  d iffe re n ce

o f d W m • W is  found. The d iffe r e n ­

t i a l  equation o f the force  d is tr ib u tio n , ex­
pressing that the compression i s  equal to the 
d e fle c tio n  d iffe re n c e , fo llo w s:

f  ^  - Px" g

(compression = d e fle c t io n  d iffe re n ce ) 
where a i s  the d istance between the p ile s .

I t  w i l l  be s u f f ic ie n t ly  accu rate, i f  
the range o f p i s  not too g re a t, to assume
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a constant E, which however must have 2 d if ­
ferent values v iz .  fo r  the area where p res­
sure increase is  expected (a t  the back) and 
for the area where pressure decrease takes 
p lace. The ty p ic a l s tr e s s -s tr a in  diagram o f 
a s o il  sample ( f i g .  6) may i l lu s t r a t e  t h is .

The d if fe r e n t ia l  equation fo r  the area 
of pressure increase i s  then:

Px -  po

and fo r  the area o f pressure decrease

- P" I
Px ~ Pq

„bx + e
-bxSolved:

Px ~ po * G1 -  T ~2 

which g ives a fte r  d iffe r e n tia t in g  twice f o r x  

(Px ~ P0)" - U2 (Cx ebx -  C2 e -  b2(P i _ p^j

O P a
where b represents

I f  we choose the zero point fo r  x at a point 
of constant pressure, then 0 - + C2 or

C1 " * °2 *
The pressure in  fro n t must be 0,6 ton/m^ and 
at the back 5»? ton/m2. Therefore ( f i g .  7) 

b x -b x
_ V  V V  V

-0.44 - c .e  -  c .e
b x -b„

+0.07 - c .e  a a -  c .e  8 8

D ividing the former by the la t t e r :

-6-3
*v - bv *v _e_____ -  e_____

ba xa - ba x a e -  e
which condition i s  s a t is f ie d  by choosing the 
o r ig in  in  the second bay from the back:

xa * - 2 *v * «

Since the re su lt  does not check e x a c tly , we 
must use the val

not d i f f e r  much.

must use the values c & and cv , which w i l l

c fo llow s from 
6 0 .0 7

How the sta te  of s tre s s  at any point in  
the s o i l  can be computed and p lo tted  on a 
diagram. I t  i s  obvious that the computation 
i s  most e s s e n tia l in  the outside bays. I t  ap­
pears from the c a lc u la tio n  that the s tre ss e s  
in  the bay behind the sheet p il in g , r is e  so 
high that the stre ss e s  are not determined by 
equilibrium  con d ition s, because they exceed 
1 ton/m2.

This same computation can be carried  
through also in the case o f  p ile s  o f which 
the heads are not wholly fix e d  in  the found­
ation  slab .

—0—0—O—O—0—0—

SUB-SECTION Vc

EARTH PRESSURE AGAINST UNDERGROUND CONSTRUCTIONS

Y  q   ̂ EXPERIENCE WITH FLEXIBLE CULVERTS THROUGH RAILROAD EMBANKMENTS

O.K. PECK

Engineer of S tructures D.and R.G.W. R ailroad, U.S.A.

RALPH B. PECK

Research Professor of S o il  Mechanics U niversity  of I l l i n o i s ,  U.S.A.

INTRODUCTION.

In about 1926, in s ta l la t io n  o f la rg e - 
diameter f le x ib le  s te e l cu lv e rts  was i n i t i a t ­
ed on the Denver & Rio Grande Western R a il­
road in  Colorado, Utah and New Mexico. About 
th ir ty  such cu lv e rts  ranging in  diameter from
7.5 to  15 fe e t  were placed beneath f i l l s  vary­
ing in  depth from 2 to  50 fe e t .  The behavior 
of these cu lve rts  has been c lo s e ly  observed 
since th at tim e, d e fle c tio n  measurements have 
been made on a number of the stru ctu re s, and

measurements made in  d e ta il  on two th at were 
subjected to extreme conditions of b a c k f i l l ­
ing. This paper d escribes the r e s u lts  of the 
observations.

GENERAL DISCUSSION.

The cu lv e rts  co n sist of corrugated s t e e l  
or iron  p la te s  bent to  a c ir c u la r  shape before 
d e liv e ry , and assembled into a c y lin d r ic a l 
unit in  the f ie l d .  The th ickness of the s te e l 
v a r ie s  from .1719  inches to  .2812 inches. The


