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SUB-SECT ION I e

KHKABTfjg HTBEWfiTH AND gQfTTT.TBBtUM OP SOILS 

SHEARING STRENGTH AJTD WATER CONTENT. A COMPT.WMRNT TO THE SHEARING THBORY

H. HAEFBLI

In s t itu te  fo r  Hydraulic Research and S o i l  Mechanics, 
o f the Swiss Federal In s t itu te  o f Technology, Zorich .

I .  DEFINITION OF THE PBOBIBM.
The p o s s ib i l i t ie s  o f in flu en cin g  the lnr- 

te m a l f r ic t io n  and the shearing stren gth  of 
fin e -g ra in e d  kinds o f s o i l  by a lte r in g  the wa­
t e r  content are as va ried  as the nature o f wa­
t e r  i t s e l f .  This v a r ie ty  i s  on the one hand 
conditioned by the f a c t  th at the w ater contain­
ed in  the s o i l  may occur in  three d iffe r e n t  
forms, namely fr e e ,  m olecularly combined, or 
chem ically combined. On the other hand, in  con­
n ection  w ith  th at we have the f a c t  th at the war- 
t e r ,  according to circum stances, may act a t one 
time as lu b rica n t and at another time as an an­
t ilu b r ic a n t  . This becomes p a r t ic u la r ly  c le a r  
when the shearing s tre s s  i s  in v e stig a ted  w ith 
the m aterial not only in  the satu rated  s ta te , 
but a lso  unsaturated.

Known experimental and th e o r e tic a l works
1) 2) 3) 4) have been concerned h ith erto  a l­
most e x c lu s iv e ly  w ith c le a r in g  up the shearing 
stren gth  condition s in  satu rated  loose se d i­
ments. But, fo r  rounding o f f  the shearing the­
ory, the behaviour of moist m ateria ls should 
be examined over the whole range between the 
dry «nfl the satu rated  s ta te s . The p a r tic u la r s  
given in  se ctio n  I I  o f the present study serve 
t h is  purpose, but make no claim  to  be complete.

In p ra c tic e  i t  i s  o ften  necessary to  de­
termine the shearing stren gth  and in te rn a l 
f r ic t io n  of m oist, non-saturated loose sed i­
ments, as f o r  instance when endeavouring to 
co n tro l earth  s l id e s , whose frequency i s  gen­
e r a l ly  g rea te st in  the la t e  autumn, when heavy 
r a in - f a l l s  occur a f te r  lengthy periods of 
drought. The w ater en terin g  in to  the shrinkage 
cracks causes an in creasin g  m oistening through 
the m aterial u n til  sa tu ration  i s  reached, and 
e f fe c t s  a corresponding change in  the shearing 
stren gth  and the in te rn a l f r ic t io n  of the s o i l
3 ). The behaviour o f unsaturated loose sed i­
ments a lso  p la ys  a d ecis ive  p art in  ceram ics, 
in  the brickmaking industry and above a l l  in  
foundry technique. The moulding sands used in  
a foundry are worked-up w ith  w ater contents 
which l i e  f a r  below the satu ratio n  p o in t, so 
th a t here a l l  three phases (s o lid  m ateria l, wa­
te r  and a ir )  must be considered in  t h e ir  r e c i ­
p rocal a ctio n  on each other.

A fte r  considering the tra n s it io n  shown be­
tween the moist and saturated  s ta te s , a short 
survey i s  given in  sectio n  I I I  regarding the 
la t e s t  s ta te  of the shearing theory developed 
fo r  saturated  loose sediments; th is  w i l l  be 
more c lo s e ly  in v e stig a te d  in  another p lace  6). 
As an extension of th a t, a simple re g u la r  r e la ­
t io n  was found regarding the change in  w ater 
content of fin e -g ra in e d  loose sediments during 
shearing operations.

I I .  SFTBARTNG STRENGTH OF UNSATUBATBD LOOSE SE­

DIMENTS AS A FUNCTION OF THE WATER CONTENT.

1 . T h eoretical co n sid eration s.
In order to in v e s tig a te  the dependence of 

the shearing stren gth  on the water content be­

low the satu rated  lim it ,  we s t a r t  w ith the dry 
powdery s ta te  of the loose sediment. To t h is  
powder more and more water i s  added step by 
step , the kneaded m aterial i s  compressed a t a 
given  p ressu re, fo r  instan ce <T « 1 kg/cm2, and 
a f t e r  co n solid ation  sheared slow ly under the 
same normal s tr e s s . The shear stren gth s th ere­
by obtained are p lo tte d  as a fu n ction  o f the 
w ater content and. may g ive  the curves d esignat­
ed w ith  A-B in  F ig . 1 .  At a c e rta in  w ater con­
te n t wj measured a f te r  the shearing, the satu­
ra tio n  p oin t B i s  f i n a l l y  reached. A s t i l l  
h igher w ater content could only be obtained in  
the c losed  system by the form ation o f s tressed  
pore w ater. In  the open system on the other 
hand, the sample w i l l  always drain  again during 
the shearing operation to  the f in a l  water con­
te n t wj corresponding to  the point B.

Further the question a r is e s  as to  what 
happens i f  the water i s  withdrawn from a com­
pressed and f u l l y  consolidated  sample w ith  wa­
t e r  content w j, in  order to  make the process 
gone through r e v e r s ib le . I t  w i l l  then be found 
th a t the process here i s  not r e v e r s ib le , since 
sa tu ratio n  at f i r s t  remains maintained by eva­
p oration  when water i s  c a r e fu lly  withdrawn 7 ) . 
The sample sh rin ks, passing through the f i r s t  
phase of the shrinking p rocess, during which 
time the c a p il la r y  pressure grad u ally  decreas­
es u n t i l  i t s  upper lim it ,  designated shrinking 
pressure by T erzaghi, i s  reached. The shearing 
stren gth  corresponding to  th is  phase i s  given 
by the p art of the curve B -  E, which i s  iden­
t i c a l  w ith  the satu ratio n  lim it .  I f  the remov­
a l  o f water i s  continued a f te r  the shrinking 
pressure (E) has been reached, whereby the sec­
ond phase o f the shrinking process s t a r ts ,th e  
sample w i l l  no longer be satu rated , sin ce i t s  
pores f i l l  p a r t ly  w ith  a ir .  The increase in  
the c a p il la r y  ten sions becomes grad u ally  le s s  
and the shearing stren gth  passes through the 
curve E -F , whose p o s itio n  and shape depend on 
the p ro p erties  o f the loose sediment in  ques­
t io n . Thus the h y ste re s is  loop a r is e s  which i s  
i l lu s t r a t e d  p u rely  diagram m atically in  F ig . 1 .  
I t s  shape i s  not more c lo s e ly  known, and w i l l  
depend not only on the m ateria l, but a lso  on 
the conditions under which the t e s t  i s  conduct­
ed. Further, i f  the co n solid ation  pressure 
would be chosen h igh er, fo r  instan ce CT = 2 
kg/cm2 Instead o f <T « 1 ,  the whole h y s te re s is  
loop would l i e  correspondingly h igh er. A ll  
h y s te re s is  loops have a common satu ratio n  lim ­
i t ,  the form ulating o f which w i l l  be in v e s t i­
gated in  the fo llo w in g  pages.

According to the shear theory fo r  satu­
rated  loose sediments tre a te d  in  se c tio n  I I I ,  
the fo llo w in g  r e la tio n  holds good between the 
shearing stren gth  s and the maximum p rin c ip a l 
s tr e s s  c£ a r is in g  during the shearing ( c f .
F ig . 5) 8):

s- c^ .t g t p ,- - - - - - tg jftA '



39

equivalen t co n so lid atin g  pressure f lj . which 
occurs here as the major p rin c ip a l s tre s s in g  
during the shearing, and the corresponding wa­
t e r  content wj present at the end of the slow 
shearing process:

CK
- w, — A, • It. A, | w , (2)

o>
c:

£

ICb
c

ai-ai- ß-
w .  - W,

(3)

where:
w.,. = w ater content of the m ateria l fo r  the 

equivalent co n so lid atin g  pressure C-, -
1 kg/cm2.

a , « C o e ffic ie n t o f co m p re ss ib ility  14 ).
I, - S p e c ific  g ra v ity  of the s o lid  substance. 
tw -  S p e c ific  g ra v ity  o f the w ater.

By su b stitu tin g  from equation (3) in  
equation ( 1 ) ,  the desired  equation of the sa­
tu ra tin g  lim it  i s  obtained in  the form;

s -ex - e OT* 1 Kg/cm *

Watercontent w —>-

R elation  between shearing re s is ta n ce  and w ater 
content (diagram ).

FIG.1

For a given m aterial and a given type of 
stru ctu re  as parameter, the fo llo w in g  r e la tio n  
may on the other hand be derived between the

2. T ea ts.
For in v e stig a tin g  the r e la t io n  between 

shearing stren gth  and water content in  the 
region of the lower branch of th e  above-men­
tion ed  h y ste re s is  loop, three d iffe r e n t  ma­
t e r i a l s  were prepared w ith  the necessary quan­
t i t y  of w ater, pressed se ve ra l tim es through 
a sie ve  o f 5 nun mesh, and then allow ed to  
stand f o r  a t le a s t  24 hours in  a satu rated  a t­
mosphere. The samples thus prepared were con­
so lid a te d  and then slo w ly  sheared in  a rin g  
shearing apparatus. We are indebted to  Dr. A. 
von Moos fo r  h is  co lla b o ra tio n  in  carry in g  out 
and eva lu atin g  the t e s t s  9).

a) Test m a te ria ls .
The most important p ro p e rtie s  of the three 

in v e stig a te d  m ateria ls are summarised in  ta b le  1

TABLE 1

P rop erties  o f the t e s t  m a teria ls .

M aterial Kaolin tinnii na Quartz

drain d is tr ib u tio n  in  
percentage by weight %

K T Q

F raction s :
0,2 -  0,02 mm 

0,02 -  0,002 mm 
-*=-0,002 mm

1,0
40.0
59.0

98,0
1 ,5
0,5

13
5 1 .5
35.5

Chemical a n a ly sis  
¡ s i l ic ic  acid  a i  0- % 
Alumina A l-0 , % 
Iro n ,lim e, p 
magnesium, a lk a l is  and 
water %

46,25
39,28

14,47

100
98,82

0,06

1 ,1 2

Consistency l im its

flo w  lim it  f  in  % 
p la s t ic  lim it  a in  % 

C o e ffic ie n t o f p la s t i ­
c i t y  P .= f  -  a 
C o e ffic ie n t  o f compressi­
b i l i t y  Ae %

61,0
33,3

27,7

6,6

incoherent

0,73

incoherent

1 ,3 7
C o e ffic ie n t  o f permea­
b i l i t y
k1Q in  cm/sec 2,2.10"® 3 .2 .10 -4 2 ,2 .10 ” 6

C a p illa ry  r is e  in  cm 100 1 ,1 12

Limit of saturation 

(cf. eq.4)

Pore water stressed 

by pressure

Tens// stressed pore water 

Unsaturated materia!
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b) Test r e s u lts .
The te s t  r e s u lts  are i l lu s tr a t e d  in  F ig .

2, 3 and 4. Corresponding to  the d iffe re n ce s  
in  the p ro p erties  of the m ateria ls which can 
be seen from ta b le  1 ,  the three m ateria ls  be­
haved very d if fe r e n t ly  during the shearing 
t e s t .

With the k a o lin ite - c la y  an addition  of 
water at f i r s t  caused a s lig h t  dim inishing of 
the shearing stren gth  determined fo r  a given 
normal s tr e s s ;  with higher water contents on 
the other hand, there was an in crease . The 
maximum shearing stren gth  was reached in  a 
region w ith a w ater content o f 19 — 26%. With 
s t i l l  higher water contents the in te rn a l f r i c ­
tio n  dim inishes g r e a tly  up to satu ratio n  value 
( c f . ta b le  2 and F ig . 2, 3a).

In the shearing stren gth  of moist k a o li-  
n i t e - c la y , the c a p il la r y  fo rce s  undoubtedly 
p la y  a predominant p a rt. They exp lain  the oc­
curence o f a maximum shearing stren gth  w ith 
a d e fin ite  w ater content. The great drop in  
the shearing stren gth  when approaching the 
satu rated  s ta te , which occurs in sp ite  o f an 
inten se compacting ( c f .  F ig . 2 and 4 ), may be 
a ttr ib u te d  ijiainly to  the gradual e lim in atio n  
o f the c a p il la r y  fo r c e s . The low shearing 
stren gth  in  the satu rated  s ta te , in  compari­
son w ith dry alumina powder, i s  on the other 
hand to  be explained by the lu b r ic a tin g  actio n  
o f the absorbed liq u id  film s,w h ich  make them­
se lv e s  very marked w ith the la rg e  s p e c if ic  
su rfa ces of the k a o lin ite - c la y  and to  a great 
exten t prevent d ire c t  contact of the g ra in s.

TABLE 2

In tern s1 f r ic t i o n  o f Kao]U n ite .c la y  ; t *  <P = s/<r

Normal s tr e s s  <X in  kg/cm2 0,5 1 2 3

Dry t g  <p 

Moist tg  <p max. 

Saturated t g  tp,

^8 ^max ** % o f ts<*

0,81

0,90

0,34

270

0,72

0,85

0,31

270

0,72

0,76

0,29

260

0,65

0,73

0,28

260

The maximum value o f the shearing strength 
and/or the in te rn a l f r ic t io n  i s  consequently 
approximately 2.6  -  2.7 tim es g rea te r  than the 
satu ration  va lu e, which at the same time re­
presents the minimum valu e. The s lig h t  reduc­
tio n  of the in te rn a l f r ic t io n  w ith  in creasin g  
pressu re, which could be determined at a l l  the 
water contents in v e stig a te d , was more pronounc­
ed in  the dry and moist s ta te s  than when satu­
ra tio n  was reached.

The alumina, which may be described as 
p r a c t ic a lly  without cohesion as compared w ith  
the h ig h ly  coherent k a o lin ite -c la y , showed a 
p o la r  contrary behaviour. As can be seen from 
F ig . 3b), the shearing strength  here was small­
e s t  in  the dry s ta te , but on the other hand 
grea te st in  the satu rated  s ta te , although the 
d iffe re n ce  did not exceed 20%.

The quartz takes up a middle p o s itio n  
w ith  resp ect to  i t s  behaviour under shearing 
t e s t s ,  as was already to  be expected from the 
f ig u re s  in  ta b le  1 .  For comparison see ta b le
3

TABLE 3

In tern a l f r i c t i o n  o f quartz; t g  q> = s/C

Pressed b y p ressure

Normal s tr e s s  a  in  kg/cm2 0,5 1 2

Dry t g t p 0,65 0 ,71 0,74 0,2 -

Moist tff (D° “  max 0,86 0,81 0,90
Saturated t g  cp* 0,64 0,80 0,84 o L

0
max in  % o f t g  <(, 135 101 107

In order to  exp lain  p h y s ic a lly  the p art­
ly  co n trad ictory  behaviour o f the three mate­
r i a l s  in  the region of incomplete sa tu ratio n , 
i t  should f i r s t  o f a l l  be remembered th at two 
qu ite  d iffe r e n t  in flu en ces co lla b o ra te  in  
shearing stren gth , namely on the one hand the 
f r ic t io n  caused by the extern al fo r c e s , and 
on the other hand the cohesion. The l a t t e r  
again in  i t s  turn  co n sis ts  of two components: 
the f r ic t io n  caused by the c a p il la r y  fo rce s  
and the actual s tru c tu ra l re s is ta n ce , which 
i s  conditioned by the separate p a r t ic le s  in ­
ter lo ck in g  and by the shearing stren gth  of 
the absorbed liq u id  film s  10).

IS  2 0  25 SO 35  

Waterconten/  v  in % — ►

Shearing re sis ta n ce  as a fu n ction  o f the watei 
content fo r  K a o lin ite -c la y .

FIG. 2

The behaviour o f the q u artz, to  some ex­
ten t s im ila r  but much le s s  marked, becomes 
understandable when the le s s e r  fin en ess o f i t s  
grains and the correspondingly sm aller c a p il­
la r y  r is e  are taken in to  co n sid eration . That 
quartz in  the satu rated  s ta te  has a somewhat 
higher average shearing stren gth  than in  the 
dry s ta te , appears to  be explained by the p re­
dominant in flu en ce  o f the s tru c tu ra l r e s is t ­
ance. which in creases w ith the co n solid ation .
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i

I

5

Shearing t e s t s  fo r  d if fe r e n t  w ater contents 
(k a o lin ite -c la y  end alumina).

FIG.3

With the alnmina, whose vo id  r a t io  ac­
cording to  F ig . 4 changes only s l ig h t ly  w ith 
in creasin g  water content, the maximum shear­
ing stren gth  in  the saturated  s ta te  i s  exp lain ­
ed by the poor lu b r ic a tin g  actio n  o f the very 
th in  l iq u id  f ilm s , which are not capable of 
preventing the grains from coming in to  d ire c t  
contact w ith each other. The w ater in  th is  
case a cts  ra th er as an a n tilu b r ic a tin g  medium 
in  consequence of i t s  perm itting ad d ition al 
adhesion. A lso w ith the very small c a p illa r y  
r is e  in  th is  m ateria l the c a p il la r y  fo rc e s  
are so s lig h t  th a t th e ir  elim in ation  when the 
saturated lim it  i s  reached i s  of no importance« 
( c f .  ta b le  1 ) .

F in a lly  i t  i s  to  be noted th at the satu­
rated  lim it  ca lcu la ted  according to  equation
4 agrees very  w e ll with the curve determined 
by experiment.

I I I .  SHEARING STRENGTH AMD INTERNAL FRICTION

IN THE SATURATED STATE.

1 . Shearing stren gth  as a fu n ction  o f the nor­
mal s tr e s s in g .

In the saturated  s ta te  the connection be­
tween the shearing stren gth  and the normal 
s tre ss in g  a ctin g  on the shearing surface i s  
given e s s e n t ia l ly  by the fo llo w in g  two e le ­
ments:

(fy* angle of apparent in te rn a l f r ic t io n  
(f>r- angle of tru e in tern a l f r ic t io n .

To understand the shearing diagram i l l u s ­
tra ted  in  F ig . 5» i t  is  necessary to  d is tin g -

Void r a t io  e as a fu n ction  o f the w ater content 
fo r  O' - 1 kg/cm2 «nd unsaturated m ateria l.

F IG.4

u ish  between shearing operations in  open and 
in  closed  system s. In an open system, in  which 
the w ater can issu e  f r e e ly  during the shear­
in g so th a t no stressed  pore w ater can be pre­
sen t, the shearing stren gth  i s  more o r  le s s  
d ir e c t ly  proportion al to  the normal s tr e s s  O'.
I t  w i l l  be represented by the a - lin e , which 
i s  in c lin e d  to  the h o rizo n ta l at an angle . 
As i s  known, the shearing stren gth  i s  compos­
ed o f two d iffe r e n t  elem ents, the f r ic t i o n  r  
and the cohesion c , both o f which in crease 
p ro p o rtio n a lly  to  the normal s t r e s s  O’ :

s - c + r - < r  (tg  (p, + tg  <pr) -  <r-tg (5)

The cohesion c , and a lso  the w ater con­
te n t w j, measured at the end of the slow shear­
ing p ro cess, are conditioned by the con solid ­
ation  of the m aterial which takes p la ce  dur­
ing slow shearing under the in flu en ce o f the 
major p rin c ip a l s tr e s s  <3, , the d e c is iv e  f a c t ­
or fo r  co n so lid atio n .

In co n trast to  the open system, in  the 
c losed  system i t  i s  assumed th at no a lte r a -  
t io n  in  water content end th erefo re  a lso  no 
change in  the volume of the m aterial take 
p lace  during the shearing p ro cess, under th is  
assumption the cohesion c , as measure o f the 
re sp e ctive  compacting con d ition , a lso  remains

b) Alumina

= 1% 

w  = 31%

0  0,5 1,0 2,0 3,0

O = Normal stress in kg/cm 2 —>■

1,0 2,0 - - - >-  3,0

O = Norma/ stress in kg/cmj.

Void ratio £

Unit weight in t/ms
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Shearing diagram for saturated material.

FIG.5

Norm al stress &  in kg/cm 2 — *■ 

In tern al f r ic t io n  fo r  saturated  m ateria l.

FIG.6

constant. As long as there i s  no pore water 
s tressed  by p ressu re, the shearing strength  
fo llo w s the Coulomb stra ig h t lin e  f o r  constant 
cohesion (b - lin e ) . Water content and cohesion 
are in  t h is  case given by the equivalen t con­
s o lid a tio n  p ressu re. In order th a t the maxi­
mum p rin c ip a l s tre ss in g  occurring during the 
shearing may not become g rea ter than 0\ , the 
normal s tre ss in g  (shearing pressu re) may not 
exceed a d e fin ite  lim itin g  value (Tt . I f  i t  
does so, i t s  d iffe re n ce  in  comparison w ith the 
equivalen t co n solid ation  pressure w i l l  be tak­
en by the pore water (stre sse d  pore w a te r ) .I f

, the shearing stren gth  thereby remains 
p r a c t ic a l ly  unchanged, namely s = sy  ( c - l in e ) .  
From th is  i t  fo llo w s th at an in f in i t e  number 
o f approximately p a r a lle l  b - c - lin e s  belong to  
one s in g le  a - lin e , and the p oin ts of in te r s e c ­
t io n  T of a l l  the b -c - lin e s  l i e  on the a - lin e . 
To each point T there corresponds a d e fin ite  
water content Wj, measured at the end of the 
shearing p rocess, (F ig . 5 ).

From F ig . 5 i t  can fu rth e r  be seen th at 
the shearing diagram i s  to  be understood as a 
true p ic tu re  of the s tr e s s fig u r e  on the u n it 
surface of a p rism atic element of the m ateri­
a l ,  in  so f a r  as the pg values are in se rte d  
as ad d itio n al h yd ro sta tic  pressure s tr e s s in g s . 
The experimental determ ination of the diagram 
can be e ffe c te d  advantageously by the combined 
adoption of two d if fe r e n t  apparatus, namely 
the rin g  shearing apparatus fo r  shearing te s ts  
in  the open system and the t r i a x ia l  apparatus 
fo r  t e s t s  in  the c losed  system 8). The theo­
r e t ic a l  and experim ental bases o f t h is  shear­
ing theory, which have been developed in  par­
a l l e l  w ith the in v e stig a tio n s  of K rey-Tiede- 
mann 3) and Hvorslev 1 ) ,  and described in  
d iffe r e n t  p u b lica tio n s 4 ), 8) 1 1 ) ,  are to  be 
found c o lle c te d  togeth er in  a p u b lica tio n  in  
the E nglish  language to  which we here r e fe r  
6 ).

2. In tern al f r ic t i o n  as a fu n ction  o f the 
normal s tre s s in g .

Instead or the shearing stren gth  s , 
the in te rn a l f r ic t i o n  tg  i s  p lo tte d  as
a fu n ction  of the normal s tre ss in g  <T, the p ic ­
tu re  i l lu s t r a t e d  in  F ig . 6 i s  obtained. Cor­
responding to the a - lin e  o f F ig . 5, which i s  
d e c is iv e  f o r  the open system, we have here the 
h o rizo n ta l a '- l i n e ,  w ith tg  (f « tgtfc = con­
sta n t. For the c losed  system on the oth er hand, 
the in te rn a l f r ic t io n  can be represented by a 
group of cu rves, w ith the w ater content wj as 
parameter. Instead of the b - lin e s  of F ig . 5, 
we have the b '- l in e s  of F ig . 6. These are 
e q u ila te ra l hyperbolae, whose equation i s :

c  *

t g < p »  —  + t g c p r  ; f  t g  c p - t g  < ? , . ) •  < r -  c  -  c o n s t . ( 6 )

IT

The h orizon ta l lin e  tg  q> = tg<pr appears 
as the common h orizon tal asymptote. For stress­
ed pore w ater on the other hand, the c ’ - l in e s  
hold good; they form a second group of hyper­
bolae w ith  the two coordinate axes as asymp­
to te s  and have the equation:

t g « p - —  ;  t g  c p . c r -  s T - c r T - t g  <p,  -  c o n s t .  ( 7 )

c r

3. Reduction of the water content during 
shearing^

For the open system there i s  th e o r e t ic ­
a l ly  a simple connection between the consolid­
a tio n  of the m aterial during slow shearing 
and the corresponding change in  w ater content 
(F ig . 7)« 3y the shearing operation  we th ere­
by understand the whole change in  ten sio n  be­
tween s t a t ic  pressure and the atntp> at. nm tn™
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Before the shearing operation, the norm­
al s tre s s  O' i s  id e n tic a l w ith the f i r s t  p rin ­
c ip a l s tr e s s , which grad u ally  in creases dur­
ing the shearing process to  the value o', , ro­
ta t in g  sim ultaneously about the angle

Change in  water content during the shearing of 
saturated loose sediments (fin e -g ra in e d  s o i l ) .

FIG.7

From F ig . 7 i t  can be seen th at th is  increase, 
in d icated  w ith  ACTaOi-O" , i s  p roportion al 
to the normal s tr e s s , since i t  holds good 
th a t: ^tr / -rr tp_\

— - t g  cp^tg j— + — J - u  (8)

On the other hand the s p e c if ic  se ttle m e n t,ca l­
cu lated  as p revio u sly , i s  as fo llo w s : 4) 14)

2»i-vln*, : V —  ; (9>
<xt dXi xt dor a

, ,  . d <r
d (Al)=-----Ae (10)

<r
I f  a f in i t e  increase in  settlem ent i s  

considered in stead  of an in f in i t e ly  small 
change in  the s p e c if ic  settlem ent, the fo llo w ­
ing holds good approximately:

a (a .) s  — -a .  = U-A, (c f.e q .8 ) (1L)
cr

This equation s ta te s  th at the co n solid ation  
( a - lin e ) , e ffe c te d  in  a given m aterial by slow 
shearing in  the open system, i s  a constant mag­
nitude independent of the normal s tre ss in g  o'. 
Thereby i t  has only been assumed th at during 
the shearing process -  apart from the shearing 
surfaces -  no disturbance in  stru ctu re  occurs, 
as i s  gen erally  the case fo r  c la y s  w ith a de­

cided tendency to  form su rfaces of s l ip .  Our 
considerations th erefo re  may not be tra n s fe r ­
red to  any sandy m ateria ls in  which the shear­
ing process causes p o ss ib ly  an in crease  in  po­
r o s ity  or on the contrary a break-down of 
stru ctu re , so th a t phenomena occur which led  
A. Casagrande to  introduce the conception of 
the c r i t i c a l  void  r a tio  13 ).

On the other hand, since the volume of 
w ater issu in g  from the m a teria l, in  consequence 
of the co n solid ation  by sh earing, i s  id e n tic a l 
w ith the change in  volume of the m ateria l i t ­
s e l f ,  or stands in  a d e f in ite  r e la tio n  to i t ,  
i t  fo llo w s fu r th e r  th at a lso  the change in  wa­
t e r  content i s  a constant magnitude inde­
pendent of the normal s tr e s s in g . I t  may be c a l­
cu lated  approxim ately as fo llo w s:

Aw *  - A (wt +— ] u  •  - a , -i=-( 1 + e,) u «consT.(12)

'  y* '  r.
where:
wl* ®i “ wat®r  content and vo id  r a tio  fo r  the 

equivalent co n solid ation  pressure
S = 1 kg/cm2, 

iw* is “ s p e c if ic  g r a v it ie s  of the w ater and 
the s o lid  substance r e s p e c tiv e ly .

In F ig . 7 the r e g u la r ity  of the change 
in  w ater content during the shearing t e s t ,  
which s t i l l  requ ires cnecking by experiment, 
f in d s  i t s  expression in  the curve o f water 
content w ^ (after shearing) being d isp laced  
downwards in  comparison w ith  the curve w (be­
fo re  sh earin g), by the f ix e d  value a w ,  s o  that 
the two curves run in  p a r a l le l .

IV. CONCLUSIONS.

1) In the unsaturated s ta te  of the lo ose  se- 
diments the dependence o f the shearing

stren gth  on the w ater content i s  to  a la rg e  
extent conditioned by the grain  d is tr ib u tio n  
and m ineralogical com position. With f in e ­
grained, c layey  m ateria ls  and w ith  a given 
normal s tr e s s , the shearing strength  reaches 
i t s  maximum value at a d e fin ite  w ater content, 
a f te r  which i t  f a l l s  o f f  g r e a t ly  u n t i l  the 
satu ration  point i s  reached (F ig . 1 and 2). 
Also the d irec tio n  of the a lte r in g  o f the wa­
t e r  content (.addition or removal of w ater) 
p lays here a d e c is iv e  p art (h y s te re s is  lo o p ). 
Further, while the shearing stren gth  of co­
hesive m aterials in  the unsaturated s ta te  i s  
as a ru le  g rea ter than in  the satu rated  s ta te , 
the contrary may be the case w ith non-cohesive 
tvpes of s o il  ( c f .  alumina, F ig . 3).
2) In the saturated  s ta te  the general shear­
ing diagram is  given by the angles of the 
apparent and the re a l in te rn a l f r i c t i o n  (<fs 
and<pr ). In the closed  system the dependence 
o f the shearing stren gth  on the normal s t r e s s ­
ing i s  represented by the s in g le  s tr a ig h t  lin e  
(a - lin e )  in clin e d  at ips , in  the open system by 
a group of broken s tr a ig h t  lin e s  ( .b -c - lin e s ) , 
each of which represents a d e fin ite  w ater con­
ten t and/or a d e fin ite  equivalen t con solid a­
t io n  pressure as parameter. ,vith p la s t ic  loose 
sediments (loam and c la y ) the shearing opera­
t io n , causes a co n so lid atio n , c h a r a c te r is t ic  
f o r  the m aterial in  question and independent 
o f the normal ten sion , and thereby a lso  a con­
stan t change in  water content which can be 
ca lc u la te d  approxim ately (.eq. 12 ). This theory 
i s  based on the f a c t ,  th at the p o ssib le  conso­
lid a tio n  of a f in e  grained satu rated  s o i l  only 
depends of the major p rin c ip a l s tr e s s .
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I el 3
ON THE BBARTNfl POWER OF SOIL IN A TWO-DIMENSIONAL PROBLEM

T. MIZUNO

P ro f. o f Engineering C o lleg e , Kyushu U n ive rsity , Fukuoka, Japan

SUMMARY

In t h is  paper, the author rep o rts  o f a th e o r e t ic a l study on the u ltim ate bear­
ing power o f grounds and the shapes o f s lid in g  su rfa ces in  a two-dimensional ca se , 
tak in g  in to  consid eration  the body fo rce  due to the s o i l  w eight.

1 . m m b u , ASSUMPTIONS.

In F ig . 1 l e t  p be the load in te n s ity  
from a stru ctu re having the width 2b and q be 
the surcharge in te n s ity  outside the stru ctu re . 
When the base of the stru ctu re  i s  lo ca ted  at 
the depth t  from the ground su rfa ce , the s o i l  
weight yt i s  taken as q; where | i s  the un it 
weight o f the s o i l .

We w i l l  begin w ith sand grounds.
From the experimental r e s u lts , we assume 

th a t, a t the in stan t of s lid in g , the wedge 
p art ABC i s  pushed down togeth er w ith the load 
along the s lid in g  planefe AC and BC of Rankine's 
a c t iv e  earth  pressu re, and the region NBD 
reaches to  the s ta te  o f  p assive  earth pressure. 
Then, i f  f  i s  the angle o f in tern a l f r ic t io n ,  
we get

Z ABC -  0. +2- 
4  2 (1)

and
Z N BD - Tr-q,

7T p
-0  =--- J-

4  2
(2)

Along any ra d ia l lin e  through B, the pas­
sive  earth  pressure due to  q d is tr ib u te s  uni­
form ly and th at due to  j  d is tr ib u te s  propor­
t io n a lly  to  the distance from B. Therefore, at 
the in sta n t of s lid in g , the load p must be re­

s is te d  by the fo llo w in g  two fo r c e s ; the one, 
th a t i s  independent to  the ra d ia l d istan ce r  
from B, and the other, th a t i s  proportional 
to  r .

Now, we d ivid e p into  two p a rts  p* and p" 
which are r e s is te d  by the above fo rce s  res­
p e c t iv e ly .

p -  p* + p" (3)
At the s lid in g , the r e s is t in g  fo rc e s  

along the s lid in g  planes AC and BC should make 
an angle p w ith  the normals to  these p lanes 
and can be assumed to  co n sis t  of the fo llo w in g  
th ree p a rts  as shown in  F ig . 1 .

The f i r s t  of them i s  the a c tiv e  earth  
pressure due to  the body fo rce  of sand and i t s  
components are as fo llo w s.

crâ  = y(l-K ) r  sin 0. + a„ 

r r* — ï ( l - k ) r  sin* 0. c o s 0.

U) | ( l - K ) r  sin 0. c o ^ e .+ A .

where,

and

1 - sin I

1+sinp 

j t ..— j r  sine.

(4)

(5)

(6)


