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SOIL-GLIDING UNDER THE INFLUENCE OF AN INFINITE STRIP OF LOAD 
e  14 — — -----------------------------------------------------------

LUJO SUKLJE

SUMMARY

The shape of the diagram between the gliding displacements and the shear stresses« 
determined with shear tests, show, that it is possible to fix the following analytic 
conditions for the two extreme field-limits, wherein the gliding surface with, a deter­
mined starting point is formed

1) ?£= O in

2) - 0;

T  is the shear stress acting in the direction o< , t is the shear resistance in the 
same direction. The gliding surfaces are thereby defined as surfaces, connecting the 
directions of the gliding displacements. Using the law of Coulomb for t and analytic 
expressions for the shear and normal stresses deduced adter the principle of straight 
lines of the principal stresses under a point load on a semispace, we may for loading 
a semispace with a straight infinite load strip solve relations 1 and 2 and construct 
on their basis the extreme lines of the gliding surfaces.

At a uniform loading the construction of the gliding surfaces with the assumption 
of n = 3 (elastic isotropic soil) and | = 1 (the pressures of the unloaded soil are 
in all directions the same) becomes very simple. In a little permeable soil in the 
first moment after loading both the extreme lines fuse into the trajectory of the lar­
gest shear stresses. These trajectories accomodate well to the shape of the logarit- 
mical spirals with the angle of inclination of n/i especially in the rising part.

The soil gliding under the influence of the load becomes critical, as soon as 
the shear tensions T  in single places attain the values of the shear resistance t.
The gliding fields, determined by the supposed distribution of stresses and defined 
with T*-1, show, that the gliding becomes more intensive and that the stresses must 
change into a new state of equilibrium with T < t. Although the idea of gliding 
fields is only a ficticious one nevertheless it is very useful for the estimation of 
the dangerousness of the soil-gliding. The critical loading qr follows on the con­
dition, that the deepness of the gliding field be equal to zero. If a means the press­
ure on the fundamental sole in the deepness g minus the pressure of the digged soil 
( i »g)i if J is the weight of unit volume of the soil and k and m = tg® are constants 
of the law of Coulomb, then

l (k + J g>0.

We get the criterion of Frohlich for the end stage l f A = l - ( | - < p ) j u  permeable

soil,and the criterion for the beginning state (unpermeable soil) if A = 1. The quo-

tient —  is the safety factor. The investigation of gliding surfaces under the condi-
lo

tion q0 < qj, is not necessary. If qQ -c qr we may estimate the degree of dangerousness

of gliding by determining the algebraic sum of the ficticious forces T [(t -T).fJ

(f ... is the area of an element of the gliding surface) along the gliding surfaces.
To estimate the gliding of little permeable soil we may employ this criterion with 
security and in a simple manner with n = 3 and 1 = 1  and by taking into consideration 
only the sheai resistance t of the unloaded soil. The stages of negative result ant a

l[(t-T).f] are especially critical ones.

1. GENERAL STRESS EQUATIONS.

Applying for the action of an infinite 
load strip with pressures, distributed equal­
ly, the principle that the trajectories of 
the principal stresses for a concentrated load 
are straight lines 1) we obtain for the coef­
ficient of concentration 1) n = 3 in a given 
soil point, determined with the angles e and 
Ÿi for the direction ot (figure 1) the follow­
ing expressions for the normal stress $ andT 
the shear stress

f--3-’ |2e-siTi2£- cos 2(cx-\|/)J+Ii (l+)Hl-j)cos2o<

q  » z

T— : siii 2 e sin 2 (a -itO  + —  ( l - t ) s in  2ot (2 )
7T 2

In these equations qQ is the pressure in the 
sole of the foundation minus the pressure of 
the digged soil (q0 - q - j.g), | is the coef­
ficient of the resting soil, expressing the 
relation between the horizontal and vertical

pressures of the unloaded soil, \ is the weigit 
of volume of the soil (taking into considera­
tion the influence of the buoyancy. The mean­
ing of z is given by equation

Z-b
cos 2c + cos 2 i|i 

sin 2 e 9 (3)

The largest shear stresses T. act in the di­
rections determined after the condition, 
that

à T

^ r °  <*>

tg si" 2c cos 2-Mi

sin 2 e sin 2 ~  (5)
(6)

sin 26 siniTi2\|/j +-ptsin2c co s 2 i|j
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2• GLIDING^SURFACES.

Shear tests of soil materials show, that 
especially argillaceous soils are gliding at 
relatively low shear stresses (confer 2) and
3)0 This gliding however is stopping asympto­
tically 3) at these stresses. As in the shear 
apparatus the soil is gliding also in the 
ground of the foundation at moderate loading 
of the soil. In a given point of the soil the 
grains will glide in the directions of the 
lowest resistance. In this paper we shall call 
as gliding-surfaces all surfaces, that connect 
these directions. The direction of the gliding 
will depend for a fixed point of the soil on 
the total state of stresses, represented by 
the ellipse of stress and the laws of gliding.

The diagram of the gliding displacements 
d and the shear stresses can11 included in a 
uniform analytic relation (confer 2) and 3))« 
Only the first part of this diagram (one-two 
thirds) we are able to substitute approximate­
ly with a straight line

d - X T  (7)

Supposing that the quotient does not depend on 
the normal pressure, the directions of the 
largest gliding-displacements, 'i . e . the direc­
tions of the gliding surfaces, would be iden­
tical with the trajectories of the largest 
shear stresses and the gliding surfaces given 
by the condition

In fact however the gliding displacements are 
at equal shear stresses '!'< t larger if the nor­
mal pressure >>' is low. Therefore it is to ex­
pect that the direction of the gliding dis­
placements will decline from the direction of 
the largest shear stresses r m towards the large 
axis of the stress ellipse.

Keeping up the simplification of the 
linear dependency between the gliding displace­
ments d and the shear stresses T, we accomodate 
better to the observations of laboratory us­

dV T <8>
where a is a constant. The directions of the 
largest gliding displacements would be then 
determined with the condition

i L . o  (9)
d&

For the shear resistance we apply the law of 
Coulomb

t-K + tg cp • )> (10)

k is the cohesive resistance of the soil ma­
terial on the surface of the soil tg<p = ji is 
the coefficient of the total shear resistance, 
considerating the augmentation of the cohe­
sive and friction resistance at increasing 
acting pressure >>' .

Substituting the conditionel equation (9) 
with the simpler relation

- i i l ^ - 0  (11)
¿(X

we may see comparing the sizes of the diagram 
d - T  for different j>‘ that the directions with 
larger i ' are less estimated than the directions 
with lower t>' (for the same difference e -t -T 
the gliding displacements d are larger rtien >>' 
is larger). The direction of the gliding sur­
faces declines therefore against the large 
axis of the stress -ellipse more than in the 
condition (9) and more than it is in agreement 
with the magnitude of the gliding displace­
ments. Therefore we may use the condition (11) 
to determine the lower limit, below which the 
gliding surfaces cannot be more inclined 
against the trajectories ^max whilst the upper

limit of the gliding surfaces is given by the 
trajectories Tm after the equation (4-).

The trajectories x _ are as the first ex­
treme lines of the gliding surfaces for n » 3» 
determined with the equation (5). They are 
constructed in the known manner determining 
the isoclines « m - constant. The construction 
is the more exact, the denser the set of the 
isoclines is. We construct the curves const, 
by determining for different points of the 
soil (given with the angles e andMi) the 
values o<m , by finding with interpolation the 
sets of points « const, and by connecting 
them with continuous curves.

If we take | » 1 the equations of the tra­
jectories ocm become simpler. The directions oĉ  

are no more in dependence of the constants g, 
q., b and g, but depend only of the concentra­
tion coefficient n. For n - 3 is

\Jr + (1 + 2u.) —  . (u-0 . ± 1, t 2 . •••) (12)
4

The curvesafa » const, are therefore identical 
with the curves « const., when n = 3.

The shear resistance t, occuring in the 
equation (11) of other extreme lines of the 
gliding surfaces is after the relation (10) in 
a linear dependency from the acting pressure »>' 
In permeable soil we may substitute )>' by the 
whole normal stress i) after the equation (1).
In little permeable soil however the addition­
al pressures are taken by the interstitial wa­
ter in the first moment after the loading. It 
is only by and by that these pressures are 
given to the solid parts of the soil after the 
outflow of the interstitial water, causing the 
increase of the acting pressures if' and with 
them the value of the shear resistance't. In 
the first moment there may against the 
shear stresses X  , determined with the equa­
tion (2) the initial shear resistance of the 
unloaded soil (q - 0) only.

ing the relation a
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t-k +-y-|(l+i)-(l-i)cos2o< (13)

So we deduce for the other extreme forms 
of gliding surfaces with the condition (11) and 
with n = 3 the following analytic expressions. 
Permeable soil:

to 2oe
eiTi‘2e(co8 2n< +^nin2i|i)+A(co82£ + co82Ty)H-Bsin2e 

siti‘2e(̂ icos 2i»-9iu 2iy) +p.{A(cos2e+cos24)+Bsi7i2£j

** (14)
A-—  (1-|) b *

2 q. 2q. (15)

(16)

Little permeable soil at the first moment af­
ter loading:

sin<2ecos2iy + A (cos 2e + cos 2\J»J + B sin 2e (17)

^  -siTf2e sin2 iff +^i{A(cos2e+cos 2i(i) + BsiT)2e}

When | = 1  the expression (17) turns into the 
equation of the trajectories T m (12)*

Comparing the shape of the gliding sur­
faces, constructed after the mentioned equa­
tions for n » 3, and n = 2 and n = 4 (which 
are not mentioned here but are given together 
with other detailed analysis in 4) we obtain 
the following conclusions. (In the brackets 
there are given specific conditions under 
which the conclusions are made).
1) The cohesive resistance (k) has no influ­

ence on the shope of the gliding surfaces.
2) The concentration coefficient n in the 

limits between 2 and 4 has only little in­
fluence on the shape of the gliding surfaces.
If n are smaller the gliding surfaces origin­
ating from the same points of the fundamental 
sole are flatter and shorter (Little permeable 
soil with | - 1 ,  resp. the trajectories Tm) •
3) The smaller the number of the resting soil 

pressure | is, the deeper and longer are
the gliding surfaces. (Little permeable soil, 
n - 3, £ = 0,05 nr1 ,^ = 0,50).

4) The gliding surfaces are the deeper and the 
longer, the larger the breadth of the fun­

dament 2 b, the deepness g, the weight of unit 
volume of the soil g and the smaller the spec­
ific load q„ is. (Special conditions as sub 3). 
For | = 1  this deduction is of no value.)
5) Taking for 1 = 1 the size of the initial 
gliding surfaces in little permeable soil 
does not depend on the characteristic of the 
soil and the fundament. Both kinds of extreme 
lines of the gliding surfaces unite in the tra­
jectory Tm .
6) Taking for J =• 1 the size of other extreme 

lines of the gliding surfaces in permeable
soil depends (except from n) only on the quo­
tient of the shear resistance f± (n = 3). The 
gliding surfaces are the deeper and longer the 
larger jx is. Nor does the size of the first ex­
treme lines of the gliding surfaces depend 
from fi .
7) The difference between both the extreme 

lines of the gliding surfaces in permeable
soil i.3 much larger than in unpermeable soil. 
(Specific conditions as sub 3 for unpermeable 
soil and n = 3, 1 = 1 for permeable soil).
8) At the same n and the same £ , the gliding 

surfaces in permeable soil are deeper and
longer than the initial gliding surfaces in 
little permeable soil ( n « 3 , | = l ) .
9) In little permeable soil the difference be­

tween both the extreme lines of the gliding
surfaces is not large in the first moment of 
loading. The trajectories Tw are somewhat flat­
ter but nearly as long as the other extreme 
lines of gliding surfaces (Specific conditions

as sub 3).
10) In the fundamental sole#the trajectories 

X m have the slope other extreme

lines, of gliding surfaces however the slope 
cx- if - J * leve^ fundamental
sole outside of the fundament the trajectories 
T.have the slope ^  , other extreme

lines of gliding surfaces however the slope 

<x= ^  - j • Thereby is to take into consider­

ation that in little permeable soil the coef­
ficient | - 1 is in agreement with the angle 
<P = 0.
11) The trajectories T„ cross the axis the 

load-strip under the angle oĉ  = % , the

other extreme lines of gliding surfaces in per­

meable soil under ©< = ^ ^  . So the first ex­

treme lines of gliding surfaces form under the 
fundamental soil simmetric convexical shaped 
wed'ges with the angle 5  in the axis of the

load, the other extreme lines form similar but 
sharper wedges. In permeable soil the sharp­

ness of these wedges is \  -9*
12) Among all discussed shapes of gliding sur­

faces the trajectories x 9 for n = 3 and
£ ■ 1 are the fattest and shortest, if we ex­
clude similar lines for n = 2; however these 
are only a little shallower and shorter. The 
construction of these trajectories, which are 
at the same time the glidingsurfaces in little 
permeable soil for n = 3 and i =1, is a sim­
ple one.
13) The trajectories for n - 3 and i = 1 

in the rising part are well accomodating
to the shape of logarithmical spirals

r-ae (18)

with m = 1 and the pole in the line of the 
fundamental soil; in the decreasing part they 
are shallower. The trajectories T m for n = 4- 
or i < l  and the other extreme lines of glid­
ing surfaces correspond better to logarithmic­
al spirals with m>l.

3. GLIDING-FIELDS.

With an increasing pressure qQ the equa­
tions of stress (f.i. 1 and 2) in connection 
with the law of shear resistance (10) dictate 
fields, where the shear stresses are larger 
than the shear resistance. The boundaries of 
these fields, called after Fröhlich (1) plas­
tic fields, are determined with the equation

t -T (19)

Such a field, dictated by the supposed 
equations of stresses of course cannot exist. 
TCith rising stresses the gliding displace­
ments increase also. These gliding displace­
ments, accompanied in permeable soil by the 
consolidation of soil by reason of the added 
pressures may cause such a change of the stress 
distribution on one side and such an augmenta­
tion of the shear resistance under certain 
conditions on the other side, that with t> T  
another state of equilibrium is established.
The gliding may however increase in an acceler­
ated way so that the soil together with the 
building glide along the gliding surfaces in 
a oathastrophical manner and there is not 
earlier than after the cathastrophe a new state 
of equilibrium possible. Nor do exist in this 
case "plastic fields", which we shall prefer 
ably call here gliding fields. Nevertheless 
the idea of these fields - as shown by Fröh­
lich - is very useful for the estimation of



FIG. 2

the soil stability.
Ia the discussed two-dimensional problem 

we obtain for the boundary lines of the glid­
ing fields with n » 3 the following analy­
tical expressions.

Permeable soil:
2q.[-^i2e + sin2e (sin2(ot-H>) +jjeos -2nk

(20) 
first moment

k j / î (1+{)-(l-i)(^icoa 2«  +sin 2«)]
Little permeable soil (the first 

after loading); . ,
gq.siTl 2e sit ) 2(ot--m)-27rk_____

Z' n ,[> { ( l* l) - ( l- i)c o s 2 « }  -(1 -J )s i"2 « ] (21)

are the directions of the gliding surfaces.
We give them the value of their extreme lines 
after the equations sub 2. The points of the 
boundery line of the gliding field we may 
find as follows : Along the curves c* - const., 
necessary for the construction of the gliding 
surfaces we try to find for different e and«V 
the values "z" on the righty side of the equa­
tions (20) resp. (21). The intersection of the 
curve for the calculated "z" with the curve 
<xm const, determines the point of the bounda­
ry line.

Fröhlich has already given some examples 
of gliding fields in permeable soil for£ = 1
1). Here we mention only the reproduction of 
analytical expressions of the boundary lines 
in little permeable soil (for the first moment 
of loading) for n = 3 and J = 1. In this case 
tl̂ e equation (21) becomes very simple. (Forex 
we substitute the expression 12 with u = 0).

q_ sin 2 e - 7T fc
0 - — ---------- (22)

6in 2e 7t
The deepest points of the boundary-1ines 
the gliding fields are arranged in a semi 
circle

of

(23)

So we receive for the deepness of the gliding 
field the expression

q.-wk
---- (24)

If the gliding field extends beyond the circle 
26- » 5 its deepness in the symmetral of the 
loaded strip is given with the condition

z„- b cot ç; em *  g -— — sin 2e„- —

* 1 ?  W
(25)

If n ■ 3 and J « 1 also the indirect 
graphical construction of the boundary line of 
the gliding field in little permeable soil af­
ter condition (l9) is very simple. For6m fol­
lows from the equations (2) the simple expres-

8ion T„- —  sin 2e (26)
ir

The curves T'_ = const, are identical with the 
circles e= const, (figure 1), meanwhile the 
expression (13) for the shear resistance t be­
comes simpler t«k + ̂ ijz (27)

so that t is a linear function of f (z). We 
find therefore the points of the boundary-line 
of the gliding field as intersections of the 
horizontal lines t - const, with the circles 
T m - const.

In the figure 2 there are constructed the 
gliding fields for the first moment of loading 
in little permeable soil with constant values 
for n, j ,) i , k and qQ and for different values 
of b, g and i .
We may establish:
1) Broader fundaments have absolutely deeper 

and broader gliding fields. The relation be­
tween the dimensions of these fields and the 
breadth of the fundament 2 b however is more 
advantageous with larger breadth 2 b. The glid­
ing surfaces cross the gliding fields of broad­
er fundaments on a relatively shorter path.
2) An absolutely equal deepening of the funda­

mental soil has not only a larger influence
on the absolute, but also on the relative size 
of the gliding fields at broader fundaments. 
Nevertheless the influence of such a deepening 
on the length of the gliding fields is a better 
one at narrower fundaments.
3) At a decreasing quotient £ the gliding 

field deepens. In the same manner the glid­
ing field becomes narrower and deeper if the 
quotient n increases (1).

4. ESTIMATION OF THE DANGEROUSNESS OF GLIDING.

The smaller the pressure of the fundament­
al sole q0 is, the smaller is the field of 
gliding. At a determined pressure the gliding 
field disappears. The analytic expression for 
this critical pressure qr is

m g (28)

For permeaDle soil it follows from the equation 
(23) for the deepness of the gliding field af­
ter the condition ¿2/de-Oand with the directions 
of the second extreme lines of gliding surfaces 
in consequence of the equation (16)

q.

*ï
cotg

Itg<p
(29)

and with the condition (28) results the equa­
tion for the "critical load in the edge" of 
Fröhlich IL x 6
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In an analogical way we obtain for little per­
meable soil for the stress state in the first 
moment after loading with the equations (24) 
and (28) the expression for the critical load

q™*"(i' + igtg<p) (3i>

(confer 5). Which decreasing hydrodynamical 
tensions of the interstitial water the values 
of qm approach to the values q^.

If the loading of the fundamental sole 
q0(l0 • <1 - (g • ) is smaller than qr in per­

meable soil or smaller than qm in little per­
meable soil, every test of the dangerousness 
of gliding is unnecessary. With the quotient 
q a
_E or ^  we determine also the safety factor 
*o o
therefore it is not necessary to investigate 
this factor with the gliding surfaces.

Not earlier than if the loading q0 be­
comes larger than qr or qm i.e. if there will 
develope a gliding field with regard to a 
supposed distribution of the tensions, a test 
of stability with the gliding surfaces resp. 
with the test surfaces, assumed by us as glid­
ing surfaces and examined for the dangerous­
ness of gliding, will be reasonable. The meth­
ods of such an investigation (e.g. after Fel- 
lenius or Krey, confer 6) are known. These 
methods suppose at any rate a fictitious state 
of tensions along the gliding surface. The 
soil does not glide in such a manner that the 
whole shear stress would act in the same meas­
ure along the gliding surface,it is shorn 
rather gradually - with respect to the differ­
ent shear stresses and shear resistances - 
along the gliding surface - and the whole 
shear resistance also decreases gradually to 
the values of the gliding resistance.

With regard to the results of the inves­
tigations, collected in 2 and 3 we may propose 
a new criterion for the dangerousness of glid­
ing. We construct a gliding field for the sup­
posed distribution of tensions. The gliding

surfaces crossing this field are divided in 
suitable elements and we determine for every 
element with the surface f the shear stresses 
T and the shear resistance t. The larger the 
algebraic sum of the ficticious forces is 
E[(t - T )f] , the smaller is the danger of 
gliding. Gliding surfaces crossing the gliding 
field on a relative long way are to be examin­
ed.
The cases, when

z[(t -T)f] - 0. (32)

are doubtless taken as critical ones.
The construction of gliding fields and 

gliding surfaces as well as the determination 
of the values t and for different points of 
the gliding surfaces are in general taking up 
much time. For the first phase of loading in 
little permeable soil however the use of the 
criterion (32) for n - 3 and J * 1 is very 
simple and quick. With such suppositions we in­
duce on the whole a security in the calcula­
tion, therefore the simplification for n ■> 3 
and i » 1 and with the state at once after the 
loading in argillaceous soil is allowed.
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The protracted sliding surface occurs for 
instance with landslides. Bendel’s process of 
calculation for determining the danger of land­
slides with extensive protracted sliding sur­
faces, is given hereafter.

The action of the forces at the moment 
when, with a protracted sliding surface the 
sliding commence, is shown in Fig. 1.

The pressure working on the sliding sur­
face through the outside forces Pj_ and P2 on 
the one hand and through its own weight G on 
the other hand, is shown in Figs 2 and 3. In 
Fig. 4 the action of the forces on a wedge of 
earth is more closely looked into. It it, as­
sumed that the force W of the part of earth is 
in the same direction as the force E of the 
ground B. When equilibrium exists, the force 
W must be equally great or greater than E 
(W - E). For further mathematical considera­
tions it is assumed that W - E, i.e. the for-

(P^» P_ = Forces on the surface ) 
Forces operating on sliding surface

FIG. 1

W e d g e  o f  e a r t h

Sliding surface


