INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE.

VII a 17

MOVEMENTS OF A DRIVEN-IN PILE WHEN NEW PILES ARE BEING DRIVEN IN.

(WORKING OF PILE-GROUPS)

DR. L. BENDEL - ING.

Privatdozent, Ecole Polytechnique de l'université de Lausanne

1) The kind of pile

The observations were carried out on concrete piles, 14 metres long. The diameter of the piles amounted to 50 cm.

2) Geological formation of the ground

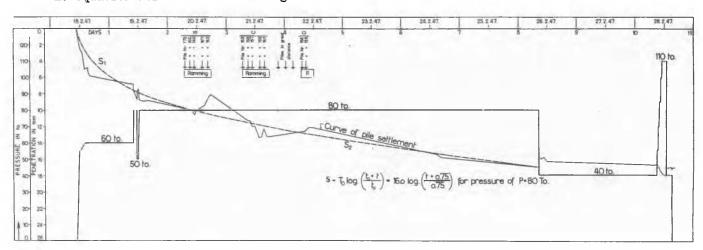
The geoligical formation of the ground is shown by Fig. 1. x)

3) Measurement of the movement of the driven - in pile

The movements of the driven - in piles were determined by a measuring-drum (cylinder). The increase amounted to 1:10. The measuring-curves are shown on Figure 2. From Fig.2 it appears:

When, at a distance of 2 to 5 metres from the former driven- in concrete pile Nr. "A" new concrete corner piles Nr. "B.C.D." (Cf. Fig. 2) were driven in, the old concrete pile (A) raised itself at first. Afterwards it relatively firmly settled.

All values moved round a pile - sinking curve s_1 ---- s_2 . The curve s_1 ---- s_2 means a time - settling curve with a constant weight P of P = 80 ton.


4) Theoretical calculation of pile-settling The equation for the time settling curve

5) Comparison between the theoretically calculated pile settling and the measured settling.

Days	Calculated settling s from Formula $s = T_0 log(\frac{t_0 + t}{t_0})$	Settling with triel arrangement
1	5,8 mm	5,8 mm
2	9,2 mm	9 ,2 mm
3	10,2 mm	11,1 mm
4	12,8 mm	12,5 mm
5	13,9 mm	13,7 mm
6	15,1 mm	14,8 mm
7	16,2 mm	15,8 mm
8	17,0 mm	16,8 mm
9	17,8 mm	17,6 mm

6) Inference

a) The theoretically calculated settling agrees quite well with amount settling measured at the trial.

Movements of a driven - in pile, when new piles are being driven in.

FIG. 2

is as follows:

$$s = T_0 \log \left(\frac{t_0 + t}{t_0} \right) = 16.0 \log \left(\frac{t + 0.75}{0.75} \right)$$
 (1)

s = settling in mm after t days with a pile weight of P = 80 ton.

$$log \frac{t_0 + t}{t_0}$$

b) The formula (1) is identical with the time settling curve deduced by the author (page 688 and page 486 in Bendel: Engineering - Geology; Vol. I, 1944)

for
$$s = T^0 + T \log \left(\frac{t_0 + t}{t_0}\right) = T_0 \log \frac{t_0 + t}{t_0}$$

x) in comparison between the penetration-curve of the sounding-needle before and after the placing into position a pile.