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13« Since the representation iB only approximate, the arbitrary constants have to be determined in 
accordanoe with whatever further hypothesis one chooses to adopt. Personally I adopted the 'principle 
of least squares' for reduoing error to a minimum. It leads to a set of linear equations for the 
determination of the arbitrary constants, and the solution can then be completed. One case i6 worked 
out in detail.

lU. Admittedly the method is neither short nor easy, and it is open to question whether the final 
form of the results is striotly defensible. Personally I merely regard them as first tentatives and 
hope for something better from our other avenues of researoh. The results are too new to have been 
tried out in practice; they are here made publio for what they are worth to whoever ohooses to use
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Limiting Curves. Loading tests reveal the fact that under a loaded circular disk there are zones of 
vertioal pressures (Zones I and II, Fig. 1) and a so-oalled "stressless zone" (German "spannungslos".
Zone III, Fig. 1). Zones I and II are separated from Zone III by a characteristic surface of rotation. 
Its meridional section as shown in Fig. 1 will be termed "limiting curve" throughout this paper. In a 
natural earth mass under the action of its own weight only, the ratio of the horizontal (minor) pressure 
to the vertioal (major) is K, "coefficient of pressure at rest" (terminology of Dr. Terzaghi), The 
writer believes that the condition controlling this state of "limit equilibrium", should be generalized. 
In Fig, 2 the stress, s, caused by a concentrated foroe, F, strikes a plane, KN, and makes an acute 
angle, o(, with the normal to this plane. Pressures 6 ,oos2 o( (minor) and s .sin2 e<(major) act normally and 
parallel to Plane MN, respectively. There will always be compression at Point 0, if Equation (1) is 
satisfied. If oot2ot - K, the stressed oondition at Foint 0 may resolve in shear, but only under con­
dition that the direotion of the shear be upwards (Fig. 2a) and not downwards (Fig. 2b). Thus the load­
ed earth mass would be divided into two zones: "zone of compressions" (Zones I and II, Fig. 1) and 
"zone of shears" (Zone III, Fig. 1). The "zone of compressions" would be bounded by the locus of the 
points where the direotion of the shear is horizontal; in other words, where a stress, s, ooming from 
the origin, A (Fig, 3) strikes the horizontal plane under the angle 90° - ot. In such a oase, « = ot 
if 6 designates the angle formed by a stress with the vertical. This locus is the straight line, AO, 
making an angle 6 = o<. with the vertical.

If the load is uniformly distributed around a circular disk, the "limiting ourve" would be a curve 
having the straight line, AO, for asymptote. This is because at a distanoe of more than two widths from 
the loaded area, the latter aots practioally as a concentrated load.

Because of the uncertainty as to the actual load distribution along the base of the loading disk, 
the "limiting ourve" in the neighborhood of the loaded portion may be traced approximately by transform­
ing conformally the straight line, AO, into a hyperbola N'N" passing through the edges of the loaded 
portion N'N', 2b wide (Fig. 3 1+). If the radius of the circle to be "flattened out", were b, the 
transformation formulas to be applied would be those in (2). The symbols p  and Ô in equations (2) are 
polar coordinates of the points on the straight line, AO, and x and z are orthogonal coordinates of 
those on the hyperbola, N'N". However, since the radius of the oircle in Fig. h is A / s i n © , and not h, 
the value ¿>2 in Formulas (2) must be replaoed by b /sin^. By squaring and deducting, Formula (3) would 
be obtained. Since the values of the coefficient of pressure at rest, K, and of_the conoentratjo_n_ fao- 
tor, n, are interoonneoted (Proo., Am.Soo.C.E., Ootober, 1935» P&g® 1255) &s shown by Equation (Ij.), the 
finaT"equation of the limiting curve is given by (5)•

Fig. 5 represents the loous (5) traoed for both oases of n = 6 (heavy solid line T ) and of n = 3 

(heavy dotted line T0)* The curve Tg corresponds to average course sands, and the equilateral hyperbola 
Tc to elastic isotropio bodies and may be applied in the case of clays. Curves G; KS; and P, approxi­
mately represent experimental limiting curves obtained by Messrs. Goldbeck; Kflgler and Soheidig (Curves 
G and KS are plotted from Fig. 8, page ¡420, Die Bautechnik, 1927); and Press (Curve P is plotted from 
Fig, 1 and 2, pages 569-570, Die Bautechnik, 193^1 respectively.

The writer believes that vertical pressures in Zone III (Fig. 1) are negligible if present at all 
and that the stressed condition in that zone practically resolves into pure shear, so that apparatus for 
measuring vertioal pressure could not refleot the situation. An actual shear failure in Zone III occurs, 
however, only if the shearing resistanoe is not able to stand the stress; and when Zone III is broken, 
material in Zones I and II also starts to move following the shearing surfaces.

Two dimensional stress distribution only will be considered on continuation.

Angle of Mutual Intersection of the Shearing Surfaoes (Slip Lines); Value of the Shearing Stress, At 
i*oint 0 (Fig. 6a) there are two planes, mn, and m'n', where oondition (1) is not satisfied. They form 
angles (90° - °^) with the direction of the stress and are tangent to the shearing surfaoes at Point, 0. 
In the case of a distributed load, the shearing surfaoe form angles (90° - 0̂ ) with the direotion of the 
major prinoipal stress, s, since the direotion of the latter is that of the resultant of all forces
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FIG. 8
aoting at the cylindrical projection, MN, of the loaded portion, ^0N0. In the oase of days the shear­
ing surfaces practioally biseot the angle between the principal stresses, s^ and sg, as required by the 
theory of elasticity, in the oase of sand, the value of the concentration factor, n, is about 6, and 
the angle formed by the shearing surface with the major prir.oipal stress is about 23^°. This value ohecks 
with the experiments of the writer ("Civil Engineering", New York , October, 1933» page 57b et seq.).

The value of the shearing stress, t, may be determined as shown in Fig. 6(c), and this leads to 
Formula (6). Only in the case of clays, when Sin 2 0 = 1 ,  may the well known elastic formula (7) be 
applied.

Shape of the Shearing SUrfaoe (Slip Lines) In the Case of a Clay Mass. In the case of aotion of a 
oonoentrated foroe, F, the shearing surfaces are logarithmio spirals (8). The value of the parameters, 
a, and ag, may be determined by letting the curves (8) pas6 through a point, B, (Fig. 7) with coordin­
ates O s b; 0 S 0q . This furnishes the conditions (9)J and using them, the equations of the logarithmic 
spirals (8) may be represented under the form (10). Applying transformation formulas (2), the straight 
stress directions radiating from the origin. A, would be transformed into hyperbolas, or lines of major 
prinoipal stresses under a load uniformly distributed at a distanoe, 2b. Consequently the logarithmio 
spirals (10) would be transformed into slip lines (11) or (12). Equations (12) represent the loci in 
question in parametric form. In the prooess of conformal transformation, Point B readies the position,
B'; sections of the logarithmio spirals (1 and 2) outside the circle (5) of a radius, b, with A for 
center, are transformed into slip lines 1(a) and 2(a), answering Equations (12). To use Equations (12) 
it is neoessary to determine first the oonstant, 0O, from this oondition: Sin 0o should be equal to the 
ratio AB'jAB = AB'sb, where B' is the point at the boundary of the mass from which the slip lines in 
question have to emanate. In traoing the slip linos it should be remembered that 0 is an angle correspond-
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ing to the spiral (10), and not to the spiral (12). In Fig. 7 (heavy line, left part) a slip line,
(3a), passing through the edge of the loaded portion is represented. Original spirals are (3) and (2*).
In this oase 0.-=. tt/z  and Equations (12) become (13). The point of intersection with the oenter line 
of the loaded portion is looated at a depth of 2.30 b. (Equation l/j.,)

Shear Direotions Within a Sandy Mass. In the oase of the aotion of a oonoentrated foroe, F, at the 
boundary of a 68nd mass, the value of the plane stress, s, at a point (/®, ©) may be expressed by 
Formula (15). Comparing it with Michell's radial distribution Formula (16), it may be concluded that equal 
stress, s, at the point (yo,0 ) of an isotropic elastio mass would be produoed, if the loaded portion,
MqMq, were loaded with a variable load 3/2p.oos3© . Thus the problem is reduoed to that solved in a 
paper printed elsswere in this volume (D. P. Krynine. Determination of Stresses Within a Two 
Dimensional Elastic and Isotropic Earth Mass.). A graphical solution is given in Fig. 8: the direction 
of the major principal stress, s, is found, and the slip lines forming an angle 90° - with it (Equation 
1) are traced.

Conolusions. 1. There is a "zone of compressions" and a "zone of shears" within a semi-infinite earth 
mass loaded symmetrically at the boundary. The "limiting curve" separating them in a meridional section 
is praotloally a hyperbola.

2. The slip lines form equal angles with the direction of the prinoipal stress; and the value of 
this angle is a funotion of the "concentration faotor." In the case of days, slip lines under a load­
ed portion of a two dimensional mass' oan be obtained from those under a oonoentrated load using the 
method of oonformd representation.

3« The problem of finding shear direotions within a uniformly loaded two dimensional sand mass 
oan be reduoed to that of a non-unifonnly loaded elastio and isotropic mass.
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A  graphiod method for determining both normal and tangential stresses within a two dimensiond 
elastio and isotropic earth mass, is given in this paper. The method oan be applied in the case of 
plane stress distribution within any elastic isotropic body.

Notations.
a - arm or distance from the oentroid of the area, F, to Point, 0.
<*■- "angle of visibility" of the foundation 
A - hdf, the area of a oirole of a radius, R 
b - half the width of the loaded foundation
C - oenter of pressures or the point of application of the resultant of the forces acting at the 
auxiliary are, M'N'
CO - direction of the prinoipd stress
f - fraction to show the distanoe from the oenter of a loaded foundation in terms of half its width,b 
F0 - loading area formed by plotting vertiod ordinates, p, at eaoh point of the foundation, M ^ g  
F and Ft - loading areas formed by plotting vertioal ordinates p, and P , respectively, at eaoh 
point of the horizontd projeotion, M'N', of the auxiliary aro, MN oos0 
M - moment of the area, F, about point, 0 
dM - elementary moment
MqN0 - loaded foundation placed at the horizontd boundary of the earth mass 
mono - small element of the loaded foundation, MqN
MN - auxiliary aro or the projection of the foundation, MgNg, at the circumference of an arbitrary
radius, R (center at 0)
mn - 3mall element of the auxiliary aro
M'N’ - horizontal projeotion of the auxiliary aro, MN
m'n1 - small element of the projeotion, M'N'
0 - point where stresses are to be determined 
p - unit load (variable) aoting at the foundation, M0N0
p0 - average unit load at the foundation MQN0 or an arbitrary standard unit load
p2 - verticd pressure at a point
dp2 - elementary verticd pressure at a point
p-  radius veotor
R - arbitrary radius of the auxiliary aro, MN 
s - stress or sum of principal stresses 
ds - elementary stress
TKy - shear stress acting at the horizontal plane
0 - vertical angular distance
1 and II - ordinates


