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13, Since the representation is only epproximate, the arbitrary constants have to be determined in
accordance with whatever further hypothesis one chooses to adopt. Personelly I adopted the 'principlse
of least squares' for reducing error to & minimum, It leads to & set of lineer equations for the
determination of the arbitrary constants, and the solution can then be completed, One case is worked
out in detail,

1L, Admittedly the method is neither short nor easy, and it is open to question whether the final
form of the results is striotly defensible, Personelly I merely regard them as first tentatives and
hope for something better from our other avenues of researoh. The results are too new to have been
tried out in practice; they are here made publie for what they are worth to whoever chooses to use
them.

No. E=3 TANGENTIAL STRESSES UNDER A SPREAD FOUNDATION
bBi—P. Krynine &
Research Associate in Sof& Mecheanics
Yele University

Limiting Curves. Loadinpg tests reveal the fact that under a loamded circular disk there are zones of
vertioal pressures (Zones I and II, Fig., 1) and & so-called "stressless zone" (German "spannungslos”,
Zone III, Fig., 1), Zones I and II are separated from Zone III by a characteristic surface of rotation.
Its meridional section as shown in Fig., 1 will be termed "limiting eurve" throughout this peper, In a
netural earth mess under the action of its own weight only, the ratio of the horizontal (minor) pressure
to the vertical (mejor) is K, "coefficient of pressure at rest" (terminology of Dr. Terzaghi). The
writer believes that the condition controlling this state of "limit equilibrium", should be generalized.
In Fig. 2 the stress, s, caused by & concentrated force, F, strikes a plene, MN, end makes en acute
angle, o, with the normal to this plane. Pressures s.00s°c (minor) and s.sinec((major) act normelly and
perallel to Plane MN, respectively, There will always be compression et Point 0, if Equation (1) is
satisfied, If oot = K, the stressed oondition at Foint O mey resolve in shear, but only under con-
dition thet the direotion of the shear be upwards (Fig. 2a) and not dowrwerds (Fig. 2b). Thus the load-
ed earth mass would be divided into two zones: "zone of compressions" (Zones I and II, Fig. 1) eand
"zone of sheers" (Zone III, Fig. 1). The "zone of compressions” would be bounded by the locus of the
points where the direction of the shear is horizontal; in other words, where a stress, s, ocoming from
the origin, A (Fig. 3) strikes the horizontel plene under the engle 90° = ok, In such a case, @ = K

if © designetes the angle formed by & stress with the vertical, This locus is the straight line, AO,
meking en angle © = oL with the verticel,

If the load is uniformly distributed around a cirecular disk, the "limiting ourve” would be a curve
having the straight line, A0, for asymptote, This is because at a distanoe of more than two widths from
the loaded area, the latter smots practiocally as a conoentrated loead,

Because of the uncertainty as to the actuel load distribution along the base of the loading disk,
the "limiting ourve" in the neighborhood of the loaded portion may be traced approximately by trensform=-
ing conformally the straight line, A0, into a hyperbola N'N" passing through the edges of the loaded
portion N'N', 2b wide (Fig. 3 and L). If the redius of the circle to be "flattemed out", were b, the
trensformation formulaes to be epplied would be those in (2), The symbols and © in equations (2) ere
polar coordinates of the points on the straight line, A0, and x and z are orthogonal coordinates of
those on the hyperbola, N'N", However, since the radius of the oircle in Fig, L isb5/sin®, and not b,
the velue 52 in Formulas (2) must be replaced by b7/sind, By squaring end deducting, Formule (3) would
be obteined, Since the values of the coefficient of pressure at rest, K, and of the concentration fac-
tor, n, are interoomneoted (Proc., Am.Soc.C.E., October, 1935, page 1255) as shown by Bquation (L), the
fin:I equation of the limiting curve is given by (®).

Fig. 5 represents the loous (5) traced for both ocases of n = &6 (heavy solid line T_ ) and of n = 3
(heavy dotted line To)‘ The curve T corresponds to average course sands, and the equigateral hyperbola
Te to elastic isotropic bodies and may be applied in the case of elays, Curves G; KS; and P, approxi=-
mately represent experimental limiting curves obteined by Messrs. Goldbeck; K¥gler and Soheidig (Curves
G and KS are plotted from Fig. 8, page L20, Die Bautechnik, 1927); and Press (Curve P is plotted from
Fig. 1 end 2, pages 569-570, Die Bautechnik,—igjﬂi respeotively,

The writer believes that vertical pressures in Zone III (Fig. 1) ere negligible if present at all
end that the stressed condition in that zone practically resolves into pure shear, so that apparetus for
measuring vertiocal pressure could not refleot the situation, An actual shear failure in Zone III occurs,
however, only if the shearing resistanoce is not eble to stand the stress; and when Zone III is broken,
materisl in Zones I and II mlso starts to move following the shearing surfaces.

Two dimensional stress distribution only will be considered on continuation.

Angle of Mutual Interseotion of the Shearing Surfaces (Slip Lines); Value of the Shearing Stress. At
Point O (Fig. Oa) there are two plenes, mn, eand m'n', where condition (1) 1s not satisfied. They form
angles (902 = o) with the direction of the stress and are tangent to the shearing surfeces et Point, O,
In the case of a distributed load, the shearing surfaoce form angles (90° = oK) with the direotion of the
mejor prineipal stress, s, sinoce the direotion of the latter is that of the resultant of ell forces
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aoting at the cylindrical projection, MN, of the loaded
ing surfaces practically biseot the angle between the pr
theory of elasticity. in the ocase of sand, the value of

the angle formed by the sheering surfece with the mejor prinoipal stress is about 2319,

with the experiments of the writer ("Civil Enginsering",
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portion, ¥ N,., In the oase of olays the shear=-
incipal stresses, s; and sp, as required by the
the ooncentration factor, n, is sbout 6, and

This velue ohecks
New York , October, 1933, pege 57L ot seq.).

The value of the shearing stress, t, may be determined as shown in Fig., 6(c), and this leads to

Formula (6).
applied,

Shape of the Shearing Surface (Slip Lines) In the Case of a Clay Mass.,

Only in the cass of clays, when Sin 2 8 = 1, may the well known elastic formula (7) be

In the case of aotion of a

ooncentreted foroe, F, the shearing surfaces are logarithmic spirals (8).

The value of the paremeters,

e, and a&,, mey be determined by letting the curves (8) pass through a poimt, B, (Fig. 7) with coordin-

ates @ =z b; © = Og.
spirals (8) may be represented under the form (10).
stress direotions radiating from the origin, A, would be
prinoipal stresses under a load uniformly distributed at

spirals (10) would be transformed into slip limes (11) or (12).

question in paremetric form.

This furnishes the conditions (9); and using them, the equations of the logarithmie
Applying trensformetion formules (2), the straight

trensformed into hyperbolas, or lines of major
a distance, 2b., Consequently the logarithmio
Equations (12) represent the loeci in

In the prooess of conformal transformation, Point B reaoches the position,

B'; seotions of the logarithmic spirals (1 and 2) outside the oircle (5) of a redius, b, with A for

center, are trensformed into slip lines 1(a) and 2(a), answering Equations (12).
it is neoessary to determine first the constant, ©,, from this ocondition:

To use Equations (12)
Sin @, should be equal to the

ratio AB':AB = AB':b, where B' is the point at the boundary of the mass from which the slip lines in

question have to ememate,

In tracing the glip lines it should be remembered that © is an engle oorrespond=
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ing to the spiral (10), and not to the spirel (12), In Fig, 7 (heavy line, left part) a slip line,
(32), pmssing through the edge of the loaded portion is represented. Original spirels are (3) and (4).
In this oase 6, = 7/2 end Equations (12) become (13), The point of intersection with the center line
of the loaded portior is looated at a depth of 2.30 b. (Equation 14,)

Shear Direotions Within a Sendy Mass, In the oase of the aotion of & oonocentrated foroe, F, at the
boundary of & sand mass, the velue of the plane stress, s, at a point (e, 0) may be expressed by

Formulae (15)s Comparing it with Michell's radial distribution Formula (16), it may be concluded thet equal
stress, s, at the point (p,©) of en isotropic elastic mass would be produced, if the loaded portion,
MoNy, were loaded with a verlable load 3/2p.cos>@ , Thus the problem is reduced to that solved in a

paper printed elsewere in this wvolume (D. P. Krynine. Determinaetion of Stresses Within a Two

Dimensionel Elastic end Isotropic Earth Mass.). A grephicel solution is given in Fig, 8: +the direction
of the mejor principal stress, s, is found, and the slip lines forming en angle 90° -~ X with it (Equation
1) are traced, '

Conolusions. 1, There is & "zone of compressions” and a "zone of shears” within a semi-infinite earth
mass loaded symmetrically at the boundary. The "limiting curve" separating them in & meridional section
is praotioally a hyperbola.

2., The slip lines form equal engles with the direction of the prinocipal stress; and the walue of
this angle is a funotion of the "concentration fametor." In the case of oleys, slip lines under a load-
ed portion of a two dimensionel mass oen be obtained from those under e ooncentrated loed using the
method of oonformel representetion,

3+ The problem of finding shear directions within e uniformly loaded two dimensional sand mass
oan be reduced to that of a non-uniformly loaded elastioc and isotropic mass,

Zic L7

No. E-h DETERMINATION OF STRESSES WITHIN A TWO DIMENSIONAL
ELASTIC AND ISOTROPIC EARTH MASS
D, P, Kryninef{
Research Associate in So Mechanics
Yele University

A graphioal method for determining both normal and tangential stresses within a two dimensional
elastio and isotropic earth mess, is given in this paper, The method oan be applied in the case of
pleane stress distribution within any elastic isotropic body.

Notations.

a - arm or distance from the oentroid of the aree, F, to Point, O,

A - "engle of visibility" of the foundation

A - helf, the area of e oirole of a radius, R

b - half the width of the loaded foundation

C - oenter of pressures or the point of application of the resultant of the forces acting at the
auxiliery are, M'N!

CO = direction of the prinoipal stress

f = fraction to show the distance from the eenter of a loaded foundation in terms of half its width,£>
Fy = loading area formed by plotting verticel ordinates, p, at eaoh point of the foundation, MyN,
F and Fy - loading areas formed by plotting vertical ordinetes p, end _P___, respectively, at each
point o% the horizontel projection, M'N!, of the auxiliary arc, MN 0050

M = moment of the area, F, about point, O

dM - elementary moment

MoNo = loaded foundation placed at the horizontal boundary of the earth mass

mony - small element of the loaded foundation, MN

MN = auxiliary aro or the projection of the foundation, M N,, at the circumference of an arbitrary
radius, R (center at 0)

mn - small element of the auxiliary arec

M'N' = horizontal projesotion of the euxiliary are, MN

m'n' - small element of the projeotion, M'N!

0 = poiat where stresses are to be determined

P - unit loed (variable) aoting at the foundetion, M,N,

Po - average unit load at the foundation M N, or an arbitrary standerd unit load

pz = vertical pressure at a point

dpg = elementary vertical pressure at e point

P - radius veotor

R - arbitrary radius of the auxiliary aro, N

s = gtress or sum of principal stresses

ds - elementary stress

71y ~ shear stress acting at the horizontal plane

@ - vertical angular distance

I end II - ordinates



