Recent Advances in Vertical Drains and Vacuum Preloading for Soft Ground Stabilisation

Développements récents dans l'amélioration des terrains mous par drains verticaux et préchargement par le vide

Buddhima Indraratna
Centre for Geomechanics and Railway Engineering, University of Wollongong, Australia, indra@uow.edu.au

ABSTRACT: Much of the world’s essential infrastructure is built along congested coastal belts that are composed of weak and highly compressible soils to significant depths. Soft alluvial and marine clay deposits have very low bearing capacity and excessive settlement characteristics. This has design and maintenance implications for tall structures, large commercial buildings, as well as port and transport infrastructure constructed on such poor soils. Stabilising these very soft deposits is essential before commencing construction of infrastructure. A system of vertical drains combined with vacuum pressure and surcharge preloading has become an efficient and cost effective ground improvement option. This technique accelerates consolidation by promoting rapid radial flow which decreases the excess pore pressure while increasing the effective stress. This allows the height of the embankment to be increased faster with a preload. After preload removal the soil is often in an overconsolidated state which reduces creep related settlement in the post construction period. In order to control embankment stability and reduce the rate of pore pressure build-up, a surcharge embankment is usually raised as a multi-stage exercise, with rest periods between the loading stages (Jamiolkowski et al. 1983). Since most compressible low-lying soils are often thick with very low permeability, a lengthy time period is usually needed to achieve the desired primary degree of consolidation (>95%). In these instances, the height of the surcharge needed to induce rapid consolidation can be excessive from an economic and stability perspective (Indraratna et al. 1994). Long surcharge times may be impractical due to stringent construction schedules. When PVDs combined with surcharge preloading is applied, vertical drains provide a much shorter drainage path in a radial direction which reduces the required preload period significantly. PVDs are cost effective and can be readily installed in moderate to highly compressible soils (up to 40m deep) that are normally consolidated or lightly over-consolidated. PVDs rarely offer particular advantages if installed in heavily over-consolidated clays.

When required consolidation times are very short or the sub-soil is particularly weak, vacuum pressure has been used to enhance the efficiency of PVD. Negative pore pressures (suction) distributed along the drains and on the surface of the ground accelerate consolidation, reduce lateral displacement, and increase the effective stress. This allows the height of the surcharge embankment to be reduced to prevent any instability and lateral movement in the soil. Today, PVDs combined with vacuum preloading are being used more and more in practical ground improvement all over the world. Most of the research
outcomes in this regard can be categorized into 16 themes, as given in Table 1.

This lecture includes salient aspects of more than 20 years of research conducted at the University of Wollongong in the area of soft soil stabilisation using PVDs and vacuum preloading. The research work forms a vital Australian contribution to the field of soft soil improvement as well as offering a significant component of higher education training through more than a dozen doctoral studies to date. The University of Wollongong has and continues to promote the advancement of current industry practices in infrastructure development in coastal and low lying areas.

Table 1. Vertical Drains and Vacuum Consolidation in a Nutsell – Key themes

<table>
<thead>
<tr>
<th>Theme Description</th>
<th>Selected key References</th>
</tr>
</thead>
</table>
2. THEORETICAL DEVELOPMENTS OF PVD AND VACUUM CONSOLIDATION

The vacuum preloading method for vertical drains was arguably first introduced by Kjellman (1952) in Sweden. Since then, it has been used extensively to accelerate the consolidation of soft ground worldwide, for instance at the Philadelphia International Airport, USA; Tianjin port, China; North South Expressway, Malaysia; Reclamation works in Singapore and Hong Kong, China; Suvarnabhumi Second Bangkok International Airport, Thailand; Ballina Bypass New South Wales and the Port of Brisbane, Queensland in Australia, among many other projects (Holtan 1965; Choa 1990; Jacob et al. 1994; Bergado et al. 2002; Chu et al. 2000; Yan and Chu 2003). To obtain sufficient strength gain and limit post construction settlement in a reasonable time frame, traditional surcharge-only embankments can become excessively high. In a combined vacuum and fill surcharge approach the vacuum can provide the surcharge removing the need for additional fill.

In very soft clays where a high surcharge embankment cannot be constructed without affecting stability (large lateral movement) or having to work within a tight construction schedule, the application of vacuum pressure is quite often the most appropriate choice. The theoretical maximum suction attainable is atmospheric pressure of approximately 100 kPa. PVD-vacuum systems are designed to distribute the vacuum pressure to deep layers of the subsoil to increase the consolidation rate of reclaimed land and deepest estuarine plains (e.g. Indraratna et al. 2005b; Chu et al. 2000). This section touches on drain and soil properties relevant for modelling consolidation processes in PVD and vacuum systems.

2.1 Vacuum consolidation theory capturing smear effect

Mohamedelhassan and Shang (2002) developed a combined vacuum and surcharge load system based on Terzaghi one-dimensional consolidation theory (Figure 1). The mechanism for the combined vacuum and surcharge loading (Figure 1a) may be determined by the law of superposition (Figure 1b and Figure 1c). The average degree of consolidation for combined vacuum and surcharge preloading can then be expressed by:

\[U_c = 1 - \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \exp \left(\frac{-n^2 \pi^2 t}{L^2} \right) \]
\[T_c = c_{vc} t / H^2 \]

where \(T_c \) is a time factor for combined vacuum and surcharge preloading, and \(c_{ve} \) is the coefficient of consolidation for combined vacuum and surcharge preloading.

Indraratna et al. (2004) showed that when vacuum pressure is applied in the field through PVDs, the suction head along the length of the drain may decrease with depth, thereby reducing its efficiency. Laboratory measurements taken at a few points along PVDs installed in a large-scale consolidometer at the University of Wollongong clearly indicated that the vacuum propagates immediately, but a gradual reduction in suction may occur along the length of the drain. The distribution of suction in a PVD depends mainly on the length and type of PVD (core and filter properties). However, some field studies suggest that the suction may develop rapidly even if the PVDs are up to 30 m long in properly implemented vacuum system (Bo et al. 2003; Indraratna et al. 2005a).

Indraratna et al. (2004, 2005a) proposed a modified radial consolidation theory inspired by laboratory observations to include different distribution patterns of vacuum pressure (Figure 2). These results indicated that the efficiency of the PVD depended on the magnitude and distribution of the vacuum. In order to quantify the loss of vacuum, a trapezoidal distribution of vacuum pressure along the length of the PVD was assumed.

Based on these assumptions, the average excess pore pressure ratio \(R_e = \Delta p / \Delta u_e \) of a soil cylinder for radial drainage that incorporates vacuum preloading can be given by:

\[R_e = \left[1 + \frac{\rho_v (1+k)}{\rho_o \mu} \right] \exp \left(-\frac{8T_e}{\mu} \right) - \frac{\rho_v (1+k)}{\mu} \]

and

\[\mu = \ln \left(\frac{a}{s} \right) + \left(\frac{k_s}{k_e} \right) \ln(s) - 0.75 + \pi s \left(2 - \frac{k_s}{k_e} \right) \]

where \(\rho_v \) = vacuum applied at the top of the drain, \(k_t \) = ratio between the vacuum at the top and bottom of the drain, \(a_0 \) = initial excess pore water pressure, \(k_s, k_e \) = horizontal permeability in undisturbed and smeared zones, \(T_e \) = time factor, \(n = d_e / d_s \) (\(d_e \) is the diameter of the equivalent soil cylinder = 2rs and \(d_s \) is the diameter of the drain = 2ro), \(s = d_e / d_s \) (\(d_s \) is the diameter of the smear zone = 2rs with constant permeability), \(z = \) depth, \(f = \) equivalent length of drain, \(q_d = \) drain discharge capacity.

![Figure 1. Schematic diagram of vacuum preloading system: (a) combined vacuum and surcharge; (b) surcharge only; and (c) vacuum only(after Mohamedelhassan and Shang 2002, with permission from NRC Research Press).](image)

2.2 Analytical modelling of overlapping smear zones

Installing vertical drains with a steel mandrel significantly remoulds the subsoil in the vicinity of the drain. The smeared zone has reduced lateral permeability and increased compressibility. In varved clays, the finer and more impervious layers are dragged down and smeared over the more pervious layers which in turn decrease the permeability of the soil near the periphery of the drain. Barron (1948) suggested the concept of reduced permeability by arbitrarily lowering the apparent value of the coefficient of consolidation. Hansbo (1981)
modelled a smear zone of constant reduced permeability around a vertical drain. The resulting expression for the smear zone permeability/geometry parameter \(\mu \) (Eq. (4)), is commonly used in design despite laboratory evidence showing that the reduction of permeability towards the drain is gradual. Despite numerous analytical solutions (many of them involving the author) for variable smear zone permeability distributions the simple expression is preferred due to the difficulty of assessing actual insitu smear zone properties. The success of such an approach is due to the fact that all the various smear zone permeability distributions produce a numerical value of \(\mu \). Thus a suitably sized constant permeability smear zone will produce the same \(\mu \) value as a more realistic parabolic distribution.

In back-calculating consolidation properties from field results it is \(\mu \) that is back-calculated, and the size and shape of the smear zone are simply assumed.

Assuming a constant permeability smear zone will give a small smear zone when compared to one with gradual change. This in turn means there is little chance of these smaller smear zones overlapping. Walker and Indraratna (2007) investigated the possibility of overlapping smear zones with linear permeability distributions. The \(\mu \) expressions for a single non-overlapping linear smear zone are, for \(s \neq \kappa \) and \(s = \kappa \), respectively:

\[
\mu_c = \ln \left(\frac{n}{s} \right) - \frac{3}{4} \ln \left(\frac{s - \kappa}{\kappa - \kappa} \right) \quad \text{(5)}
\]

\[
\mu_s = \ln \left(\frac{n}{s} \right) - \frac{3}{4} s - 1 \quad \text{(6)}
\]

As illustrated in Figure 3, two smear zones will interact when the spacing parameter \(n \) is less than the size parameter \(s \) of the smear zone. As an idealization, it is assumed the interaction exhibits radial symmetry. It is also assumed that in the ‘interaction zone’ the permeability is constant at a value of \(k_{x_1} \), which is the value of permeability where the smear zones begin to overlap, \(s_{x_1} \). So the problem is now addressed by a modified version of the original linearly varying equations. The modified permeability ratio, \(\kappa_x = k_x/k_0 \) is given by:

\[
\kappa_x = 1 + \frac{k_{x-1}}{s-1} (s_{x-1}) \quad \text{(7)}
\]

For the case when \(2n - s > 1 \), the two smear zones completely overlap; it is then assumed that the permeability is constant at values equal to that at the drain/soil interface (i.e. \(k_0 \)). With reference to the undisturbed values of soil properties a new modified expression, \(\mu_x \), describing the effect of interacting smear zones can be defined as:

\[
\mu_x = \begin{cases}
\mu_c[n, s, \kappa] & n \geq s \\
\frac{\kappa}{\kappa_x} \mu_c[n, s, \kappa_x] & 2n - s \geq 1, \text{ and, } s > n \\
\frac{\kappa}{\kappa_x} \mu_s[n] & 2n - s < 1
\end{cases} \quad \text{(8)}
\]

Figure 4 shows the time to reach 90% consolidation for a case of overlapping smear zones. It suggests that if not for an absolute drain spacing minimum, there at least exists a range of drain spacing values across which the time required to reach a certain degree of consolidation does not change. For drain spacing values less than the corresponding local minima, the time for consolidation decreases rapidly. This is due to the assumption that once the linear smear zones completely overlap there is no further change in the soil properties; that is, a threshold level of disturbance is reached. This assumption is questionable as at an increasingly closer drain spacing the soil may become further remoulded, exhibiting properties different to that of the partially remoulded smear zone.
2.3 Effect of transition zone surrounding smear zone

Madhav et al. (1993) proposed that the zone disturbed by mandrel driving can be divided into two zones, which are: (i) the smear zone immediately surrounding the PVD and (ii) the transition zone surrounding the smear zone (Figure 5). Basu et al. (2010) studied the effect of transition zone and smear zone on the rate of consolidation with a 2D finite element analysis. Instead of the equivalent circular drain and influence area, actual band shape of PVD and rectangular shape of the influential zone were considered in that analysis.

The numerical analysis was validated by comparison with the experimental data of Indraratna and Redana (1998), in which the outer diameter of the smear and transition zones were approximately 2d_m and 7d_m, respectively. The settlement history was obtained with and without considering the transition zone, and the results were plotted in Figure 6. Also plotted in Figure 6 are the test data of the settlement measured by Indraratna and Redana (1998). The results with expanded smear zone agreed reasonably well with the measured data. When the transition zone was ignored, a significant disagreement to the test measurement was observed in the prediction in the latter part of consolidation.

![Figure 5. Variation of permeability with distance from centre of mandrel (modified after Madhav et al. 1993).](image1)

2.4 Non-linear soil properties and soil structure characteristics

Although mathematically convenient to work with linear governing equations for vertical drain consolidation, the non-linear properties of the soils should be used when modelling realistic soil behaviour. The non-linear variation of soil permeability and compressibility with the void ratio was incorporated into the equal-strain governing equation for vertical drain consolidation by Indraratna et al (2005d). The non-linear relations between the void ratio e and the soil properties (permeability and compressibility) are:

\[e = e_0 + C_e \log \left(\frac{k}{k_0} \right) \]
\[e = e_0 - C_0 \log \left(\frac{\sigma}{\sigma_0} \right) \]

where \(k_0 \) and \(\sigma_0 \) are the soil permeability and vertical effective stress corresponding to \(e_0 \).

Besides the non-linear permeability and compressibility of the soil, exponential non-Darcian flow and pre/post yield behavior was considered by Walker et al. (2012). The governing equation with the average excess pore pressure \(\pi \) as the unknown was obtained as:

\[\pi = (\gamma \cdot r_e)^{1-\beta} \left(\frac{\sigma_e}{2 \sigma_e} \right)^{\gamma} \]

where \(\pi \) is the average excess pore pressure, \(\beta \) is the non-Darcian flow exponent, and \(C_e \) is the coefficient of consolidation, and \(\beta \) is the non-Darcian radial consolidation parameter defined by Walker et al. (2012).

A laboratory test using the large-scale consolidometer (with a height of 950 mm and a diameter of 450 mm) at the University of Wollongong was carried out with reconstituted alluvial clay from Moruya, NSW in Australia. The value of \(C_e \) and \(\beta \) were tested to be 0.29 and 0.45, respectively. Results of the two tests with different preconsolidation pressure and load were compared against the predictions of Indraratna et al. (2005d) and Walker et al. (2012), as shown in Figure 7. The comparison indicated that the analytical solutions agree well with the test data, and the result using the Walker et al. (2012) formulation agrees slightly better with the test data than that of Indraratna et al. (2005d).

![Figure 7. Comparison between test data and predictions (Walker et al. 2012, with permission from Thomas Telford Ltd.).](image2)
The ratio of C_l/C_k also has a significant effect on consolidation rate. For $C_l/C_k < 1$ consolidation was faster than the conventional linear solution; while for $C_l/C_k > 1$ consolidation was slower than the linear solution.

Although Eq. (9b) is more realistic than the linear relation adopted in the conventional approaches, it is only valid for reconstituted soils. The in situ behavior of soft clays could be very different from the laboratorial investigations, which is why Rujikiatkamjorn and Indraratna (2014a) developed an analytical solution for radial consolidation that considers the soil structure characteristics by incorporating variable void ratio-effective stress relationship. The conceptual model for soils disturbed by mandrel action (Rujikiatkamjorn et al. 2013) was used, as shown in Figure 8.

![Figure 8. Conceptual compression behaviour of soil with different disturbance levels (modified from Rujikiatkamjorn et al. 2013, 2014a, with permission from NRC Research Press).](image)

Figure 8. Conceptual compression behaviour of soil with different disturbance levels (modified from Rujikiatkamjorn et al. 2013, 2014a, with permission from NRC Research Press).

Figure 9 shows a comparison of settlement plots for the Ballina Bypass project based on two analytical solutions proposed by Walker and Indraratna (2007) and Rujikiatkamjorn, et al. (2014a). Walker and Indraratna (2007) captured the linear variation of permeability in the smear zone, whilst Rujikiatkamjorn and Indraratna (2014a) considered the effects of soil disturbance on both permeability and compressibility in the smear zone. The results indicated that the method capturing the effect of soil disturbance on both permeability and compressibility can result in a better match with the field data, and shows the importance of mandrel induced soil structure degradation.

![Figure 9. Predicted and measured settlement in SP1 at Ballina Bypass (adapted from Rujikiatkamjorn and Indraratna, 2014a, with permission from NRC Research Press).](image)

Figure 9. Predicted and measured settlement in SP1 at Ballina Bypass (adapted from Rujikiatkamjorn and Indraratna, 2014a, with permission from NRC Research Press).

2.5 Large strain effect

Soft estuarine deposits may experience large strains when consolidated via PVD under extensive surcharge and vacuum preloading. Indraratna et al. (2016c) proposed a large strain consolidation model incorporating varying permeability and compressibility, non-Darcian flow as well as large strain effect for PVD consolidation. Under low hydraulic gradients in low porosity soils fluid flow may deviate from Darcy’s law. The Non-Darcy behavior is typically considered as an exponential relationship between the seepage velocity and the hydraulic gradient.

Based on a large strain coordinate system, the Lagrangian coordinate a and the convective coordinate ξ have the relationship $\frac{\partial \xi}{\partial a} = \frac{1}{1+c_0}$ where c is the void ratio and c_0 is the initial void ratio. A large-strain governing equation with radial flow has been established as:

$$\frac{1}{1+c_e} \frac{\partial \xi}{\partial t} + v(r)(r_e-r) \frac{2r}{r_e^2-r^2} \frac{\partial \xi}{\partial a} = 0$$

(11)

where r is the radius, r_e is the drain influence radius, t is the time, and $v(\phi)$ is the inward seepage velocity at radius r.

![Figure 10. Comparison between large-strain and small-strain solution at Ballina Bypass. (Indraratna et al. 2016c, with permission from ASCE)](image)

Figure 10. Comparison between large-strain and small-strain solution at Ballina Bypass. (Indraratna et al. 2016c, with permission from ASCE)

Numerically solving Eq.(11), Figure 10 compares settlement predictions from small and large-strain analyses with field data from a Ballina Bypass embankment. Figure 10Having compared the large-strain with the small-strain settlement results, Figure 10 clearly indicates that the proposed large-strain solution gives a more acceptable prediction of settlement at each settlement plate location.

2.6 Degree of consolidation theory based on pore pressure

Assessment of degree of consolidation in the field is normally based on either monitored ground settlement or excess pore water pressure. Chu and Yan (2005b) proposed a method to estimate the average degree of consolidation based on pore water pressure. This method requires the measurement of pore water pressures at various depths, and the plot of the initial and final pore water pressure distributions is schematically illustrated in Figure 11. The average degree of consolidation can then be determined by:
Honours Lectures / Discours Honoraire

This method has multiple advantages compared to the method of estimating degree of consolidation based on ground settlement, such as:

1. Pore pressure data required by this method are all directly measured; whereas the method based on ground settlement requires a predicted ultimate settlement;
2. It can calculate not only the final degree of consolidation, but also that at any time;
3. For multiple layers, the method can be applied to each layer individually.

2.7 Lateral deformation theory

Chai et al. (2013) proposed an empirical equation for estimating the lateral displacement of ground improved with PVDs subjected to fill surcharge and vacuum preloading. A dimensionless parameter, i.e. the normalized maximum value of net lateral displacement (NLD), was proposed and expressed as:

\[\text{NLD} = \frac{\delta_{\text{mo}} - \delta_{\text{mi}}}{S_f} \]

(13)

where \(\delta_{\text{mo}} \) and \(\delta_{\text{mi}} \) are the maximum values of the net outward lateral displacement and inward lateral displacement, respectively, \(S_f \) is the settlement of the ground at the centerline of the embankment.

Another dimensionless parameter, the representative shear strength (RLS), was expressed as:

\[\text{RLS} = \frac{\rho_{\text{em}} - (\rho_{\text{vac}} + \rho_{\text{em}}) U}{\sigma_u} \]

(14)

where \(\rho_{\text{em}} \) and \(\rho_{\text{vac}} \) are the embankment pressure and the vacuum pressure, respectively, \(U \) is the average degree of consolidation of the treated area at the end of the embankment construction period, and \(\sigma_u \) is the representative undrained shear strength of the subsoil.

Eighteen case histories from Thailand, China, Australia, Japan and Vietnam were studied to investigate the relationship between RLS and NLD (Figure 12). A general relationship was proposed as NLD=0.05+0.168RLS (for -1.5<RLS<0.75). This method may be used to estimate the likely range of the NLD, in designing ground improvement works in soft clay using the PVDs under a combination of vacuum pressure and embankment pressure.

3. EXPERIMENTAL SIMULATIONS

Triial field embankments and laboratory consolidometer tests (cylinders of soil with a central drain) have been used to verify/quantify many of the theoretical effects discussed in the previous section. In particular, the University of Wollongong’s large scale consolidometers have been used extensively to study the smear zone around a PVD. This section describes a range of experiments including recent tests with cyclic loading.

3.1 Large scale testing of smear zone

Based on constant but reduced permeability in the smear zone, Jamiołkowski et al. (1983) proposed that the diameter of the smear zone (\(d_s \)) and the cross section of the mandrel can be related by:

\[d_s = (2.5 \text{ to } 3) \ d_m \]

(15)

In the above, \(d_m \) is the diameter of the circle with an area equal to the cross section of the mandrel (i.e. equivalent mandrel diameter). Based on the results of Akagi (1979) and Hansbo (1987), the smear zone is often evaluated by the simple expression:

\[d_s = 2 \ d_m \]

(16)

Onoue et al. (1988) introduced a three zone hypothesis defined by (a) a plastic smear zone close to the drain where the soil is highly remoulded during installation, (b) a plastic zone where the permeability is reduced moderately, and (c) an outer undisturbed zone where the soil is unaffected by installation.

On the basis of their experimental work, Indraratna and Redana (1998) proposed that the estimated smear zone is at least 3-4 times larger than the cross section of the drain. This proposed relationship was verified using a specially designed large scale consolidometer (the schematic section is shown in Figure 13). Figure 14 shows the variation of the ratio of horizontal to vertical permeability (\(k_h/k_v \)), and the water content along a radial distance from the central drain in the large scale consolidation apparatus (Indraratna and Redana 1998; Sathananthan and Indraratna 2006; Walker and Indraratna 2006). The radius of the smear zone is about 2.5 times the equivalent radius of the mandrel. The lateral permeability (within the smear zone) is 61%-92% of the outer undisturbed permeability.
zone, which is similar to Hansbo (1987) and Bergado et al. (1991) recommendations. Only recently, Sathananthan et al. (2008) used the cavity expansion theory (CET), with the modified Cam-clay model, to analyse the extent of the smear zone caused by mandrel driven vertical drains. Their predictions were verified by large scale laboratory tests where the extent of the smear zone was quantified based on (a) response of excess pore pressure generated while driving the steel mandrel, (b) change in lateral permeability, and (c) reduction in soil water content towards the drain.

![Schematic section of the test equipment showing the central drain and associated smear (Indraratna and Redana 1998, with permission from ASCE).](image13)

Figure 13. Schematic section of the test equipment showing the central drain and associated smear (Indraratna and Redana 1998, with permission from ASCE).

![Measured pore pressure of the full-scale embankment test (Bergado et al. 1991, with permission from ASCE).](image16)

Figure 16. Measured pore pressure of the full-scale embankment test (Bergado et al. 1991, with permission from ASCE).

3.2 Full-scale embankment test investigating smear zone

A full-scale field embankment test was analysed by Bergado et al. (1991) to investigate the effect of smear effect by mandrel driving on an area 15 m × 19 m. A total of 168 band drains with cross-sectional dimensions of 100 mm × 6 mm were driven to a depth of 8 m in a square pattern with 1.2 m drain-to-drain spacing using two different sizes of mandrels: 150 mm × 45 mm and 150 mm × 150 mm (see Figure 15).

Figure 15 shows that the dissipation of pore pressures in the large mandrel region is slower than that in the small mandrel region. Extensometer settlement data show that the small mandrel region has a considerably faster settlement rate than the large mandrel region (Figure 17), probably because a smaller smear zone has been caused by the smaller mandrel. This test indicates that the smear effect is closely related to the size of the mandrel and plays an important role in the effectiveness of ground improvement using vertical drains.

![Layout of vertical drains in the full-scale embankment test (Bergado et al. 1991, with permission from ASCE).](image15)

Figure 15. Layout of vertical drains in the full-scale embankment test (Bergado et al. 1991, with permission from ASCE).
3.3 Pore pressure based method to quantify smear for vertical drains

A set of large consolidometer cells (see Figure 13) was set up at the University of Wollongong to investigate smear characteristics of jute drains made from coconut fibres (Choudhary et al. 2016). Seven pore pressure transducers were placed 100 mm from the bottom of the cell in a staggered arrangement around the drain (i.e. 15, 30, 45, 60, 100, 150, 200 mm from the centreline) to measure the pore pressure in the soil-drain system at different radii. Sample height, moisture content and permeability were measured both prior to and after the consolidation test. Soil was extracted from a flood plain from a depth of 2m from Ballina Bypass whose properties have been described in detail in Indraratna et al. 2015a.

The plot for the degree of consolidation is shown in Figure 18 and is compared with the theoretical calculations of consolidation considering a linear and a parabolic variation of permeability in the smear zone. The degree of consolidation \(U \) was derived from the equation suggested by Carrillo (1942), hence,

\[
U = 1 - \sum_{m=1}^{\infty} \frac{8}{(2m+1)^2 \pi} \exp \left(-\frac{\left(\frac{2m+1}{2} \right)^2}{m} \right) \frac{k_f}{k_v} \frac{\gamma_v}{\gamma_m} d^2 \tag{17}
\]

![Figure 18: Time-Settlement curve of jute drain-soil system and its comparison with theoretical calculations based on linear and parabolic permeability profiles in the Smear Zone. (Choudhary et. al. 2016, with permission from Thomas Telford Ltd.)](image)

The theoretical calculations based on the variations in permeability are found to be in acceptable agreement with the measured data. The experimental data obtained from our system agrees with the parabolic case for later part of the consolidation process and with the linear case for the initial consolidation process. The variation of permeability in the smear zone thus plays an important role in determining the correct consolidation response. The pore water pressure variation with radius was also examined. Based on equation (17) for a given depth \(z \) and a time \(t \), the radial derivative of excess pore pressure, i.e. \(du/dr \) is plotted in Figure 19(c) for cases with and without smear, the latter being the theoretical plot based on Barron (1948), while the former is plotted using the experimental data. Observing that (a) the variation of \(k_f / k_v \) along the radial direction would converge to the constant horizontal permeability in the undisturbed zone and (b) \(du/dr \) is inversely proportional to the horizontal permeability when the vertical permeability is constant in the unit cell, the plots of \(du/dr \) for both cases (i.e. ‘with smear’ and ‘without smear’) can be used to determine the extent of smear zone based on the intersection of these two curves. Based on the proposed method, Figure 19(c) gives the smear zone size to be close to \(d \cdot r_m = 2.5 \).

![Figure 19: Variation of permeability and normalized water content from the centreline. (Choudhary et. al. 2016, with permission from Thomas Telford Ltd.)](image)

3.4 Large scale consolidometer test under vacuum consolidation

Saowapakpiboon et al. (2010) conducted a series of laboratory tests using a large scale consolidometer with an inner diameter of 305 mm and a height of 500 mm. Soft clay samples were obtained from 3 to 4 m depth at the sites of the Second Bangkok International Airport and the Suvarnabhumi Airport in Thailand. The specimens were prepared with the reconstituted soils under a preconsolidation pressure of 50 kPa.

One specimen was consolidated with PVD under a vertical stress of 100 kPa, while the other specimen was used a combination of 50 kPa vertical stress and -50 kPa vacuum pressure. The pressures were applied and vertical displacement was measured immediately after PVD installation. The final
settlements between the specimen with vacuum preloading and the specimen without vacuum preloading were compared and are given in Figure 20. The settlement rate of the surcharge-vacuum case was considerably faster than that of the surcharge-only case.

Figure 20. Settlement history from large consolidometer of reconstituted sample in the laboratory using PVDs with and without vacuum (adopted from Saowapakpiboon et al. 2010, with permission from Elsevier).

3.5 Large scale testing of PVD subjected to cyclic loading

Plastic clays can exhibit high excess pore water pressure during static and repeated loading. The effectiveness of PVDs for dissipating cyclic pore water pressures has been discussed by Indraratna et al. (2009). This research was particularly beneficial for fast freight trains travelling on trucks constructed on soft soil terrains along the coast, and where ‘mud pumping’ is a potential problem.

A large scale triaxial test was used to examine the effects of cyclic load on radial drainage and consolidation by PVDs (Figure 21a). This test chamber can accommodate specimens 300 mm diameter and 600 mm high (Figure 21b). The excess pore water pressure was monitored via miniature pore pressure transducers fitted through the base of the cell to the desired locations on the samples.

The tests were conducted at frequencies of 5-10 Hz and under cyclic load amplitude of 25 kPa, simulating train speeds of 60-100 km/h with 25-30 tonnes/axle loads. Figure 22 shows an example of the excess pore pressure recorded at various locations within the cell. The maximum excess pore water pressure closer to the PVD (T2) during cyclic load was significantly less than that near the cell boundary (T1), and the dissipation rate of excess pore pressure at T2 (close to the PVD) was faster than that of T1.

The excess pore water pressure ratio R_u is defined as the ratio between the excess pore pressure and the initial effective pressure (Miller et al. 2000; Zhou and Gong 2001). Figure 23 shows the excess pore pressures and corresponding excess pore water pressure ratio R_u versus the number of loading cycles N under the three separate series of tests. Without PVD, the excess pore pressure increased rapidly $R_u \approx 0.9$, and undrained failure occurred very quickly. The corresponding axial strains are shown in Figure 24a. Without a PVD, large cyclic axial strains developed and failure occurred rapidly after about 200 cycles in the cyclic CK0 test, and after about 100 cycles in the cyclic UC (cyclic confined compression) test. Figure 24b indicates failure initiation when the $e_\varepsilon - \log N$ curves become concave downwards. With a PVD, the axial strain gradually increased to a constant level and no failure was evident even after 3,000 cycles, as shown in Figure 24 (a&b).

The test results revealed that PVDs decreased the maximum excess pore pressure under cyclic loading. They also decreased the build-up of excess pore pressure and helped to accelerate its dissipation during any rest periods. In reality, dissipating pore water pressure during a rest period stabilizes the track for the next loading stage (i.e. subsequent passage of train). This cyclic-induced excess pore pressure tends to rise substantially as the shear strain exceeds 1.5-2%. Soft clays provided with radial drainage via PVD can be subjected to cyclic stress levels higher than the critical cyclic stress ratio without causing undrained failure.
4. CONSTITUTIVE MODEL OF SOFT SOILS UNDER CYCLIC LOADING

Conventional application of PVD and vacuum to embankments involves relatively static loads. The previous section suggests PVD can be used in areas with highly oscillatory loads to reduce pore pressure build up and deformations such as those occurring under railway tracks. This relatively new area requires understanding of clay behaviour subject to cyclic loads. A constitutive model for soft soils under cyclic loading was presented by Ni et al. (2015).

Compared to the static behaviour, the cyclic behaviour of soft subgrade soils is more complex as the excess pore pressure and strain continue to develop with increasing number of cycles. Ni et al. (2015) extended the Modified Cam-clay-based cyclic soil model of Carter et al. (1980, 1982) considering the dependence of the excess pore pressure generation rate on the number of cycles. Only two additional parameters are included in the parameters of Modified Cam Clay model. It is assumed that during elastic unloading, the yield surface remains unchanged, but reduces the size in an isotropic manner (Carter et al. 1980, 1982) as follows:

\[
\frac{d\bar{p}}{d\bar{\rho}} = \Theta \frac{dp}{d\rho}
\]

where, \(\Theta \) is a hardening parameter and \(\bar{p} \) is defined as (Roscoe and Burland 1968):

\[
\bar{p} = \rho + \left(\frac{q}{M} \right)^{\frac{1}{\mu}}
\]

In the above, \(M \) is the slope of the critical state line in \(\bar{p} - q \) space and \(\rho \) and \(q \) are the effective mean stress and deviator stress, respectively.

The parameter \(\Theta \) is assumed to be (Ni et al., 2014):

\[
\Theta^* = \frac{1}{N^* + \xi^*}
\]

where, \(\xi_1^* \) and \(\xi_2^* \) are experimental constants, and \(N \) is the number of cycles.

The stress path for normally and isotropically consolidated soils under cyclic loading is shown in Figure 25. When the stress path moves from point \(A \) to point \(A' \) during the first loading period, the soil behaves elastically. During the first unloading period, while the stress path travels from point \(A \) to \(A' \), the effective mean stress remains constant. The yield stress for the second cycle (i.e. yield stress after unloading) can be calculated through Eq. (18). During the first part of the second cycle, the stress path travels from point \(A' \) to point \(B \) and the soil behaves elastically. Subsequently, the stress path moves from point \(B \) to \(C \) and the soil behaves plastically.

Undrained cyclic triaxial loading tests were conducted on reconstituted kaolinite specimens. The experimental results in terms of the axial strain and excess pore pressure are given in Figure 26. It can be observed that the excess pore pressure shows a sharp increase at the low cycle range and increases only modestly with a large number of cycles. The excess pore pressures reached a stable state for the specimens with Cyclic Stress Ratio (CSR) = 0.4 and 0.6, but for the specimen with CSR=0.8, a critical value of normalized excess pore pressure is reached after only a few cycles. It is also observed that failure cannot be assessed only on the basis of the normalized excess pore pressures. In fact, the failure of the two samples U0 and U12 is indicated by a sharp rise in axial strains at a critical
number of cycles. In contrast, for samples U_{01}, U_{02}, U_{10} and U_{11}, the final axial strains are still very small in the end.

![Figure 26. Predictions of excess pore pressures and axial strains: (a) $f=0.1$ Hz, (b) $f=5$ Hz (Ni et al. 2014, with permission from ASCE).](image)

The simulation results are also plotted together with the experimental data in Figure 26. It can be observed that the model proposed accurately predicts the experimental behaviour both in terms of excess pore pressures and axial strains.

5. ANALYTICAL SOLUTION FOR RADIAL CONSOLIDATION WITH NATURAL (FIBRE) DRAIN BIODEGRADATION

Due to environmental concerns over the use of biodegradation resistant synthetic geomaterials and local availability of materials, Natural PVD (NPVD) made from natural fibres such as jute and coir are increasingly being used, particularly in Asian countries. Since the first NPVD was introduced by (Lee et al. 1987), several investigations (Mitra et al. 1995; Kim and Cho 2009; Saha et al. 2012) in the laboratory and field have identified that NPVDs have a potential to decay rapidly when exposed to harmful environments where particular bacteria (e.g., cellulose degrading bacteria) are available. Rapid degradation of natural fibres reduces the drainage characteristics of the drain hampering consolidation. Therefore, there is a critical need to evaluate the influence of drain biodegradation on soil consolidation.

![Figure 27 Degradation of drain discharge capacity with the corresponding consolidation of soil (Indraratna et al. 2016b, with permission from Elsevier).](image)

Indraratna et al. 2016b present an analytical solution to equal strain radial consolidation where the discharge capacity of the drain reduces over time. The discharge capacity of drain begins to drop immediately reducing to a minimum level where natural fibres have completely transferred into organic components (Figure 27).

Radial consolidation with degrading discharge capacity can be described with the following governing equation:

$$u = \frac{\gamma_w}{2k_r} \left(\frac{\mu_{n,s}}{w} \right) \frac{\partial^2 \varepsilon}{\partial t^2} \left(1 + \mu_{n,s} + \mu_{w,s} \right) \left(\frac{\partial u}{\partial t} \right)$$ \hspace{1cm} (21)

In the above, $\mu_{n,s}$ is the parameter representing the geometric features of the drain while μ_w is a function of the drain discharge capacity $q_w(t)$ which is varying over time. The general solution of the ordinary differential equation Eq. (21) can be written as:

$$u(t) = u_0 \exp \left(-\frac{t}{\int f(t) \, dt} \right)$$ \hspace{1cm} (22)

where the function $f(t)$ is given as follows:

$$f(t) = \left(\frac{\mu_{n,s}}{q_w(t)} \right) \left(\frac{\lambda}{\hbar} \right)$$ \hspace{1cm} (23)

where $\chi = \left(2\pi k_f \right) / 3$; $\lambda = d_r^2 / (8c_s)$.

To illustrate how the solution can evaluate the influence of drain degradation on the consolidation of soil, an exponential degradation of discharge capacity is considered as follows:

$$q_w(t) = q_{w0} e^{-\omega t}$$ \hspace{1cm} (24)

where ω is the decay coefficient representing the rate of the reduction in discharge capacity. The larger this coefficient, the faster the degradation of drain. Replacing Eq. (24) into Eq. (22) and then integrating yields:
\[
\frac{u(t)}{u_w} = \exp\left\{-8T \frac{1}{\mu_w} \left[\ln \left(\frac{\mu_{w,\infty}}{\mu_w} + e^\omega \right) - \ln \left(\frac{\mu_{w,\infty}}{\mu_w} + 1 \right) \right] \right\}
\] (25)

The above is the exact solution to predict the radial consolidation of soil with respect to the exponential reduction in the drain discharge capacity. When \(\omega \) approaches zero (no degradation), Eq. (25) reduces to the conventional solution of Hansbo (1981) which considers \(q_w \) as constant over time.

Figure 28 shows how the proposed solution can capture the influence of biodegradation on the consolidation of soil. While excess pore pressure predicted by the conventional method can dissipate completely after nearly 500 days, for the degradable drain a residual excess pore pressure remains after the drain has completely degraded (e.g., 22% for \(\omega = 0.02 \) day\(^{-1} \)). The retarded excess pore pressure dissipation only becomes apparent when \(q_w \) decreases to a certain level which is influenced by the consolidation coefficient \(c_h \) and the geometry of the unit cell (i.e., \(d_e \) and \(l \)). In this study, the value of drain discharge capacity where soil consolidation becomes retarded considerably is approximately 0.1 m\(^3\)/day.

![Figure 28. Influence of drain degradation on the consolidation of soil: a) Degradation with different decay rates; b) Corresponding dissipation of excess pore pressure (Indraratna et al. 2016b, with permission from Elsevier).](image)

6. NUMERICAL ANALYSIS – PLANE STRAIN CONVERSION

The majority of models in Sections 2, 3, and 5 above consider an idealized single drain in an axi-symmetric soil cylinder subject to vertical loads. The most common technique to study full embankment behaviour is the finite element method. For multi-drain simulation, plane strain finite element analysis can be readily adapted to most field situations (Hird et al. 1995, Indraratna and Redana 2000; Indraratna et al. 2005a). Nevertheless, realistic field predictions require that the axi-symmetric properties be converted to an equivalent 2D plane strain condition, especially the permeability coefficients and drain geometry. Plane strain analysis can also accommodate vacuum preloading in conjunction with vertical drains (e.g. Gabr and Szabo 1997). Indraratna et al. (2005b) proposed an equivalent plane strain approach to simulate vacuum pressure for a vertical drain system with modification to the original theory introduced by Indraratna and Redana (1997), as shown in Figure 30.

Equivalent plane strain conditions can be fulfilled in three ways:

1. Geometric approach where the PVD spacing varies, but the soil permeability remains constant;
2. Permeability approach where the equivalent permeability coefficient is determined while the drain spacing remains unchanged;
3. Combined permeability and geometric approach where plane strain permeability is calculated based on a convenient space between the drains.

Indraratna et al. (2005b) proposed an average degree of consolidation for plane strain by assuming that the plane strain cell (width of \(2B \)), the half width of the drain \(b_w \) and the half width of the smear zone \(b_s \) may be kept the same as their axi-symmetric radii \(r_w \) and \(r_s \), respectively. This implies that \(b_w = r_w \) and \(b_s = r_s \). The proposed method is compared with previous studies, including (i) the laboratory work by Kim et al. (2011); and (ii) the analytical method by Deng et al. (2014). A degradation curve with \(\omega = 0.259 \) day\(^{-1} \) is obtained from the experimental result made by Kim et al. (2011). Figure 29 shows a good agreement between the analytical and experimental methods. The consolidation curves predicted by the current method and one proposed by Deng et al. (2014) are almost identical. There is only a subtle difference between them because Deng et al. (2014) solves the governing equation by an approximate approach while an exact solution is applied in this study. Furthermore, Deng et al. (2014) only consider the exponential degradation of drain permeability whereas the current study introduces a general form of drain discharge capacity and incorporates it into the governing equation for excess pore pressure dissipation, resulting in a more flexible approach which can accommodate various reduction forms of drain discharge capacity.

![Figure 29. Comparison of the proposed method with previous studies (Indraratna et al. 2016b, with permission from Elsevier).](image)
and \(b = r_0 \) (Figure 30). To excess pore pressure can be determined from:

\[
\bar{u} = \frac{u}{u_0} = \left(1 + \frac{\rho_0 + (1 + k_i)}{2} \right) \exp \left(- \frac{8T_p}{\mu_p} \right) \left(1 + \frac{\rho_0 + (1 + k_i)}{2} \right) \quad (26a)
\]

and

\[
\mu_p = \left[\alpha + \beta \right] k_{hp} \quad \left(\frac{k_{hp}}{k_h} \right)
\]

(26b)

where \(\bar{u}_0 \) = the initial excess pore pressure, \(\bar{u} \) = the pore pressure at time \(t \) (average values) and \(T_p \) = the time factor in plane strain, and \(k_{hp} \) and \(\beta \) are the equivalent undisturbed horizontal and corresponding smear zone permeability, respectively. The geometric parameters \(\alpha \) and \(\beta \) are given by:

\[
\alpha = \frac{2}{3} \left(1 - \frac{b_s - b_n}{B} \right) \quad \left(\frac{b_s - b_n}{3B^2} \right)
\]

(27a)

\[
\beta = \frac{1}{B^2} \left(b_s - b_n \right)^2 + \frac{B}{3B^2} \left(b_s - b_n \right)^2
\]

(27b)

At a given level of effective stress, and at each time step, the average degree of consolidation for the axisymmetric (\(T_p \)) and equivalent plane strain (\(T_{p,ps} \)) conditions are made equal.

![Diagram](image)

Figure 30. Conversion of an axisymmetric unit cell into plane strain condition (Indraratna et al. 2005b, with permission from ASCE).

By making the magnitudes of \(R \) and \(B \) the same, Indraratna et al. (2005a) presented a relationship between \(k_{hp} \) and \(\beta \).

The smear effect can be captured by the ratio between the smear zone permeability and the undisturbed permeability, hence:

\[
\frac{k_{hp}}{k_h} = \frac{\beta}{\ln(s) + \left(\frac{k_s}{k_h} \right) \ln(s) - 0.75 - \alpha}
\]

(28)

Ignoring the effects of smear and well resistance in the above expression would lead to the simplified solution proposed earlier by Hird et al. (1992):

\[
\frac{k_{hp}}{k_h} = 0.67 \quad \left(\frac{\ln(s) - 0.75}{k_s} \right)
\]

(29)

Indraratna et al. (2005b) compared two different distributions of vacuum along a single drain for the equivalent plane strain (2D) and axisymmetric conditions (3D). Varying the vacuum pressure in PVDs installed in soft clay would be more realistic for long drains, but a constant vacuum with depth is justified for relatively short drains.

7 CASE HISTORIES

Compendiums edited by Indraratna and Chu (2005e) and Indraratna et al. (2015) describe many successful ground improvement projects. This section looks at two PVD-vacuum case histories from Australia and one from China which have been modelled using techniques described above.

7.1 Ballina Bypass

The Pacific Highway on Australia’s East coast linking Sydney and Brisbane bypasses the town of Ballina. This bypass route has to cross a floodplain consisting of highly compressible and saturated marine clays up to 40 m thick. At one bridge abutment combined vacuum and surcharge preloading with PVDs was selected to shorten the consolidation time and stabilise the deeper clay layers. To investigate the effectiveness of this approach, a trial embankment was built north of Ballina, where 34 mm diameter circular PVD at 1.0m spacing were installed in a square pattern. The vacuum system consisted of PVDs with an air and water tight membrane, horizontal transmission pipes, and a heavy duty vacuum pump. Transmission pipes were laid horizontally beneath the membrane to provide uniform distribution of suction through the drainage blanket. The boundaries of the membrane were embedded in a peripheral trench filled with soil-bentonite to ensure air tightness. Figure 31 presents the instrument locations, including surface settlement plates, inclinometers and piezometers. The piezometers were placed 1m, 4.5m, and 8m below the ground.
level, and eight inclinometers were installed at the edges of the embankment. The embankment area was then divided into Section A (no vacuum pressure), and Section B that was subjected to vacuum pressure and surcharge fill. As the layers of soft clay ranged 7m to 25 m thick (Table 2), the embankment varied from 4.3m to 9.0m high, to limit the post-construction settlement. A vacuum pressure of 70 kPa was applied at the drain interface and removed after 400 days. The geotechnical parameters of the three subsoil layers obtained from standard oedometer tests are given in Table 3.

The soil profile with its relevant properties is shown in Figure 32. A soft silty layer of clay approximately 10m thick was underlain by a moderately stiff and silty layer of clay located 10-30m deep, which was in turn underlain by firm clay.

The groundwater was almost at the ground surface. The water content of the soft and medium silty clay varied from 80 to 120%, which was generally at or exceeded the liquid limit, ensuring that the soils were fully saturated. The field vane shear tests indicated that the shear strength was from 5-40 kPa. The compression index \(C_{v}/(1+e) \) determined by standard oedometer testing was between 0.30-0.50.

Settlement and associated pore pressure recorded by the settlement plates and piezometers are shown in Figure 33, along with the embankment construction schedule. The actual suction varied from -70 kPa to -80 kPa, and no air leaks were encountered. Suction was measured by miniature piezometers embedded inside the drains.

Table 2: Bottom level of soft clay layer at each settlement plate (Indraratna et al. 2012, with permission from ICE).

<table>
<thead>
<tr>
<th>Settlement plate</th>
<th>SP1, SP2</th>
<th>SP3, SP4</th>
<th>SP5, SP6</th>
<th>SP7, SP8</th>
<th>SP9, SP10</th>
<th>SP11, SP12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom level of soft clay layer (m-RL)</td>
<td>2.7-6.7</td>
<td>6.7-9.7</td>
<td>9.7-11.7</td>
<td>11.7-14.7</td>
<td>14.7-17.7</td>
<td>20.7-24.7</td>
</tr>
</tbody>
</table>

Figure 31. Instrumentation layout for the test embankments at Ballina Bypass (Indraratna et al. 2012, with permission from ICE).

Figure 32. General soil profile and properties at Ballina Bypass (Indraratna et al. 2012, with permission from ICE).
Lateral displacement at the toe of the embankment needed to be examined carefully, particularly in the vacuum area where the surcharge loading was raised faster than that at the non-vacuum area. The soil properties and lateral displacement plots before and after vacuum are shown in Figure 34. Inclinometer I1 was installed in the no-vacuum area, whereas inclinometers I2-I7 were located at the edge of the vacuum area. Here the lateral displacement subjected to vacuum was smaller even though the embankments were higher. In Figure 34b the plot of lateral displacement normalised to embankment height shows that the vacuum pressure undoubtedly has reduced lateral displacement.

2D and 3D single drain analyses were used to compute the settlement at location SP-12. Typical 2D finite element mesh is shown in Figure 35a. The construction history and measured settlement at the settlement plate SP-12 are shown in Figure 40b & c. Here the clay was assumed to be 24m thick, based on CPT data. The analytical pattern was similar to Indraratna et al. (2005a). The predictions from 2D and 3D analyses agreed with the measured data, where the rate of settlement increased significantly after a vacuum was applied (Figure 35c).
7.2 Port of Brisbane

The Port of Brisbane is located at the mouth of the Brisbane River at Fishermain Islands, Queensland Australia. An expansion of the Port includes a 235ha area to be progressively reclaimed and developed over the next 20 years using dredged materials from the Brisbane River and Moreton Bay shipping channels. The site contains compressible clays over 30 m thick. At least 7 m of dredged mud capped with 2 m of sand was used to reclaim the sub-tidal area. With surcharge alone, the complete consolidation of the soft deep clay deposits may take in excess of 50 years, with associated settlements 2.5-4 m likely. To reduce the consolidation period, the method of PVD and surcharge or PVD combined with vacuum pressure (at sites where stability is of a concern) was chosen to be trialled (Indraratna et al., 2011). Three contractors trialed prefabricated drains and surcharge using respective membrane and membraneless vacuum systems. Figure 36 shows the final layout of the typical trial area with the design specifications for each area. The relevant soil properties are given in Table 1.

To compare two locations with a different loading history, the lateral displacement normalised by the applied effective stress at two inclinometer positions (MS24 and MS34) are plotted in Figure 37. It is clear that the lateral displacements are largest in the upper Holocene shallow clay depths and are insignificant at shallow depths, say below 10m. From this limited inclinometer data, the membrane-less BeauDrain system (MS34) had controlled the lateral displacement more effectively than the surcharge only section (MS24). Settlement and excess pore water pressure predictions and field data for a typical settlement plate (TSP3) are shown in Figure 38. The predicted settlement curve agrees with the field data. The excess pore water pressures were more difficult to predict than settlement, but they did indicate a slower rate of dissipation in the Holocene clays in every section monitored, in spite of the PVDs. From the perspective of stability, the incremental rate of change of the lateral displacement/settlement ratio (μ) with time can be plotted as shown in Figure 39. This rate of change of μ can be determined for relatively small time increments where a small and decreasing gradient can be considered to be stable with respect to lateral movement, while a continuously increasing gradient of μ reflects potential lateral instability. In Figure 39, the gradient in the non-vacuum area VC3 increased initially, which could be attributed to the final surcharge loading placed quickly, while the clay was still at early stages of consolidation. However, as the PVDs become fully active and settlement increased at a healthy rate, the gradient of μ decreased, as expected. In general, Figure 39 illustrates that the vacuum pressure provides a relatively unchanging gradient of μ with time.
Figure 38. (a) Settlement; and (b) excess pore water pressure predictions and field data for a typical settlement plate location (Indraratna, 2010, with permission from AGS).

Figure 40 provides approximately linear relationships between the long term residual settlement (RS) and the clay thickness of clay for an initial over-consolidation ratio (OCR) from 1.1 to 1.4, and for a degree of consolidation (DOC) that exceeding 80%. The reduced settlement (RS) was determined based on the theory of secondary consolidation employing the secondary compression index C_{cs} (Table 1). More details on the computation of RS are given by Mesri and Castro (1987), Bjerrum (1967) and Yin and Clark (1994). As expected, when the OCR increases, the RS decreases substantially. In general, as the thickness of Holocene clay increase, the RS also increased. The corresponding regression lines and best-fit equations are also shown in Figure 40. In particular, the vacuum consolidation locations (VC1-2, VC2-2 and VC2-3) show a considerably reduced RS at an OCR approaching 1.4, which is well below the permissible limit of 250mm. At an OCR of approximately 1.3, the residual settlement associated with membraneless consolidation (TA8) and membrane type (VC1-5) were also small.

Table 1. Typical Soil Properties (Indraratna, 2010, with permission from AGS).

<table>
<thead>
<tr>
<th>Soil layer</th>
<th>Soil type</th>
<th>γ (kN/m³)</th>
<th>$C_s/(1+\varepsilon_0)$</th>
<th>c_r(m²/yr)</th>
<th>c_0(m²/yr)</th>
<th>k_0/k_s</th>
<th>s/d_{sw}</th>
<th>$C_s/(1+\varepsilon_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dredged Mud</td>
<td>14</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>Upper Holocene Sand</td>
<td>19</td>
<td>0.01</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>Upper Holocene Clay</td>
<td>16</td>
<td>0.18</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0.008</td>
</tr>
<tr>
<td>4</td>
<td>Lower Holocene Clay</td>
<td>16</td>
<td>0.235</td>
<td>0.8</td>
<td>1.9</td>
<td>2</td>
<td>3</td>
<td>0.0076</td>
</tr>
</tbody>
</table>

7.3 Tianjin Port

Tianjin port is approximately 100km from Beijing, China. The top 15m of soil at this site was soft to very soft and needed to be improved using a preloading surcharge of more than 140kPa (Rujikiatkamjorn et al. 2008). To avoid any stability problems (high lateral yield) associated with a high surcharge embankment, a fill height corresponding to 50 kPa plus a vacuum pressure of 80 kPa were applied on top of the 20 m thick soft soil layer in conjunction with PVDs installed at 1.2 m spacing in a square pattern. The conversion method proposed by Indraratna et al (2005b) was used for the 2D plane strain FEM analysis.

Figure 41, and the finite element program (ABAQUS) was used to simulate the 3D multi-drain analysis (Figure 42), employing the Biot coupled consolidation theory.

In terms of settlement, excess pore pressure, and lateral displacement, the numerical results from the equivalent 2D and true 3D analyses were quite similar (Figure 43 and Figure 44). This proves that, the equivalent plane strain (i.e. 2D) analysis is usually sufficient from a computational point of view.
especially for multi-drain analysis of large projects where a 3D model would be more time consuming. From a practical point of view, the height of surcharge fill can be reduced by applying vacuum preloading to achieve the same rate and degree of consolidation. Applying a surcharge pressure after the initial vacuum preloading could also reduce excessive inward lateral movement near the toe of the embankment (Rujikiatkamjorn et al. 2008; Rujikiatkamjorn et al. 2007).

![Figure 41. 2D finite-element mesh: (a) x=0 plane; (b) y=0 plane (Rujikiatkamjorn et al. 2008, with permission from ASCE).](image1)

![Figure 42. 3D finite-element mesh: (a) Isometric view; (b) top view (Rujikiatkamjorn et al. 2008, with permission from ASCE).](image2)

![Figure 43. Measurements of Tianjin Port: (a) Loading history; (b) consolidation settlement; (c) pore pressure variation at 0.25m away from embankment centreline (Section II): 5.5m depth; (d) pore pressure variation at 0.25m away from embankment centreline (Section II): 11.0m depth (arrows indicate items when surcharge loads were applied) (Rujikiatkamjorn et al. 2008, with permission from ASCE).](image3)

![Figure 44. Lateral displacement at embankment toe (Section II at 180th day) (Rujikiatkamjorn et al. 2008, with permission from ASCE).](image4)

8. FIELD OBSERVATION OF RETARDED PORE PRESSURE DISSIPATION

It has been observed in various case studies that in spite of PVDs, excess pore water pressures do not always dissipate as fast as one expects, even when the load remains constant or removed. In visco-plastic soils, the high lateral yield causing stress redistribution can increase the total stress hence the pore water pressure in some regions of the clay foundation. Mandel-Cryer effect has been cited by some to explain this phenomenon, where coupling effects in interconnected fluid-saturated pores suggest that when a porous material is under...
stress, the corresponding non-uniform stress redistribution and associated changes in pore water pressure cause soil deformation. The time-dependent fluid flow will also generate a non-uniform pore pressure distribution that effect corresponding stresses and strains while giving rise to increased pore water pressure in some soil regimes that can be captured by strategic locations of piezometers. Numerical analyses conducted on highly viscous soils can provide evidence that retardation of pore water pressure dissipation is partially attributed to the pore pressures created by non-uniform stress re-distributions and resulting anisotropic yielding especially beneath soft clay embankments. Moreover, in certain find grained soils the clogging of piezometers filters, extreme reduction of the lateral soil permeability, and damage to or corrosion of piezometer tips over time can affect piezometer readings. A typical example is shown in Fig. 45 where the anticipated perfect drainage behaviour will not be achieved irrespective of the drain spacing.

Moreover, in highly organic or pyritic (acid sulphate) soil floodplains prevalent in coastal Australia, partial clogging of piezometers with time caused by chemical precipitation (e.g. iron oxides), acidophilic anaerobic bacteria-induced gas bubbles (cavitation), corrosion of measuring tips and growth of bio-slimes may also inhibit pore pressure dissipation (Indraratna et al., 2010, www.corrosionpedia.com/definition/1339/bacterial-anaerobic-corrosion).

The routine tidal effects and flash flooding in low-lying coastal floodplains also influence the field pore water pressures, unless proper calibration can be conducted based on local geohydraulic and meteorological records. In past years, malfunctioning piezometers examined after about 1.5-2 years from the Shoalhaven pyritic floodplain, NSW (south of Sydney) have indicated fines accumulation (partial clogging) and deterioration of filter tips, with evidence of medium-high levels of anaerobic bacteria (thiobacillus ferrooxidans) that even under water can catalyse chemical precipitation and biological growth under low pH (<6) conditions. Precipitation of iron oxide may occur within the granular drainage medium surrounding the piezometer tips leaving reddish-brown rust deposits armouring the particles and partially filling the pores (see Fig. 46). This implies that for long-term monitoring, standpipe piezometers that can be maintained by backwashing may be beneficial to be used in tandem with vibrating wire piezometers (VWP), albeit the expected higher time-lag of the former. The main disadvantage of the VWP in such soils is that they cannot be maintained (flushed) once installed. The excess pore water pressure dissipation for selected case histories (a) Port of Brisbane (POB), Queensland (b) Muar clay, Malaysia, (c) Pacific Highway, Ballina Bypass and, (d) Suvarnabhumi International Airport (SBIA), Thailand, have been plotted in Figure 47(a). There is an acceptable steady rate of pore pressure dissipation for two cases (for e.g. POB and SBIA) but a sudden total retardation of pore pressure dissipation is observed for the site selected from Pacific Highway (Ballina Bypass). Compared to the Port of Brisbane site, the Ballina bypass site is located in an acid sulphate floodplain area with a relatively high organic content (4-6%) and low groundwater pH (<5.5). This implies that in the longer term, subsurface drainage media and piezometer surrounds can experience some degree of clogging when installed in acid sulphate (pyritic) soils. Such apparent clogging (retarded pore pressure dissipation) in certain soil conditions may be described by a three-zone trend as shown in Fig. 47(b). At the initial stage of soil consolidation where accurate measurements are critical up to a peak, the piezometers may function reliably. In the second intermediate stage, the filters may become partially clogged and a significantly increased time-lag may be required to establish the equilibrium at the soil-filter interface. In the third stage, filter clogging may become more substantial to the extent that excess pore water pressure readings may remain almost constant, as the ‘hydraulic connection’ to the measuring tip is obstructed. It seems that this type of pore pressure trends have been observed from time to time along the Australian northern and eastern coastal areas that are affected by acid sulphate soil conditions within relatively shallow depths of the upper Holocene clay.

Figure 45 Excess pore water pressure variation at piezometer location, P6 (after Indraratna & Redana, 2000; Indraratna & Chu, 2005)

Figure 46 Precipitation of iron oxide in granular medium

Figure 47 (a) Selected cases of excess pore pressure dissipation trends (b) A hypothetical model for potential long-term clogging of piezometers and subsurface drainage media in the absence of flushing.
9. CONCLUSION

The application of PVDs combined with vacuum and surcharge preloading has become common practice, and is now considered to be one of the most effective ground improvement techniques for soft clays worldwide. Analytical and numerical modelling of vacuum preloading is still a developing research area, especially considering the complexities at the soil-drain interface, biodegradation of natural fibre drains and the effects of PVD bending with settlement in shallow depths. There has always been a discrepancy between the predictions and observed performance of embankments stabilised with vertical drains and vacuum pressure. This discrepancy can be attributed to numerous factors such as the uncertainty of soil properties, the effect of smear and soil deconstruction, inaccurate assumptions of soil behaviour and vacuum pressure distribution, effects of large strains and the improper conversion of axisymmetric condition to plane strain (2D) analysis of multiple drains.

Vacuum assisted consolidation has successfully been used for large scale projects on very soft soils in reclamation areas. The extent of surcharge fill can be decreased to achieve the same amount of settlement and the lateral yield of the soft soil can be controlled by PVDs used in conjunction with vacuum pressure. The effectiveness of this system depends on (a) the air tightness of the membrane, (b) the seal between the edges of the membrane and the ground surface, and (c) the soil conditions and location of the ground water level. The exact role of membrane type and membraneless systems for vacuum preloading requires detailed evaluation. In the absence of a comprehensive analysis, the study of suitable methods to apply vacuum preloading becomes imperative, experimentally, numerically and more significantly in the field.

Performance of vacuum assisted consolidation has been studied using large-scale consolidometers to obtain more realistic parameters, including the correct smear zone characteristics, the distribution of vacuum along the length of the drain, as well as soil and drain properties. Conventional small-scale equipment (e.g. Rowe cell) cannot capture these parameters. The equivalent radius of the smear zone can generally be taken as 2-3 times larger than the equivalent radius of the mandrel and the soil permeability in the smear zone is usually smaller than the undisturbed zone by a factor of 1.5-2.

In the field where there are no boundary effects such as in laboratory equipment, the actual smear zone can be larger. In order to predict the correct field behaviour, the smear zone effects and the soil disturbance need to be evaluated in the field using soil sampling and field piezometer data, while recognizing the limitations of the laboratory equipment where the depth and width are often inadequate to eliminate adverse boundary and scale effects. A suitable drain spacing pattern in the field should be determined to avoid the detrimental effects of overlapping smear zones when drains are spaced too closely.

Analytical modelling of vertical drains that include vacuum preloading under axisymmetric and plane strain conditions that simulate the consolidation of a unit cell surrounding a single vertical drain has been developed. The effects of vacuum propagation along the length of a drain, the nonlinear soil properties and the occurrence of non-Darcian flow conditions have been incorporated in the proposed solutions to obtain a more realistic prediction. Large strain analysis based on a convective coordinate system showed that that the large strain effects would make a notable difference in predicting the settlement of very large preloading (greater than 120 kPa), while for most traditional road embankments the conventional small strain solution is acceptable.

In large construction sites where many PVDs are installed, a 2D plane strain analysis is usually sufficient to model embankment behaviour. The proposed conversion from axisymmetric to a plane strain condition agreed with the data available from case histories, including Port of Brisbane in Australia. These simplified plane strain methods can be readily incorporated in numerical (FEM) analysis. The conversion procedure from 3D to 2D based on the correct transformation of permeability and vacuum pressure, ensure that the time-settlement curves are the same as the true 3D analysis. However, at specific boundaries and corners where sudden change in properties and terrain characteristics occur, and also at curved sections (e.g. road and rail embankments), the 3D analysis remains as the only choice where plane strain conditions cannot be assumed. Field behaviour and model predictions indicate that the efficiency of vertical drains depends on the magnitude and distribution of vacuum pressure, the extent of smear caused by the vertically penetrating mandrel, and drain discharge capacity.

Drain discharge capacity is particularly relevant for natural fibre drains which may decay over time. Provided that consolidation can occur prior to significant decay, these natural fibre-based PVD may be a more environmentally friendly than conventional, non-decaying synthetic drains.

From a practical point of view, vacuum preloading can reduce surcharge fill heights while achieving similar, if not faster, consolidation times compared to fill-only surcharge embankments. Vacuum preloading systems eliminate the need for a high embankment surcharge load, but air leaks must be prevented as much as possible. Vacuum consolidation is ideal where lateral displacements must be strictly controlled such as at marine boundaries (e.g. Port of Brisbane) where environmental and aquatic regulations are stringent to prevent turbidity of water. Apart from road embankments, PVDs will also help stabilise rail tracks in coastal areas containing a high percentage of clayey subgrades. It has been shown that short PVDs can be used under rail tracks to improve stability by dissipating excess cyclic pore pressure and curtailing lateral displacement.

Dynamic triaxial testing with cyclic stress ratios and frequencies representing fast heavy haul trains is imperative to study the phenomenon of subgrade slurry (mud pumping) and undrained instability in low-lying estuarine soils. The testing conducted at the University of Wollongong over the past decade indicates that rapid dissipation of dynamic pore water pressures is vital for ensuring the stability of saturated subgrade. In this regard, the study of PVD under cyclic loading is considered vital and the manufacturing of custom-made geosynthetic drains for cycling loading conditions representing fast moving freight trains, will need to be evaluated and established.

Apart from road embankments, PVDs will also help to stabilise rail tracks in coastal areas containing a high percentage of clayey subgrades, as demonstrated at Port of Brisbane and Ballina Pacific Highway in Australia. It has also been shown that short PVDs can be used under rail tracks to improve stability by dissipating excess cyclic pore pressure, curtailing lateral displacement, and mitigating mud pumping. Current laboratory observations prove without doubt that high speed trains cannot operate efficiently on tracks built on soft subgrade clays unless it is consolidated before construction, or subjected to alternative improvements such as chemical treatment, stone columns, deep mixing etc. Much of this research is still ongoing worldwide, particularly in view of future high transport networks. In Australia, particular attention to this kind of ground improvement research is given since the government approval of the 2000+ km long Melbourne-to-Brisbane Inland Rail project.
10. ACKNOWLEDGEMENTS

As the 4th Louis Menard Lecturer, my sincere thanks go to all the members of the TC211 (Ground Improvement) of ISSMGE and its Executive Committee, for selecting me for this prestigious honor. My special thanks are conveyed to Serge Varaksin (former Chair) for his inspiring comments, constructive criticisms and leadership over many years, in the area of soft soil improvement.

I am particular grateful to my colleagues Dr. Rui Zhong, A/Prof Cholachat Rujikiatkamjorn, Dr Motjabat Kan, Dr Rohan Walker, and Pankaj Baral (PhD student) for their kind help and technical contributions during the preparation of this paper.

Dr Geng Xueyu (now at Warwick University), Vasanth Iwijeyakulasuriya (formerly at QLD Main Roads), Dr Richard Kelly (SMEC) and Geoff McIntosh (Douglas Partners) have contributed significantly to my past research through numerous past and present Australian Research Council projects, and to them I owe my sincere appreciation. Without sustained and sufficient funding from the Australian Research Council, much of my research work could not have been made possible.

A number of former doctoral students, including, Dr Wayan Redana (plane strain conversion), Dr Iyathurai Sathananthan (mathematical modelling), Dr Kourosh Kianfar (non-Darcian expansion), Anass Attya (cyclic soil testing), Dr Chamari Walker, and Pankaj Baral (PhD student) for their kind help and technical assistance during numerous R&D projects over the past two decades.

Much of the contents produced in this paper have been reproduced with kind permission from the Australian Geomechanics Journal (e.g. Author’s 2009 EH Davis Lecture), Journal of Geotechnical & Geoenvironmental Engineering ASCE, International Journal of Geomechanics, ASCE, Proceedings of the Institution of Civil Engineers – Ground Improvement, ASTM Geotechnical Testing Journal, Geotechnique and Canadian Geotechnical Journal among others.

11. REFERENCES

