INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE.

Analytical Method of Mega Foundations for High-Rise Buildings

Sangseom Jeong

Department of Civil and Environmental Engineering, Yonsei University, Korea

Jongjeon Park

Department of Civil and Environmental Engineering, Yonsei University, Korea

Kwangho You

Department of Civil and Environmental Engineering, University of Suwon, Korea

ABSTRACT: In this study, an approximate computer-based method was developed to analyze the behavior of raft and piled raft foundations. Special attention is given to the improved analytical method proposed by considering raft flexibility and soil nonlinearity. The overall objective of this study is to focus on the application of a simplified analysis method for predicting the behavior of sub-structures. Through the comparative studies, it is found that the computer programs (YS-MAT and YSPR), developed in this study, is in agreement with the general trends observed by field measurements and other prediction methods. Therefore, YS-MAT (Yonsei-MAT) and YSPR (Yonsei Piled Raft) can be effectively used for the preliminary design of a raft or a piled raft foundation for high-rise buildings.

KEYWORDS: Piled raft, Raft, High-rise buildings, Approximate computer-based method

1 INTRODUCTION

In recent years, a number of huge construction projects, such as high-rise buildings and long span bridges, are being undertaken. In the design of foundation, firstly, a raft is considered to be the foundations to support a structure. If the raft foundation is not sufficient for a bearing capacity and a settlement criterion, secondly, a fully piled foundation can be applied. In this design concept, although the foundation consists of piles and raft (or pile cap) on the top of the piles which are in contact with the soil, mostly, a contribution of raft is ignored andthe total structural load is only transferred through piles. With increase in height, the super tall buildings have enormous load of superstructure which is trasmitted to the foundation. Therefore, the foundation structures of super tall buildings have also been built more massively to ensure that the buildings are supported with maximum stability. Optimized design strategy is a major importance for an economic construction to be achieved. The piled raft is a composite foundation system consisting of three bearing elements: raft, piles and subsoil. Therefore, the behavior of a piledraft is affected by the 3D interaction between the soil, piles and raft, thus, a simple and convenient analytical method is needed to evaluate these interactions.

In this study, a numerical method is used to combine the pile stiffness with the stiffness of the raft, in which the flexible raft is modeled as flat shell element and the piles as beam-column element, and the soil is treated as linear and nonlinear spring. Based on the proposed analysis methods, e.g., YS-MAT (Yonsei-MAT) and YSPR (Yonsei Piled Raft) for piled raft are developed respectively. In order to examine the validity of the proposed method, the analysis results are compared with the available solutions from previous researches and field measurement data.

2 APPROXIMATE COMPUTER-BASED METHODS FOR MEGA FOUNDATION

2.1 Modeling of flexible raft

Typically, a plate element was used for modeling a raft or a pile cap in several analysis methods (Clancy et al., 1993; Zhang et al., 2000; Kitiyodom et al., 2003). The primary limitation of these methods is that the membrane behavior of the flexible raft cannot be considered because the nodal displacements for the membrane action are not included. This limitation can be

overcome by using a flat shell element. An improved four-node flat shell element (Choi et al., 1996), which combines a Mindlin's plate element and a membrane element with torsional degrees of freedom as shown in Fig. 1, is adopted in this study.

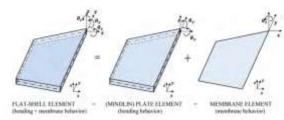


Figure 1. Modeling of flexible raft.

2.2 Modeling of piles and stiffness matrix

In the numerical approach, piles are treated as beam-column elements. The behavior of soil surrounding the individual piles is represented by load-transfer curves (t-z, q-z, and p-y curves), and the interaction between piles is represented by p-multiplier and group efficiency factor. The load-deformation relationship of individual piles heads may be derived by a single pile analysis based on beam-column method. In this method, a pile member is described as a series of beam-column elements with discrete springs to represent the soil support condition as shown in Fig.2

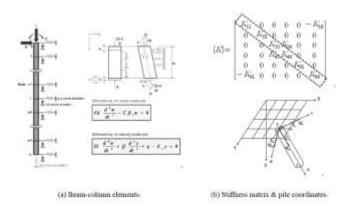


Figure 2. Modeling of pile.

The governing differential equation for the axially loa ded and laterally loaded pile (Fig. 2(a)) were considered. In the next step, finite difference technique is used to solve the differential equations governing the compatibility between the pile displacement and the load transfer along a pile. The stiffness of piles is incorporated through structure a nalysis as a form of the pile head stiffness matrix, which is derived by the load-displacement curves obtained from single pile analyses. The pile head stiffness matrix (K_p) is of order 6×6 , representing three spring constants, three rot ational constraints, and four coupling between spring and rotational constraints (Fig. 2(b)).

2.3 Modeling of soil-structure interaction

The load-bearing behavior of a piled raft is characterized by complex soil-structure interaction between the piles, raft and the subsoil. The present method makes use of pile-soil-pile and raft-soil-pile interaction to simulate the real piled raft-soil response under lateral and vertical loadings.

Piles in such groups interact with one another through the surrounding soil, resulting in the pile-soil-pile interactions. In the study, a set of nonlinear p-y curves which can be modified by reducing all of the p-values on each curve by a p-multiplier are used as input to study the behavior of the laterally loaded piles.

In classical solution, the Winkler model is used for analyzing raft foundation. However, the Winkler model could not predict accurately the displacement of some solids, e.g., soil. The Winkler model ignores the important interaction existing between adjacent points in the soil continuum. In order to overcome a limitation, in this study, Pasternak's shear layer model (1954) was incorporated to involve the soil springcoupling effects. This system can provide a mechanical interaction between the individual soil spring and pile elements by using the flat-shell element. As shown in Fig. 3, the present method proposes an improved raft-soil-pile system by connecting the top ends of soil springs and pile elements with a flat-shell element including membrane action. As a result, the proposed numerical method can be represented the coupled soil-structure interactions, and thus it shows a more realistic behavior of the soil reaction.

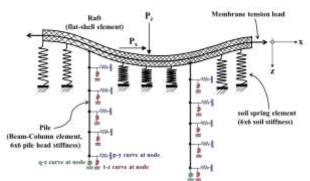


Figure 3. Interactions between raft, piles, and subsoil in present method.

3 COMPARISON WITH FIELD CASE HISTORIES

3.1 Piled raft foundation

The load sharing behavior of large piled raft installed in stiff clay was compared with the predicted values of the proposed and the FE analyses. Constructed between 1983 and 1986, the 130 m high Torhaus was the first building in Germany with a foundation designed as a piled raft. A total number of 84 bored piles with a length of 20 m and diameter of 0.9 m are located under two 17.5×24.5 m large raft. The bottom of the 2.5 m thick

raft lies just 3 m below ground level (Fig. 4(a)). The subsoil comprises quaternary sand and gravel up to 2.5 m below the bottom of the rafts, followed by the Frankfurt clay (Reul et al., 2003). And a schematic diagram of 7×6 piled raft structure is shown in Fig. 4(b). Fig. 5 shows the one quarter of the 3D FE mesh used in this analysis. At the left- and right-hand vertical boundaries, lateral displacements were restrained, whereas fixed supports were applied to the bottom boundaries (Fig. 5(b)). The specified initial stress distributions should match with a calculation based on the self-weight of the material. After the initial step, the applied loading was simulated by a vertical load at the raft. Modeling the construction process is so complicated that the effect of construction is omitted in the analysis. The structure was modeled as an isotropic elastic material, and constant values for each material parameter were used for the soil layer for simple analyses. The material behavior of subsoil was modeled with a Mohr-Coulomb model. In order to simplify the analysis process, constant (average) values of material parameters were adopted for the soil layer. The raft and piles were modeled with a linear elastic model. Material properties used in this FE simulation are summarized in Table 1. All loads from the super-structure were assumed to be equally transferred to the raft. The maximum load of P=200MN for each raft (Sommer, 1991) minus the weight of the raft is successively applied by means of a uniform load over the whole raft area.

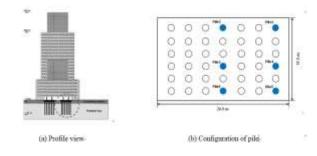


Figure 4. Torhaus Der Messe

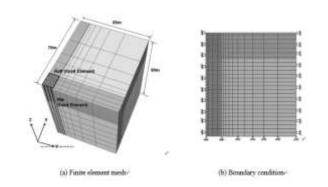


Figure 5. Finite element mesh and boundary condition.

Table 1. Material parameters used for this study

Case	Material Properties						
	Type		E (MPa)	ν	γ	ф	c (kPa)
Germany case	Pile	Con'c	23,500	0.2	25	-	-
	Raft	Con'c	34,000	0.2	25	-	-
	Soil	Sand	75	0.25	18	32.5	0
		Clay	47	0.15	19	20	20

Figs. 6(a) and 6(b) show a comparison of the measured and calculated pile loads. The prediction of the present method is much more conservative than that of 3D FE analyses and the measured one. However, the proposed method YSPR is in good

agreement with general trend of FE analysis and the measurement data for the same load level. The computed results for the center, side, and corner piles show that the load distribution of the individual piles in a group is highly influenced by the flexibility of the raft. This finding was similar to what Won et al. (2006) discussed about correlation between the pile member force and the flexibility of pile cap for a pile groups.

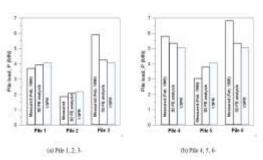


Figure 6. Pile load

The time taken for the computer to run this case saves 115min of computer time, and is about 24times faster than the 3D FE analysis. For large problems this computational saving can be very significant.

3.2 Raft foundation

A preliminary design case of raft foundation at a high-rise building construction site in Korea was representatively selected for the design application. The tower consists of 123 storeys with height of about 491 m over a footprint of approximately 70×70 m. The construction site is mainly comprised of normally banded gneiss, brecciated gneiss, shear zone, and fault core zones. A schematic diagram of a raft foundation is shown in Fig 7. A large raft size 71.7×71.7 m with a thickness of 6.0 m is resting on banded gneiss. The raft, with Young's modulus of 30.5 GPa, are subjected to a vertical load (Ptotal=6,701 MN). Each soil spring stiffness for different location on the r foundation was used, according to the preliminary design report.

Fig. 8 shows the raft settlement distribution predicted by RAFT and YS-MAT at different section. The rock conditions at the site are highly variable, and the presence of faults, shear zones or highly foliated soft to hard rock would have a significant influence to the differential settlement of the raft. As shown in these results, the agreement between the RAFT and YS-MAT settlement predictions is generally good. Although there are no measured profiles of the raft settlement, the proposed analysis method showed reasonably good fit with the well-known in-house program. Therefore, it is concluded that proposed method YS-MAT can be used in the design of large raft foundations.

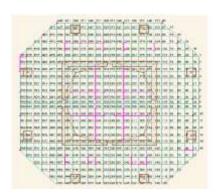


Figure 7. Preliminary design case of large raft.

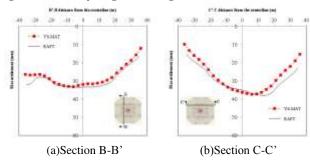


Figure 8. Raft settlement profile

4 CONCLUSION

An analytical methods have been developed for the analysis of the raft and piled raft foundations. The conceptual methodology of the proposed method are completely different from that of general method. Through comparisons with case histories, the proposed method was found to be in good agreement with measurement data. The following conclusions are noted:

- 1. Approximate computer-based analytical methods have been developed for analysis of raft and piled raft. By taking into account the raft flexibility and soil nonlinearity, Program YS-MAT and YSPR are capable of predicting reasonably well the settlement and load sharing behavior of mega foundations for high-rise buildings. This analytical method is intermediate in theoretical accuracy between general three-dimensional FE analysis and the linear elastic numerical method.
- 2. From the example case histories, the proposed method is shown to be capable of predicting the behavior of a large raft and piled raft. Nonlinear load-transfer curve and flat-shell element can overcome the limitations of existing numerical methods by considering the realistic nonlinear behavior of soil and membrane action of flexible raft.
- 3. Additionally, the comparative studies showed that the present method is useful for computational saving and improving performance in engineering practice.

5 ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030040).

6 REFERENCES

- Choi, C. K. and Lee, W. H. (1996), "Versatile Variable-Node Flat-Shell Element." Journal of Engineering Mechanics, ASCE, Vol. 122, No. 5, pp. 432-441.
- Clancy, P. and Randolph M. F. (1993), "An approximate analysis procedure for piled raft foundations." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, No. 12, pp. 849-869.
- Kitiyodom, P. and Matsumoto, T. (2003), "A simplified analysis method for piled raft foundations in non-homogeneous soils." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, No. 2, pp. 88-109.
- Pasternak, P. L. (1954), On a new method of analysis of an elastic foundation by means of two foundation constants (in Russian).

 Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvui Arkhitekture, Moscow.

- Reul O and Randolph MF. Design strategies for piled rafts subjected to nonuniform vertical loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE; 2003; 130(1): 1-13.
- Sommer H. Entwicklung der Hochhausgru ndungen in Frankfurt/Main Festkoll oquium 20 Jahre Grundbauinstitut. Prof. Dr. -Ing. H. Sommer und Partner, Germany; 1991: 47-62.
- Sommer und Partner, Germany; 1991: 47-62.
 Won JO, Jeong SS, Lee JH and Jang SY. Nonlinear three- dimensional analysis of pile group supported columns considering pile cap flexibility, Computers & Geotechnics; 2006; 33: 355-370.
- Lee JW, Jeong SS, Lee JK. 3D Analytical Method for Mat foundations considering Coupled Soil Springs, Geomechanics and Engineering; 2015; 8(6): 854-857.

 Jeong SS and Cho JY. Proposed nonlinear 3-D analytical method for
- Jeong SS and Cho JY. Proposed nonlinear 3-D analytical method for piled raft foundations, Computers & Geotechnics; 2014; 59(6):112-126