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ABSTRACT: The reflection-transmission matrix (RTM) method was originally developed for addressing the wave propagation in the 
layered elastic medium. In this study, the quasi-static RTM method for the layered transversely isotropic saturated soil (TISS) 
undergoing asymmetric consolidation is developed. To this aim, a partial differential equation system is established using the 
governing equations for the TISS first. Applying the Hankel-Laplace transform to the partial differential equation system furnishes the 
corresponding ordinary differential equation system. By using the general solution of the ordinary differential equation system, the 
RTM method for the layered TISS is established. To show the capacity of the proposed model, one numerical example for the 
consolidation of the layered TISS subjected to a horizontal force is presented. 

RÉSUMÉ : La méthodeintitulé la Matrice de réflexion et de transmission(RTM)était initialement développéepour étudier la 
propagation des ondes dansdes milieux élastiques et superposés. Dans cette étude, on élabore uneméthode quasi-statiquebaséeà la 
RTMpour étudier le sol saturé d’isotropie transversale (TISS) soumis à une consolidation asymétrique. Premièrement, Un système 
d’équationsaux dérivées partielles est déduitaux équations fondamentales pour le TISS. Avec l’aide de la transformation de Hankel et 
de Laplace, les équations ci-dessus sont réduites dans un système d’équations différentielles ordinaires. La solution générale obtenue 
après avoir résolu ce system d’équations différentielles ordinaires nous aide à développe le RTMs pour le TISS. Enfin dedémontrer la 
capacité du modèle proposé, on présente un exemple numérique concernant la consolidation dusol saturé d’isotropie transversale 
(TISS) soumis à une force horizontale. 

 

1  Introduction 

Since the construction is built on soils, soil consolidation is thus 
an important problem to be dealt with when designing the 
construction in civil engineering. The consolidation theory for the 
saturated soil was developed originally by Terzaghi for the one-
dimensional case, and then extended to the 3-D case by Biot 
(1941). Since then, Biot’s consolidaiton theory has been used 
extensively to study the consolidation of the saturated soil. It is 
noted that natural soils tend to be stratified and the parameters of 
different layers are thus different. Hence, many methods have 
been developed to investigate the consolidation of the layered soil 
(Ai, 2008; Chiou & Chi, 1994; Christian & Boehmer, 1970; 
Senjuntichai & Rajapakse, 1995; Wang & Fang, 2002). Because 
of the deposition process, although most soils are isotropic in the 
horizontal plane, parameters in the horizontal direction are 
unusually different from those in the vertical direction. Hence, the 
transversely isotropic medium is a realistic model for the soil. 
Due to its semi-analytical feature, the transfer matrix (TM) 
method is an important approach for dealing with the 
consolidation of the layered transversely isotropic saturated soil 
(TISS) (Chen et al., 2005; Ai & Wang, 2009). However, it is well 
known that the presence of both positive and negative exponential 
terms in the transfer matrix may entail numerical instability when 
the thickness of the soil layers is large, which restrains the 
application of the method considerably. Hence, it is still necessary 
to develop efficient and numerically stable method to address 
the consolidation of the TISS. 

To circumvent the difficulty associated with the TM method, 
the reflection-transmission matrix (RTM) method (Kennett, 
1983), which was originally developed to deal with the wave 
propagation in the layered elastic medium, is proposed for the 
consolidation of the layered TISS in this study. To this end, a 
system of partial differential equations is established for the 
TISS first. Applying the Hankel-Laplace transform to the 
system of the partial differential equations furnishes a system of 
ordinary differential equations. Based on the general solution 
for the system of the ordinary differential equations, the RTM 
method of the layered TISS is established. One numerical 
example is used to show the capacity of the proposed RTM 
method. 

2.  Governing equations and the correspond-ing general 
solutions 

In this section, the governing equations for the TISS are 
outlined first and then, by using the Hankel-Laplace transform 
method, the general solutions for the governing equations of the 
TISS are obtained. 

2.1  THE GOVERNING EQUATIONS FOR THE TISS 

The equilibrium equations of the TISS in the absence of the 
body force in the cylindrical coordinate system are as follows: 
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in which rr ,   and zz are the total normal stress 

components in the r ,  and z directions, respectively; zr ,

z and r  are the shear stress components. The principle of 

effective stress can be expressed as follows: 
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where σ , σ and p are the vectors of the total stresses, 
effective stresses and pore pressure, respectively. It is noted that 
the compressive normal stresses and pore pressure are 
considered to be positive in this study. The constitutive relation 
of the effective stresses of the TISS are as follows (Lu et al., 
2016): 
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in which rr ,  , zz , zr , z and r  are the strain 
components and are determined by the following expressions:  
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where ru , u  and zu  are the displacement components in 

the r,   and z directions, respectively. The elasticity constants 

11c , 12c , 13c , 33c  and 44c , 66c  in equation (3) have the 

following representations:  
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in which hE , vE , h  and v  are the horizontal and 

vertical Young’s moduli as well as  the shear moduli, 
respectively; h  and hv  are the Poisson’s ratios 
characterizing the horizontal strain in the plane of transverse 
isotropy due to the perpendicular horizontal strain and the 
vertical strain; vh  is the Poisson’s ratio describing the vertical 
strain due to the horizontal strain.  

According to the Darcy’s law, the rate of the fluid flow in 

the r,   and z directions have the following expressions: 
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in which, ' /h h wk k   and ' /v v wk k  ; hk  and vk

 denotes the permeabilities of the soil in the horizontal and verti
cal directions, respectively; w
 is the specific weight of the pore water. Using equation (6), th
e seepage continuity condition for the TISS can be written as:
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where e  denotes the dilatation of the soil skeleton and t is the 
time variable. 

2 .2  The general solutions for the governing equations of the 
TISS 

Using equations (3)4 and (4)4 , the following equation is 
obtained: 
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Similarly, using equations (3)5 and (4)5, one has the following 
equation: 
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By using equations (3)3, (4)1, (4)2 and (4)3, the following 
equation is derived: 
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Substituting equation (6)3 into equation (7)1 and using 
equation (10) in the resulting equation, one has 
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Substituting equations (4) into equation (3), the stresses 
components rr ,   and r can be represented by the 

displacement components. Inserting the resulting expressions 
for rr ,   and r  into equation (1)1, the following 

equation is obtained:  
2 2 2

13 66
11 2 2 2 2

33

2 2
13 1311 12

33 33

2
13 1312 11

2
33 33

1

1

2

3 1
1

2

zr r r r r

zz

c cu u u u
c

z c r rr r r

c c uc c
c r c r r

c u cc c p
c c rr













     
            

   
       
    

            

. (12) 

Likewise, using equations (3), (4) and (1)2, one has the 
following equation for z : 
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With equation (1)3, one has the following equation for zz : 
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Finally, by equation (6)3, the following equation for p  is 
obtained: 
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For the layered TISSS, if the external forces are 
symmetrical with respect to the x -axis, then, the above 
variables have the following expansions with respect to the 
coordinate  :  
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For convenience of subsequent derivations, we define the 
following m-th order variables: 
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For the TISS undergoing consolidation, the following m-th 
order eight-dimension state vector is defined: 
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If the layered TISS is subjected to a point horizontal force along 
the x -axis, only the terms corresponding to 1m  in equation 
(16) are present. Since all the variables contain only the terms 
for 1m , the subscript 1 of the following variables is 
suppressed.  

To derive the general solutions for the TISS, the following 
n-th order Laplace-Hankel transform are introduced (Sneddon, 
1972) 
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where the ~ denotes the Hankel-Laplace transform and the 
superscript n denotes the order of the transform; ( )nJ   is the 

n-th order Bessel function;   and s are the transform 
parameters corresponding to the Hankel and Laplace transforms, 
respectively. 

Using equations (8)-(15), and the expressions for the 
variables obtained by retaining only the 1m  terms in 
equation (16), and applying the Laplace-Hankel transform 
method, the following ordinary differential equation system of 
the state vector is obtained as follows: 
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where  ,sA  is the coefficient matrix in the transformed 

domain. To obtain the general solution to equation (20), the 

eigen values and eigen vectors of the matrix  ,sA should be 

determined in advance. The eigen equation for the transformed 

coefficient matrix  ,sA  is as follows: 
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 (21) 

where   and v  are the eigen value and eigen vector of the 

matrix  ,sA ; 8 8I  is the eight by eight identity matrix. 

Calculating the determinant of the coefficient matrix of equation 
(21) yields the characteristic equation for the eigen value of the 

matrix  ,sA :  
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 (22) 

in which the coefficients 0b , 1b , 2b and h  can be obtained 

using the expression for the matrix  ,sA . 

For the solution to equation (22), three cases may occur (Lu et 
al., 2016). In summary, for all the cases, the general solution to 
equation (20) can be written uniformly in the following form: 
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in which i  ( 1~ 4i  ) is the real part of the i-th eigen value ; 
*
iE  ( 1~ 8i  ) is the arbitrary constants; iV  ( 1~ 8i  ) is the 

eight-dimensional vector which can be represented by the eigen-

vectors and eigen-values of the matrix  ,sA . Note that 

unlike the case for the wave propagation problem, iV  

generally depends on the vertical coordinate, and its concrete 
representation depends on the roots of equation (22) (Lu et al., 
2016). It is noted that to obtain physically reasonable RTMs, the 
coordinate z  in this study should be the vertical coordinate in 
the global coordinate system. Using the general solution given 
by equation (23), and following the procedure to establish the 
RTM model for the layered saturated soil undergoing 
consolidation, the RTM method for the layered TISS subjected 
to a horizontal point force can be established.  

3  Numerical results and corresponding analyses  

In the preceding sections, only the solution in the transformed 
domain is obtained by the RTM method for the layered TISS. To 
retrieve the solution in the physical domain, the inverse Hankel 
and Laplace transform has to be performed. The inversion of the 
Hankel transform is accomplished by numerical integration, 
while the inversion of the Laplace transform is conducted by the 
method proposed by Schapery (1962). For convenience of 
presenting numerical results, a reference length aL , a reference 

shear modulus a  
and a reference coefficient of permeability 

ak  are introduced. The non-dimensional geometrical and 

physical quantities can thus be defined as follows:  
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where the quantity with a asterisk is the dimensionless quantity. 
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Figure 1 Variation of the non-dimensional displacement *
ru of  

the layered saturated soil at the receiver for different values of  . 

 

In this section, we use one example to show the capacity of the proposed 

RTM method. In the example, the layered TISS is composed of three 

layers: two overlying layers and the underlying half space. The thickness 

of the two overlaying layers are 1 6.0h  m and 2 6.0h  m. The 

horizontal 

 point force hF  is located at 9sz  m, and the receiver point is located 

at 6Rr  m, 0R  , and 7Rz  m. Other soil parameters are given 

in Table1 1. In calculation, the thickness, the shear modulus and the 

coefficient of the vertical permeability of the first layer are chosen as aL ，

a  and ak . The influence of the ratio h vE E  on the radial 

displacement *
ru  is shown in Figure 1. Figure 1 shows that with the 

increasing time, the horizontal displacement of the soil becomes stable. 

For the same value of  , the horizontal displacement of the soil for the 

softer middle layer case is the largest among the three, while that of the 

harder middle layer case is the smallest. Also, the horizontal displacement 

of the soil decreases with increase in  . Further, the range of the 

variation of the horizontal displacement with time becomes 

narrow with increasing  . 
 

 

Table 1 Parameters of the three-layered TISS half-space soil  

4  Conclusions 

By the researches conducted in this study, the RTM 

method for the layered half-space TISS has been developed. By 

the researches conducted in this study, the following conclusions 

can be drawn.  

 The RTM method can be extended to deal with the 

consolidation of the layered TISS subjected to a horizontal 

point force. 

 With the proposed RTM method, the problem of the 

mismatched positive and negative exponential terms is 

solved and the consolidation of the layered saturated soil 

with thick layers can be dealt with effectively. 

 The proposed method can be used to investigate the 

consolidation of the layered TISS directly. Besides, it can 

also be used to address the structure-soil interaction 

problem associated with the layered TISS.  
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