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ABSTRACT: Korea is one of the countries suffering from landslide problem due to heavy rainfall. Many people had loss their life 
and their casualties every year. The estimated value of economic loss is more than expectation. In general, main causal factors of 
landslide contain static factors such as topographic, hydrologic, forest, soil and geology and they can be combined with dynamic 
factors related to rainfall. This research presents the method of landslide prediction from spatial and temporal probabilities and a 
simple statistical approach was proposed to find dynamic variability of hillslope condition. The landslide prediction on target area is 
the probability of landslide which calculated from relationship between probability of landslide under the rainfall and corresponding 
hillslope properties. 

RÉSUMÉ : La Corée du Sud est un des pays souffrant des glissements de terrains dus aux fortes précipitations. Plusieurs pertes humaines 
et matérielles sont causées et leurs estimations sont supérieures aux prévisions. En général, les principales causes des glissements de 
terrains contiennent des facteurs statiques tels que la topographie, l’hydrologie, la forêt, le sol et la géologie. Ces derniers peuvent être 
combinés aux facteurs dynamiques liés aux précipitations. Cette recherche présente une méthode de prévision des glissements de terrains 
à partir de probabilités spatiales et temporelle. Aussi, une approche statistique simple a été proposée pour trouver la variabilité dynamique 
de l’état des pentes des collines. La prévision des glissements de terrains dans la zone ciblée est la probabilité de glissement de terrain qui 
est obtenue à partir de la relation entre la probabilité d’un glissement de terrain sous la pluie et les propriétés des versants des collines 
correspondantes.     
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1  INTRODUCTION 

In Korea, mountains cover approximately 70% of the total 
landscape and the annual precipitation ranges from 1100 to 1400 
mm, mainly during the rainny season from June through 
September. Most shallow translation landslides occur during 
summer rainy season (Pradhan and Kim 2015) and econoic loss 
is more than expectiona. The slope statibiliy is varied depend on 
water content in soil mass from rainfall.  

Assessment of landslide hazard is usually stated as the 
probability of a landslide in a specified period of time and in a 
given area (Van Westen et al. 2006). Thus the estimation of 
hazard usually needs a spatial probability definition of “where” it 
occurs using predisposition factors, and a temporal probability 
definition for “when” or how frequently it occurs, considering 
the trigger factors. Temporal probability highly depends on the 
determinants of rainfall which have seasonality and regional 
differences (Crozier 1999). The landslide hazard can be 
predicted from rainfall measuring data. Thus the estimation of 
hazard usually needs a spatial probability definition of “where” it 
occurs using predisposition factors, and a temporal probability 
definition for “when” or how frequently it occurs, considering 
the trigger factors. Temporal probability highly depends on the 
determinants of rainfall which have seasonality and regional 
differences (Crozier 1999). The landslide hazard can be 
predicted from rainfall measuring data.  

Temporal probability assesses the time and frequency in 
which slope materials are transported downhill and the role 
played by the factors that trigger them (Calvello et al. 2008; 
Capecchi and Focardi 1988). Temporal probability therefore is 
usually focused on the role of triggering factors since their 
mastery improve our understanding of the slope’s behavior 
during different conditions. 

This research presents the method of landslide prediction 
from spatial and temporal probabilities and a simple statistical 
approach was proposed to find dynamic variability of hillslope 
condition. Two different approaches are presented for estimating 

hazard for natural terrain in the catchment level. First is 
modeling of spatial landslide susceptibility using landslide 
inventory and different geospatial causative factors for landslide 
and second is temporal landslide hazard analysis using rainfall 
pattern and corresponding behavior of soil in the hillslope under 
the rainfall condition. Then probabilities of landslide related to 
triggered rainfall will be presented by dynamic map which 
probability can be recalculated and changed automatically from 
real-time rainfall data input. In short, the landslide prediction on 
target area is the probability of landslide which calculated from 
relationship between probability of landslide under the rainfall 
and corresponding hillslope properties.  

 
2  STUDY AREA 

The Onsan catchment in the northern part of Yongin and 
southern part of Seongnam district was selected as a study area 
(Figure 1) for following reasons: i) Government of Korea is 
planning to develop Yongin city as an information city, ii) this 
area was suffered a great deal of landslide damage following 
heavy rain during July 25–28, 2011. During this event, eight 
were killed, while seven went missing in Yongin District. The 
catchment occupies approximately 4.8 km2 and the elevation of 
study area ranges from 48 m to 495 m. Study area is dominated 
by gneiss and recent deposits. The soils at the sites are 
principally weathered residual soil and colluvium soil. The 
monthly precipitation in July 2011 was 2.15 times greater than 
the average monthly rainfall. On July 27, the rain gauge station 
recorded 206 mm of rain in 24 h (53% of the mean monthly 
amount).  

Geology has significant role in slope instability. Different 
lithological units have different characteristics such as 
composition, strength and structure (Carrara et al. 1991; 
Chauhan et al. 2010). The bedrock geology of the study area 
consists mainly of biotite gneiss. The lithological map is 
obtained from KIGAM. 
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3  MATERIALS AND METHOD 

In this study 14 representative landslide causative factors (CF) 
were used to find spatial probability. The 14 factors i.e. aspect, 
elevation, slope, internal relief, plan curvature, profile curvature, 
drainage proximity, stream power index (SPI), sediment 
transport index (STI), topographic wetness index (TWI), forest 
type, soil type, soil depth and geology data were used in 20 m 
resolution in ArcGIS 10.2. The explanatory factor for forest type 
considered in this study was extracted from a forestry map 
(1:25,000) developed by Korea Forest Service. 

Landslide occurrence areas were detected by aerial 
photograph and Kompsat satellite image interpretation obtained 
from Korea aerospace research institute. To produce a detailed 
and reliable landslide inventory map, landslide locations 
obtained from remote sensing technique was verified by 
extensive field survey in 2014 August. All the landslide 
locations were identified and relocated by means of GPS.   

These landslides were mostly distributed in the middle part 
and lower reach of the catchment. The study area also had much 
landslide damage following heavy rain in 1991. In the catchment 
69 landslide were identified as landslides before 2011 July. 
Those landslide locations were used as model building data for 
spatial landslide susceptibility map. Whereas 18 landslides were 
identified as landslides in July 2011, that were used as validation 
of the model. Now this study has an advantage with two events 
data. 

For spatial landslide susceptibility mapping a machine 
learning model, a maximum entropy (MaxEnt) was used, which 
is increasingly being regarded in various earth science studies 
(Phillips et al. 2006) and it has proven to be a very powerful 
statistical prediction tool. MaxEnt represents as the conditional 
density function of covariates π at presence, a random site x 
from the set X in the study area, and records 1 if the landslide is 
present at x, and 0 if it is absent.  

For spatial landslide susceptibility modeling landslide before 
2011 was considered as training data and landslide in 2011 July 
was considered as validation data. 

The temporal probability was determined by using temporal 
variables like hourly cumulative rainfall, effective contributing 
area and infiltration rate.  

The hazard is usually stated as the probability of a landslide 
in a specified period of time and in a given area (Van Westen 
2000) (See Eq. 1).  

 
Hazard= (Spatial × Temporal) probability         (1) 

 

4  RESULTS AND DISCUSSION 

4 .1  Spatial landslide probability 

Spatial landslide susceptibility of Onsan catchment was obtained 
from machine learning presence data, Maxent model as shown in 
Figure 2. The probability value ranges of 0 to 1. In this analysis 
aspect, forest type, soil type, soil depth and geology are 
categorical data which remaining are continuous data. In total 
10,000 pixels were used as background data, which are defined 
as random samples. The Jackknife test was performed to 
investigate which CF has the strongest effect on the prediction 
result. This test showed slope has the highest effect on the model 
while geology has the lowest.     

4 .2  Temporal landslide probability 

For temporal probability, rainfall parameter and hillslope 
behavior corresponding to rainfall such as cumulative rainfall, 
effective contributing area (ECA) and rainfall infiltration rate 
were selected. Cumulative rainfall maps were prepared by hourly 
rainfall that recorded in three rain gauge stations nearby 
catchment, and IDW algorithm was used. The modeling was 
done for 11h i.e. from 3 AM 27th July to 13:00 PM. Barling et al. 
(1994) stated that ECA is the fraction of the total specific 
contributing area that contributes subsurface flow to the contour 
segment within a specified drainage period d, corresponding to a 
rainfall duration. In this study, a D8 single flow direction 
algorithm was applied to calculate the contributing area. ECAs 
of the Onsan catchment were simulated for continuous 11 h 
duration as shown in Figure 3.  

A transient rainfall infiltration model was used to obtain 
infiltration rate of the study area, which represents 
spatiotemporal changes in pore water pressure caused by rainfall 
infiltration. The transient infiltration model estimates transient 
pore pressure changes by considering changes in rain infiltration 
over time, while assuming that the initial groundwater level is a 

 
Figure 1. Location of study area and landslide distribution. 

 
Figure 2. Spatial landslide susceptibility map of study area. 

 
Figure 3. ECA simulation for 11h. 
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steady state. In this study, we adopted the hydrogeological model 
implemented as transient rainfall infiltration and grid-based 
regional slope stability (TRIGRS), which is coded in FORTRAN.   

A simple logistic regression analysis was done to find the 
relationship between landslide presence and temporal. The 
accuracy of temporal probability was calculated using AUROC. 
It showed 89.77% accuracy for the model as shown in Figure 4.  

4 .3  Dynamic hazard modeling 

The temporal probability was (using LR) calculated for 11h i.e. 
3AM, 4AM, 5AM, 7AM, 11AM, 12PM and 13PM of 27th July, 
2011. The distribution of temporal probability was mainly due to 
soil properties i.e. hydraulic conductivity. Dynamic hazard 
means change of spatial landslide susceptibility with time 
variable. In this study, dynamic model was prepared for 11h 
before landslide event. It was simply performed by using 
equation (1). A series of maps from 3AM to 13PM were 
obtained from calculation (Figure. 5). This model shows the 
hillslope behavior during rainfall scenario. This kind of research 
is a novel in dynamic landslide hazard assessment. Generally 
previous studies used physically based model.  

 
5  CONCLUSIONS 

Onsan catchment was selected to evaluate dynamic landslide 
hazard model. In this study, 14 spatial data and machine learning 
Maxent was used to make landslide susceptibility map. The 
hourly cumulative rainfall, effective catchment area and 
infiltration rate were used as spatiotemporal data. Landslide 
inventory map was used to make both spatial and temporal 
probability maps. A logistic regression model was used to find 
temporal probability. From this model, a rainfall scenario based 
dynamic landslide hazard was evaluated.  
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Figure 4. Model performance of temporal probability. 

 
Figure 5. Dynamic landslide hazard. 
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