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Abstract 

Overhanging slopes have been reported following riverbanks and coastal headland failures. The stability of 

overhanging slopes is of practical interests and has been investigated in physical tests and numerical models. The 

geometry of an overhang is an input into most slope stability analysis and is frequently idealised or back-calculated 

from observed data. Only limited studies have considered the relationship between the geometry and the unsaturated 

shear strength inherent in the overhanging soil slopes. 

This study investigates the geometries of overhanging slopes, which exist while in limiting condition satisfying static 

equilibrium with soil strength governed by the Mohr-Coulomb failure criterion. The overhanging contour is 

formulated as the unknown in a boundary value problem and solved for using the slip line theory. Subsequently, 

results from the dimensionless charts were dimensionalised and analysed by the finite element method to evaluate 

the influence of flow rule, tension crack layer height and unsaturated shear strength on the stability of overhang. 

The solutions are presented in general dimensionless charts. The results show that the curvature of an overhang 

becomes more pronounced for small values of φ’. It is also demonstrated that changing the contribution of suction 

to effective stress has a direct impact on the size of an unsaturated soil overhang. 

It was found that toppling is the likely failure mechanism of overhang in this study. The presence of a tension crack 

layer above the arch is required to stabilise an overhanging slope, alongside precise combinations of soil parameters 

and slope geometry. The influence of flow rule on the factor of safety was small. Varying the tension crack layer 

thickness to between 0.3 and 0.7 of the overhanging height does not significantly impact the safety factor of the 

particular slopes considered. 
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1 INTRODUCTION 

Overhanging slopes have been reported in many 
riverbanks and coastal headlands. Erosion process 
causes failures of the soil wall with cohesive 
material on the top and granular material below, 
and the remnant of which can form an overhanging 
slope. The stability of overhanging soil slope is of 
practical interest and has been investigated by 
physical and numerical modelling using the limit 
equilibrium method (e.g. Thorne & Tovey, 1981; 
Van Eerdt, 1985; Pizzuto, 1987; Thorne & Abt, 
1993; Darby & Thorne, 1996; Abam, 1997; Rinaldi 
et al., 2004; Rinaldi & Darby, 2008; Samadi et al., 
2011; Samadi et al., 2013; Patsinghasanee et al., 
2018). Most of the overhanging slopes are located 
above the water table where soil can be 
unsaturated. 

Thorne & Tovey (1981) identified three failure 
mechanisms that govern the stability of 
overhanging slope: shear, beam and tensile failures. 
Thorne & Tovey (1981), Van Eerdt (1985), Abam 
(1997), Samadi et al. (2013), Zhang et al. (2016) 
and Patsinghasanee et al. (2018) found that beam 
failure was the controlling mechanism of overhang 
stability. Equations were proposed for estimating 
the safety factor of shear and beam failures, and 
accounting for the stability of cohesive overhang 
(Samadi et al., 2011; Samadi et al., 2013; 
Patsinghasanee et al., 2018). Sokolovskii (1965) 
and Vo & Russell (2019) showed that overhanging 
slope is more susceptible to toppling failure. 

The stability of an overhang is governed by many 
factors such as geometry, type of material layers, 
presence of tension cracks, hydraulic confining 
pressure, soil shear strength, and suction in an 
unsaturated soil. Quinlan (1987) discussed the 
work of Jennings (1966) and Lobban which shows 
that soil with high cohesion favours the 
development of a small, flat arch while soil with 
low cohesion favours the development of a much 
wider and higher arch. The wetting of soil causes a 
reduction in cohesion and changes in the arch 
geometry due to soil spalling from the wall. The 
overhang is stable until being adequately disturbed 
by environmental changes in and around the bank 
soils e.g. a vertical crack occurring during the 
process may extend and eventually cause a toppling 
type of failure. 

Most stability studies considered the slope 
geometry as an input. This study develops the 
overhang geometry by imposing a boundary 
condition requiring the slope contour to coincide 
with the major principal stress direction. Thorne & 

Tovey (1981) and Abam (1997) considered the 
importance of tension crack layer for overhang 
stability. This study incorporates the tension crack 
layer into the slope geometry. The surcharge load 
is assumed equal to the weight of the tension crack 
layer. 

Sokolovskii (1965) and Karaulov & Korolev 
(2012) developed dimensionless charts of 
overhanging slope comprised of dry soil using the 
slip line theory. Vo & Russell (2019) and this study 
examines dimensionless overhanging charts for 
soil in a more general condition. The soil is being 
treated as unsaturated, which has a suction that 
increases the particle contact forces and thus 
effective stress. The soil is defined by constant 
friction angle and a linear variation of cohesion and 
the contribution of suction to the effective stress 
with depth. The analysis produces a series of 
dimensionless charts showing the shapes of 
overhanging slopes for the case when the soil is at 
a limiting condition. Numerical analysis of the 
overhanging slope is carried out using the software 
Plaxis (Plaxis, 2019) to investigate the influence of 
flow rule and the tension crack layer height on 
slope failure. 

2 GOVERNING EQUATIONS AND 
BOUNDARY CONDITIONS 

2.1 Governing Equations 

The soil shear strength of overhanging slope is 
governed by Mohr-Coulomb failure criterion: 𝜏 = 𝑐′ + 𝜎′ tan 𝜑′ (1) 

where c’ is cohesion, φ’ is internal friction angle, 
and σ’ is the effective stress, defined by Bishop 
(1959) for unsaturated soil condition as: 𝜎′ = 𝜎 − 𝑢𝑎 + (𝑢𝑎 − 𝑢𝑤)  (2) 

where σ is total stress, χ is the effective stress 
parameter, ua is the pore air pressure, and uw is the 
pore water pressure. The value of χ and thus σ’ have 
been studied by many (e.g Khalili & Khabbaz, 
1998; Khalili et al., 2008). 

For simplicity, φ’ is assumed to be constant, c’ 
and χs are assumed to vary linearly with depth z 
according to: 𝑐′ = 𝑐0′ + 𝑘c𝑧 (3) 𝜒𝑠 = (𝜒𝑠)0 + 𝑘χs𝑧 (4) 

where c’0 is cohesion at z=0, (χs)0 is the 
contribution of suction to the effective stress at z=0 
and kc, kχs are constants. 
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The static equilibrium equations (x and z are  
horizontal and vertical axis, respectively) can be 
expressed as: 𝜕𝜎xx𝜕𝑥 + 𝜕𝜎xz𝜕𝑧 = 0 (5)  𝜕𝜎xz𝜕𝑥 + 𝜕𝜎zz𝜕𝑧 = 𝛾  (6) 

where σzx is the shear stress and γ is the total unit 
weight of soil, and σxx, σzz are normal stresses in the 𝑥 and 𝑧 directions, respectively.  

At the onset of failure defined by the Mohr-
Coulomb criterion the stress components σzz, σxx, 
σzx satisfy: 𝜎zz = [(1 + sin 𝜑′ cos 2𝜓)𝜎m′ − 𝑐′ cot 𝜑′] − 𝜒𝑠  (7) 𝜎xx = [(1 − sin 𝜑′ cos 2𝜓)𝜎m′ − 𝑐′ cot 𝜑′] − 𝜒𝑠  (8) 𝜎zx = 𝜎m′ sin 𝜑′ sin 2𝜓  (9) 

where ψ is the angle between the major principal 
stress direction and the vertical axis and σ’m is 
effective mean stress. 

Following the approach from Vo and Russell 
(2017), the stress quantities in Eqs. (5) – (9) are 
scaled by S and the length quantities are scaled by 
L, the slip line governing equations can be written 
in the following dimensionless form:  〈𝜂〉 ≡ { d𝑥 = tan(𝜓 + 𝜇)d𝑧̂d𝜎m′̂ + 2 tan 𝜑′𝜎m′̂ d𝜓 = 𝐹(d𝑧̂ − tan 𝜑′ d𝑥)      (10) 〈𝜉〉 ≡ { d𝑥 = tan(𝜓 − 𝜇)d𝑧̂d𝜎m′̂ − 2 tan 𝜑′𝜎m′̂ d𝜓 = 𝐹(d𝑧̂ + tan 𝜑′ d𝑥)      (11) 

in which 𝐹 = 𝐿𝑆 [𝛾 + 𝜕(𝑐 ′̂ cot 𝜑′+𝜒𝑠̂)𝜕𝑧̂ ]  (12) 

where 𝜎m′̂ = 𝜎m′𝑆 , 𝑐 ′̂ = 𝑐′𝑆  , 𝜒𝑠̂ = 𝜒𝑠𝑆 , 𝜇 = 𝜋4 − 𝜑′2 , 𝑧̂ = 𝑧𝐿, 
and 𝑥̂ = 𝑥𝐿 are non-dimensional quantities and ξ, η 

denote families of stress slip lines. It can be 

observed from Eqs. (10) – (11) that the solutions 

(𝜎m′̂ , 𝜓, 𝑧̂, 𝑥̂) are dependent on 
𝜕(𝑐 ′̂ cot 𝜑′+𝜒𝑠̂)𝜕𝑧̂  and φ’. 

When applied to a boundary value problem a 

solution (𝜎m′̂ , 𝜓, 𝑧̂, 𝑥̂) also depends on boundary 

conditions. If 𝑆 = 𝑞int + 𝑐0′ cot 𝜑′ + (𝜒𝑠)0 is 

adopted, F becomes: 𝐹 ≡ 𝐿(𝛾+𝑘c cot 𝜑′+𝑘χs)𝑞int+𝑐0′ cot 𝜑′+(𝜒𝑠)0  (13) 

F is a dimensionless parameter. qint=hγ denotes the 
stress applied on the soil surface due to the height 
of tension crack layer h (Fig. 1). 

 
Figure 1. Stress acts on the two sides of an admisible 
discontinuity (after Vo & Russell, 2019).   

2.2 Boundary Conditions 

2.2.1 On the (+) side of OD (Fig. 1) 

The stress jump across the discontinuity is 

illustrated in Fig. 1. The effective mean stress at 

depth z is 
ℎ𝛾+𝑧𝛾+𝑐′ cot 𝜑′+𝜒𝑠1+sin 𝜑′  on the (-) side of the 

discontinuity (in zone 2). On the (+) side of the 

discontinuity, the effective mean stress is: 𝜎m′ += (ℎ𝛾+𝑧𝛾+𝑐′ cot 𝜑′+𝜒𝑠1+sin 𝜑′ ) sin(∆+𝛿′)sin(∆−𝛿′) (14) 

where 𝛿′ and ∆ are defined as in Vo and Russell 

(2019) and sin ∆ = sin 𝛿′sin 𝜑′. 
The second boundary condition is given from the 

discontinuity trajectory (Fig. 1): d𝑧d𝑥 = tan 𝛼d  (15) 

where 𝛼d is the gradient of the discontinuity 

trajectory and 𝛼d = 12 (∆ + 𝛿′). 

 
Figure 2. Overhanging slope geometry formation with slip 
line theory (after Vo & Russell, 2019). 

Across the stress discontinuity, the effective 
major principal stress direction jumps by an angle 
ω. It can be found from that the third boundary 
condition is given by: 𝜓d = (𝜋/2 − ∆) (16) 
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2.2.2 Along the slope surface 

The effective mean stress along the slope surface 
is: 𝜎m′ = 𝑐′ cot 𝜑′+𝜒𝑠1−sin 𝜑′  (17) 

The second and third boundary conditions can be 
found from the curvature of the slope (Fig. 1): d𝑥d𝑧 = tan 𝛼s (18) 𝜓s = 𝛼s  (19) 

2.2.3 At point O 

z=0 at point O so Eq. (13) gives: 𝜎m′ += [𝑞int+𝑐0′ cot 𝜑′+(𝜒𝑠)01+sin 𝜑′ ] sin(∆+𝛿′)sin(∆−𝛿′)  (20) 

The mean stress is unique at point O. Equating the 
stress σ’m+ in Eq. (20) to the stress σ’m in Eq. (17) 
leads to: 𝑞int = [𝑐0′ cot 𝜑′ + (𝜒𝑠)0] [(1+sin 𝜑′1−sin 𝜑′) sin(∆−𝛿′)sin(∆+𝛿′) − 1] (21) 

The direction of the major principal stress is 
unique at point O. Equating ψs in Eqs. (19) to ψd in 
Eq. (16) leads to: ∆= 𝜋/2 − 𝛼s (22) 

Eqs. (21) and (22) show that there is a 

corresponding surcharge qint for each value of αs 

(where αs represents the curvature of the 

overhanging surface at O). When αs=0 (vertical 

slope), ∆= 𝜋2 → sin(∆−𝛿′)sin(∆+𝛿′) = 1 and 𝑞int = [𝑐0′ cot 𝜑′ +(𝜒𝑠)0] ( 2sin 𝜑′1−sin 𝜑′) ≡ 𝑞min as per Vo & Russell (2017). 

3 OVERHANGING SLOPE GEOMETRY 

Fig. 1 presents the geometry of the slope 
containing an overhang, with vertical length OO’ 
and undermining distance xu at certain depth. The 
overhanging contour OE in Fig. 1 coincides with 
the direction of the major principal stress and 
permits the soil to be at limiting equilibrium 
everywhere. The contour of the slope was initially 
unknown, it was obtained in Vo and Russell (2019) 
as part of the solution of the boundary value 
problem detailed above. 

For overhanging slope problem, Sokolovskii 
(1965), Karaulov & Korolev (2012), and Vo & 
Russell (2019) assumed the existence of an 
admissible stress discontinuity OD (Fig. 1). 
Admissible stress discontinuity is used extensively 
in rigid-plastic limit analysis and in the slip line 
theory. Constructing the stress discontinuity is 
critical to finding a solution. 

A tension crack layer, which locates at the upper 
surface of the slope, is an important consideration 
for overhang stability (Thorne & Tovey, 1981; 

Abam, 1997; Patsinghasanee et al., 2018). Vo & 
Russell (2019) assumed the tension crack layer to 
form as part of the failure mechanism. They 
emphasized that the height of the tension crack 
layer is limited by the following condition: ℎ ≤ (𝜒𝑠)0(1−𝐾𝑎)+2𝑐0′√𝐾𝑎𝛾𝐾𝑎+𝑘𝜒𝑠(𝐾𝑎−1)−2𝑘𝑐√𝐾𝑎 = ℎ0        (23) 

where h0 is a bounding height and Ka is the Rankine 

active earth pressure, 𝐾𝑎 = (1−sin 𝜑′)(1+sin 𝜑′). 
The overhanging slope contour, i.e the segment 

OJ  in Fig. 2, was built using the slip line theory, 

where an η slip line passes through the 

discontinuity line OD at point D and the slope 

contour OJ at point J. Vo & Russell (2019) 

presented the slope contour OJ because toppling 

failure is considered as governing failure 

mechanism which could occur around point O.  

Dimensionless overhang contours were 

presented in Vo & Russell (2019) for F = 0.01 and  

φ’= 10°, 20°, 30°, 40°, 50°, 60°, 70°; with αs= 9°, 

18°, 27°, 36°, 45°, 54°, 63°, 72°, 81°. Fig. 3 shows 

examples of overhanging contours for φ’= 20°, 40°. 

It is shown that for a given φ’, when αs increases 

(or qint=hγ decreases), a slope at limiting condition 

has a more pronounced overhang i.e. a thinner 

cracked soil layer is balanced by a more 

pronounced overhang and a thicker cracked soil 

layer by a steeper overhang (Vo & Russell, 2019).  

The 𝑥̂ and 𝑧̂ axes in the charts are dimensionless 

and need to be multiplied by L to obtain their 

corresponding dimensional values. 

4 INSIGHTS FROM NUMERICAL ANALYSIS 
BY PLAXIS 

Numerical analyses of overhanging slopes were 
conducted in Plaxis. A factor of safety (FOS) in 
Plaxis was determined using shear strength 
reduction technique (Matsui & San, 1992; Griffiths 
& Lane, 1999). The FOS in Plaxis is denoted as 
Msf  at failure and defined as: ∑ 𝑀𝑠𝑓 =  tan 𝜑′inputtan 𝜑′reduced = 𝑐input′𝑐reduced′         (24) 
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Figure 3. Dimensionless overhanging slope geometry 
presented by Vo & Russell (2019) for F = 0.01, (a) φ’=20°, 
(b) φ’=40°; presented for αs= 9°, 18°, 27°, 36°, 45°, 54°, 
63°, 72°, 81°. 

Vo & Russell (2019) assumed a rigid-plastic 
stress field in the slip line theory; in reality, part of 
the overhang may be elastic. The material model in 
Plaxis was assumed to be elastic-plastic Mohr-
Coulomb, unsaturated and homogenous i.e ks=kc= 
0. Hydraulic confining pressure was not 
considered. The value of c’ was set to zero to obtain 
the critical stability condition (i.e. FOS = 1.0) for 
different φ’. 

The limitation of h≤h0 was followed when 
estimating the tension crack layer height. The 
tension crack layer was modelled as a linear-elastic 
soil layer. It is noted that the overhanging slope will 
fail if the tension crack layer is absent during the 
first construction stage in Plaxis. The presence of 
the tension crack layer or surcharge load above the 
overhanging slope surface is important for 
overhang stability. 

 
Figure 4. Dimensional  geometry of overhanging slope for 
’= 20°, s = 20 kPa, and s = 45°.  

A contour from Fig. 3 is now selected to explain 
the conversion from dimensionless to a 
dimensional geometry. The length scale L was 
estimated by choosing values of γ, φ’, χs then 
determining the value of h so that F = 0.01 (Eq. 12). 
For example, an overhang is considered with γ=  17 
kN/m3, φ’ = 20°, c’=0 kPa, s = 20 kPa, αs= 45°. 

From Eq. (23), h0 = 1.22 m, thus h = 0.9 m can be 
chosen for this overhang dimension (qint = 15.3 
kPa). Keeping the value of F = 0.01, L = 0.021 m 
is obtained so the dimensional overhang geometry 
can be constructed as shown in Fig. 4. 

 
Figure 5. Plaxis modelling result shows toppling failure 
becomes controlling failure mechanism for overhang 
stability. 

Numerical models of overhangs with φ’ = 20°, 
40° and s = 9° to 81° were analysed in Plaxis. 
E’=60,000 kPa and ν’=0.333. Values of h and L 
were chosen repeatedly until an analysis reaches 
critical stability (FOS close to 1.0). Example of a 
critically stable overhanging slope (γ = 17 kN/m3, 
φ’= 20°, χs= 20 kPa, and αs= 45°) is shown in Fig. 
5. The undermining distance xu and the 
overhanging block height hb are also shown in Fig. 
5.  
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Results of numerical modelling in Plaxis show 
that toppling failure is likely. For example, in Fig. 
5, the area shaded by lighter colours near point O 
indicates higher deformation compared to the 
surrounding area shaded by darker colours. Thus 
soil spalling from the overhang wall near point O is 
likely and this would eventually lead to a toppling 
type  of failure. 

The geometry of a stable overhanging slope is 
related to soil parameters. Combinations of 
geometry and soil parameters (γ, φ’, χs) can lead to 
a stable overhang. Determining h would be 
important to obtain a stable overhang in practice. 

Examples are presented in Fig. 6 and Fig. 7 of 
stable overhanging slopes with φ’ = 20° and s = 
54°, φ’ = 40° and s = 72°, for χs= 5 to 50 kPa. 
They show that increases in φ’, χs are associated 
with bigger stable overhang geometries. 

 
Figure 6. Overhanging slope geometry of at critical stability 
for ’ = 20° and s = 54°, with  χs = 5, 10, 20, 30, 40, and 50 
kPa. 

Vo & Russell (2019) assumed the soil body to be 
fully-associated (’ = φ’).  ’ = 0° is adopted here 
for the non-associated models in Plaxis 

One objective of this numerical modelling was to 
compare soil displacements of models adopting 
similar  geometries and parameters but different 
flow rules (i.e. the associated versus the non-
associated flow rules).   

 

 

Figure 7. Overhanging slope geometry of at critical stability 
for ’ = 20° and s = 54° , with s = 5, 10, 15 kPa. 

The maximum horizontal displacements of 
overhanging slope models with  = 17 kN/m3, φ’= 
20°, and χs= 5 to 50 kPa for αs = 45° are obtained 
from Plaxis outputs and plotted in Fig 8. The results 
show that differences in the maximum horizontal 
displacements (due to different flow rules 
applications) become higher when χs increases. 
Those are between 0.07 to 6.04 mm.  

Another objective was to study the range of h 
that can be applied to stabilise the overhanging 
slope. Thorne & Abt (1993) suggested h to be half 
of the overhanging height hb. They emphasised that 
the safety factor would not change by more than 

10% when the ratio of h/hb varies between 0.3 and 
0.7. To investigate this, numerical models with φ’= 
20°, χs= 30 kPa, αs = 45° were analysed. Table 1 
shows that when h ranges between 0.479 m to 
1.117 m (the ratio of h/hb varies from 0.3 to 0.7), 
the factors of safety vary by no more than 6%. 

5 CONCLUSION 

This paper presents insights from numerical 
modelling the overhanging slopes reported by Vo 
& Russell (2019). Similar to what was reported in 
that paper, it was found that combinations of soil 
parameters (unit weight, shear strength, and suction 
in unsaturated material), slope geometry, and 
tension crack layer height can lead to a critically 
stable overhang (i.e. FOS = 1.0). However, 
additional external loads acting on the soil body 
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(e.g those due to wind and external water flow) will 
impact this stability. 

Vo & Russell (2019) showed that the geometry 
of a stable overhang is related to soil parameters. A 
more pronounced overhang curvature becomes 
possible for smaller values of 𝜑′. Varying the 
contribution of suction to effective stress changes 
the size of a stable overhang.  

It was found that the presence of a tension crack 
layer above the overhang surface is important for 
stability. The overhang may fail if the slope is 
unloaded (i.e. the tension crack layer is excluded 
from the model). Failure will also occur if the 
surcharge load above the slope is too high. 

 

Figure 8. Comparison of maximum horizontal displacements 
on applications of associated and non-associated flow rules 
for overhanging slopes with ’ = 20°, s = 45°, with s = 5 to 
50 kPa. 

Table 1. Comparison of the safety factors of overhanging 
slopes when h/hb ratios vary between 0.3 – 0.7  

xu (m) hb (m) h (m) h/hb ratio Factor of safety 

0.803 1.596 0.479 0.3 1.098 

0.803 1.596 0.638 0.4 1.091 

0.803 1.596 0.798 0.5 1.094 

0.803 1.596 0.958 0.6 1.092 

0.803 1.596 1.117 0.7 1.097 

Vo & Russell (2019) showed that high stresses 
are concentrated near the top of an overhang 
causing it to be highly susceptible to toppling. 
Numerical modelling results also show topppling to 

be a likely failure mechanism. The area prone to 
toppling failure is smaller for smaller 𝜑′.  

Numerical modelling results show that adopting 
either the associated or the non-associated flow 
rules results in small differences in maximum 
horizontal displacements. Varying the ratio h/hb 
(i.e. tension crack layer height to overhanging 
block height) within a certain range may not impact 
greatly the factor of safety. For example, for 
overhanging slopes reconstructed from Vo & 
Russell (2019) with 𝜑′ = 20

o, when (h/hb) varies 
from 0.3 to 0.7, numerical modelling results show 
that the safety factors vary by no more than 6 %.  
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