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Abstract 

Landslides constitute a significant threat for linear infrastructure systems, such as roads, pipelines, and transmission 

lines. Because of the variation on site conditions landslide risk assessment becomes a challenging task that has been 

traditionally undertaken through heuristic methods, physical modelling, or machine learning methodologies, 

including the use of spatial datasets and Geographic Information Systems (GIS). In this study, a Bayesian Network 

model is developed to assess the economic risk of pipelines due to landslide processes. This model follows an 

innovative risk assessment framework, which consists in identifying the relevant threats, the systems vulnerable to 

these threats, and their corresponding consequences. To illustrate the applicability of the proposed methodology, a 

case study of a pipeline in Colombia subjected to strong geological and geotechnical variations, shows the governing 

variables and their relationships as established by available evidence (i.e. physical observations, model predictions 

and expert’s knowledge). These variables are subsequently mapped with the aid of GIS to serve as input to a Bayesian 
Network capable of the spatial assessment of the state of economic risk in the pipeline. Preliminary results show that 

the model adequately represents the state of risk in the infrastructure and that it can be extended to risk management 

with the inclusion of active and passive countermeasures.  
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1 INTRODUCTION 

Landslides are major geological hazards with a 
widespread impact on urban areas as well as in 
transportation networks, and are responsible for 
significant losses in terms of fatalities and property 
damage (Froude & Petley, 2018).  Given the linear 
nature of hydrocarbon transportation lines, their 
alignments often traverse areas of complex 
topographic, geological, and climatological 
conditions with varying degrees of landslide 
susceptibility (Baum et al., 2008). Sweeney et al. 
(2005) states that the incident frequency in 
mountainous terrains can be between 40 and 100 
times greater than in less challenging 
environments. Even though, on average, landslide-
related events correspond to 8%-10% of the global 
pipeline incidents behind other hazards, landslide 
incidents often cause larger ruptures that translate 
into greater environmental damage and longer 
periods of service interruption (Lee et al., 2016).  

Several landslide hazard and risk assessment 
methods have been proposed and/or adopted by 
operators following industry standards. For 
example, the Canadian standard CSA Z662-15 lists 
four possible approaches to risk estimation: (i) Risk 
matrix; (ii a) Semi quantitative Risk Index; (ii b) 
Quantitative Risk Index; and (iii) Probabilistic Risk 
Analysis (CSA, 2015). Examples of models 
following these methodologies can be found in 
Porter et al. (2004) for risk matrices, Read & 
Riskalla (2015) for semi-quantitative indexes, 
Baumgard et al. (2016) for quantitative indexes, 
and Alvarado et al. (2017) for probabilistic hazard 
and risk analysis.  

Given the length of pipelines and the various 
environments they traverse, the use of Geographic 
Information Systems (GIS) has become a valuable 
tool for implementing hazard and risk assessment 
models. According to Jaboyedoff et al. (2012), the 
rise of publicly available spatial datasets, the 
improvement of remote sensing technologies, and 
the progress made in both software and hardware 
improvement, have helped researchers in 
developing new models applicable to several 
spatial problems. The works of Henschel et al. 
(2012) and Borfecchia et al. (2015) use remote 
sensing data sets and GIS to map landslide 
susceptibility and pipeline failure probability given 
the occurrence of earthquake-triggered landslides   

The objective of this work is to develop a model 
for the risk assessment of pipelines due to landslide 
processes by integrating sources of spatial 
information in a Bayesian Network that represent 

the causal relationships between them. With the aid 
of GIS, prior probability distributions for relevant 
spatial variables are obtained and inputted into the 
BN for analysis. This approach, referred to as 
BN+GIS (Varela 2013), offers the opportunity of 
model updating as new evidence becomes 
available. Finally, in order to illustrate the 
capabilities of the model, a pipeline in Colombia is 
used as a case study. 

2 BAYESIAN NETWORKS AND RISK 

2.1 Bayesian Networks 

A Bayesian Network (BN) is a graphical 
representation of the joint probability distribution 
of a set of random variables, and is a combination 
of a graphical and a probabilistic model. Nodes and 
arcs compose a BN, where the nodes represent the 
random variables in the model, while the arcs 
illustrate the conditional probability relationships 
between variables (Korb and Nicholson, 2004). A 
node is referred to as a parent node if it has one or 
more arcs directed to another node, called the child 
node.  

Bayes theorem represents a probabilistic 
inference between a hypothesis (A) and the 
evidence (B) to assess the posterior conditional 
probability P(A|B). This relationship is interpreted 
as a causal dependency between ‘parent’ and 
‘child’ nodes, represented with a Conditional 
Probability Table (CPT), which transmits the 
message through the network arcs. (Varela & 
Medina-Cetina, 2017).  When the probability is 
propagated from parent to child node (i.e. cause to 
effect) a prognostic analysis is performed. In 
contrast, a diagnostic analysis happens when the 
probability is propagated from child to parent 
nodes (i.e. effect to cause). 

Figure 1 shows an example of a BN with three 
independent parent variables (V1, V2, V3) and one 
child node (V4), for a total of m=4 nodes, with each 
variable discretized in n=3 classes. Equation 1 
describes the message propagation in prognosis (𝜋(𝑍)), which produces a list with all the possible 
combinations of three discrete states of four 
variables (𝑚𝑛 = 81). The diagnosis message (𝜆(𝑍)) is propagated from the child node to the 
parent nodes and is computed through Equation 2. 
In this case, the child node is instantiated with a 
prescribed distribution in order to infer the 
marginal probabilities of the parent nodes. 
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Figure 1. Example of a BN 

P(Childi)= ∑ π(Zi)27
j=1 =  ∑ P(V1i)*P(V2i)*P(V3i)*P(Childi|V1i,V2i,V3i)27

j=1        (1)  

P(parentk)= ∑ π(Z)*λ(Z)∑ [π(Z)*λ(Z)]81
j=1

27
j=1           (2) 

2.2 Risk assessment framework 

In this work, Risk is defined following the 
framework of Medina-Cetina et al (2008) as shown 
in the following equation: 

R=P[T]*P(C|T)*U(C)          (3) 

Where P[T] is the Hazard, or probability of 
occurrence of a particular threat within a given 
period of time; P[C|T] is the Vulnerability, or the 
degree of expected loss in an exposed element 
given the hazard; and U(C) is the loss or utility of a 
set of Consequences C. They can be economical, 
environmental or social.  

To illustrate the definition of Risk, the Figure 2 
shows a synthetic case of the economic risk 
assessment of a pipeline affected by landslides. In 
this case, the hazard P[T] is the Rainfall (R), the 
vulnerabilities P[C|T] correspond to the Landslide 
Intensity (LI) and Pipeline damage (PD), and the 
Economic risk (ER) is calculated as the product of 
the probability of each state of PD and the 
associated costs. Each variable is discretized in 
three states or classes (low, moderate, and high) for 
simplicity. 

Figure 2. Synthetic case for economic risk assessment 

In the figure, a prior probability table is shown 
for the node R, and CPTs for the nodes LI and PD. 
For the node ER, costs associated to each state of 

PD are specified. The probability propagation is 
given as follows: 

P(R)=Bel(R) 

P(LI|R)←Bel(LI)= ∑ P(LI|Ri)3

i=1

*Bel(Ri)                           (4) 

P(PD|LI)←Bel(PD)= ∑ P(PD|LIi)3

i=1

*Bel(LIi) 

Where P(PD|LIi) reflects de definition of 
vulnerability. Finally, the expected risk is given by: 

E[ER|PD]= ∑ U(Oi|PDi)
3

i=1

*Bel(PDi)                                     (5) 

Where U(Oi|PDi) is the expected economic cost 
of repair conditioned on Pipeline Damage i. 

3 PROPOSED MODEL 

Landslides affect pipeline integrity causing 
ruptures (or loss of containment) in various ways 
such as lateral displacement, spanning, loading, or 
exposure and impact.  (Lee & Charman, 2005); 
Pipelines can present different level of damage (i.e. 
vulnerability) to these failure modes, or load cases, 
depending on their strength and stiffness 
properties.  

Therefore, the first step for the risk assessment 
of pipelines is to estimate the probability of 
landslide occurrence and its intensity. After that, 
the vulnerability of the pipeline in terms of its 
disposition, strength, and stiffness needs to be 
characterized. Finally, the economic and 
environmental consequences associated with 
different levels of damage (i.e. pinhole, buckling, 
rupture) must be taken into account for a complete 
risk assessment. The following sections describe 
and list the relevant variables for each category. 

3.1 Landslide‘s Triggering Events 

The probability of a landslide occurrence 
depends on a set of variables, which go beyond the 
traditional physically-based models, including 
environmental and local conditions, but also 
variables describing evidence of landslide activity..  

Regarding environmental conditions, the model 
considers the variables rainfall and seismicity. 
These variables induce the slope failure by 
changing the shear strength and/or the shear stress 
conditions and correspond to the main triggers of 
landslides worldwide. 

The local conditions include variables such as 
geology, slope, soil geotechnical and hydraulic 
properties, and vegetation. Conceptually, the 
preparatory factors are intrinsic of a slope and 
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create a condition of marginal stability In the 
model, a combination of slope, geology and land 
cover is used to define the local conditions. 

Finally, the evidence of landslide activity is very 
important since it gives a confirmation of a 
landslide process along the ROW. The 
environmental and local conditions allow for a 
landslide occurrence prediction, but the evidence of 
landslide activity is a clear sign of geotechnical 
instability.  

3.2 System’s Vulnerable to Landslides: 
Pipelines and Surface Water 

For the purpose of this model, two different 
vulnerable systems are considered: pipelines and 
surface water. Pipelines are vulnerable to 
landslides since the occurrence of ground 
movements has an impact on pipeline integrity. 
Consequently, once the pipeline fails, there is a 
potential spill that can reach surface water bodies, 
contaminating them, and affecting the 
environment.  

The pipeline vulnerability refers to the degree of 
expected loss or damage in a pipeline given the 
occurrence of a landslide. In order to assess this 
factor of the risk equation, an understanding of the 
pipe-soil interaction is needed. Analytical and 
numerical approaches for characterizing the 
pipeline vulnerability can be found in the literature 
(Liu & O’Rourke, 1997; Laing & Young 2017; 
Islam et al., 2019). The relevant variables for soil-
pipe interaction include the relative direction pipe-
slope, pipeline thickness and disposition (i.e. aerial 
or buried), as well as landslide related 
characteristics such as mechanism and dimensions.  

According to Muhlbauer (2015), receptors of 
pipeline failures include people, property, and 
environment. Within the environmental receptors 
are the fauna, flora and water bodies. For this 
analysis, an environmental sensitivity is considered 
based on the potential contamination of water 
bodies.  

3.3 Consequences and States of Risk 

Economic and environmental consequences are 
considered in the BN network to illustrate its 
capability of integrating several threats, 
vulnerabilities, and consequences. The economic 
consequence are given by the pipeline damage 
level, and the costs associated will give the total 
economic risk according to Equation 5. In contrast, 
the environmental risk is not expressed as a cost, 
but as a Risk Index that goes from 0 to 1, being 1 
the highest value of Risk   

Figure 3 presents the final structure of the BN, 
(called informed synthetic case) constructed 
through literature review and refined via expert 
knowledge.  

4 ILLUSTRATIVE CASE STUDY 

This section introduces a case study to illustrate 
the applicability of the methodology, and it is based 
on partial information. The results of this exercise 
are not intended to be actual risk values but to show 
how the proposed methodology works and its 
potential to integrate multiple threats, multiple 
systems vulnerable to these threats, and their 
corresponding consequences or impacts. The 
purpose of this section is to show the potential 
applications and advantages of the model through 
the integration of threats, vulnerabilities and 
consequences, which defined varying States of 
Risk. 

The proposed region of analysis is hypothesized 
to be 10km long, located in the Colombian 
piedmont. The zone is characterized by gentle 
slopes, and sedimentary rocks such as sandstone of 
average mechanical properties compose the 
lithology formation. The rainfall exhibits a 
monomodal pattern with marked peaks between the 
months of April and August. The seismic hazard is 
high given the localization of relevant fault systems 
that conform the Andes Cordillera. Figure 4 
presents both sections with the slope over hillshade. 

4.1 Model Variables 

The following is a description of each variable 
considered, along with its source of information. 
All the variables are discretized in three states: 
Low, Moderate, and High unless stated otherwise.  

Rainfall. The source for this variable is a 
climatic zoning of the transportation systems that 
characterize the rainfall patterns in terms of 
quantity (mm) and number of days with rain in 
monthly and annually basis (Chaves et al., 2019). 
The prior distribution for both sections is shown in 
table 1. 

Table 1. Distribution of Rainfall variable 

State P() 

Low 0.42 
Med 0.58 
High 0.00 

Seismicity. The seismicity is considered as high, 
consistent with the pipeline location close to a 
principal fault system.  
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Figure 3. Synthetic informed case.

Figure 4. Section of analysis with slope angle over topo-

hillshade. 

Landslide Activity. This variable has four 
states: None, Low, Moderate, and High. It 
measures the intensity (i.e. landslide mechanism, 
volume) of an existent landslide on the Right of 
Way (ROW). For the analysis, no existent 
landslides were considered.  

Local Conditions. This variable relates to the 
preparatory factors for landslides. The source of 
information was a Geotechnical Susceptibility 
Zoning described in Chaves et al., (2019) which 
classifies the ROW in five different classes of 
susceptibility according to values of slope, 
structural geology, lithology, and land cover. The 
susceptibility classes were mapped to the variable 
states as follows: Low (Very Low and Low), 
Moderate (Moderate), High (High and Very High). 
In order to obtain the prior distribution for both 
sites, a buffer of 30m was used to clip the 
Susceptibility Zoning layer. The probability of 
each state corresponds to the percentage in area for 
each class inside the buffer. Figure 5 presents an 

example for the calculation. The prior distribution 
is presented in Table 2. 

Figure 5. Sampling buffer 

Table 2. Distribution of Local Conditions variable 

 

 

 

Landslide Intensity.  In similar fashion to 
Existent Landslide, this variable has four states: 
None, Low, Moderate, and High. It gives 
information of both the probability of landslide 
occurrence and it intensity. The CPT was built with 
expert knowledge and literature review. It was 
considered that the distribution of Existent 
Landslide has a strong influence on the conditional 
probability. 

Disposition. This variable represents the 
disposition of the pipeline, being it aerial or buried. 
It is a relevant variable since it influence the 
vulnerability of pipelines facing landslide hazards. 
The pipeline is considered as buried for the 
analysis. 

Thickness. The pipeline thickness is below 1/8 
inches. Thus, the thickness is Low for both 
sections.  

State P() 
Low 0.00 
Mod 0.46 
High 0.54 
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Pipeline Exposure. This variable summarizes 
the vulnerability parameters that are intrinsic of the 
pipeline, independent of the characteristics of the 
ROW. Similar to the other variables, the CPT was 
built with expert knowledge and literature review. 
In this case, an aerial disposition and high thickness 
are the most favorable conditions while buried 
pipelines with low thickness will present higher 
strains when impacted by landslides.  

Relative direction. This variable has three 
states: Longitudinal, Diagonal, and Transversal. 
The relative direction at both points is Diagonal. 
The information was obtained through a 
comparison of the pipeline azimuth and the slope 
aspect of a raster dataset in a GIS application.  

Pipeline Damage. This variable has three parent 
nodes, Landslide Intensity, Relative Direction, and 
Pipeline Exposure. For the CPT, higher levels of 
landslide intensity will increase the probability of 
pipeline damage, similarly to smaller thickness and 
a buried disposition. The lowest conditional 
probability of pipeline damage occurs when there 
is no landslide intensity, the thickness is high and 
the pipeline is aerial.  

Surface Water Contamination. This variable 
represents the contamination of water bodies given 
a pipeline failure. The characteristics of water 
bodies were analyzed for the entirety of the section. 
For the analysis region, there is a relevant drainage 
in proximity of the pipeline. Thus, the conditional 
probability of contamination is deemed important 
even for a low state of Pipeline Damage.   

Economic Risk. Table 3 shows the costs 
associated to each state of Pipeline Damage in 
dollars. The costs were obtained from a database 
and selected according to the complexity for each 
level of damage expected. For example, for low 
damage level, geotechnical and mechanical works 
related with stress relief and ROW maintenance 
were considered. For the case of high level of 
damage, the cost of major maintenance activities 
such as complex geotechnical works, realignments, 
and complete replacement of the pipeline were 
used. 

Table 3. Cost associated with Pipeline damage levels 

Pipeline damage Cost 
Low  $             130,000.00  
Mod  $             320,000.00  
High  $             650,000.00  

Environmental Risk Index. Table 4 presents 
the value of the risk index for each state of the 
parent node. 

 

Table 4. Risk index values 

Surf. Water Cont. Risk index 
Low 0.0 
Mod 0.5 
High 1.0 

5 RESULTS 

Figure 6 shows the results in prognosis. For this 
case the Environmental Risk is 0.67 and the 
Economic Risk is $406.368, meaning that the 
section has a moderate-to-high risk under the 
conditions analyzed.  

Notably, the probability distribution of the 
Landslide Intensity node shows that the most 
probable state is Moderate with only a 0.13 
probability of it being High. Given that the pipeline 
is buried and has a low thickness, the Exposure is 
High, increasing the overall vulnerability of the 
pipeline. The results show that this factor drives 
both the economic and environmental risks.  

Figure 7 and Figure 8 presents the result of the 
diagnosis analysis for lower and upper bounds 
scenarios. This means, that the diagnosis scenarios 
set both risks at its lowest values for the lower 
bound, and both risks at its higher values for the 
upper bound.  

For the lower bound scenario, there is a marked 
change in the probability distribution of the 
Landslide Intensity node, where it shifts from the 
Moderate and High states to the None and Low 
states. On the other hand, the posterior distribution 
of Pipeline Exposure is closer to the prior 
distribution. This diagnostic analysis shows that in 
order to reduce the risk states, the geotechnical 
stability of the ROW is very important if the 
disposition and thickness of the pipeline cannot be 
changed.  

The upper bound scenario shows that the 
Exposure node has probability of almost 1 of being 
in a High state, while the posterior distribution of 
Landslide Intensity is very similar to the 
prognosis case. This means that the higher states of 
risk are controlled, or heavy influenced, by the 
pipeline vulnerability.  

The diagnostic analyses help to identify the 
required threshold in the threats and vulnerabilities 
that will lead to the stated consequences and risks. 
It is useful since it gives information about the 
combination of states of threat intensities and 
vulnerabilities that produce undesirable states of 
risk. By introducing actions or measures (i.e. nodes 
into the network) aimed to reduce the states of risk 
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that cannot be exceeded, the model is expanded 
from risk assessment to risk management. 

6 CONCLUSIONS 

This paper presents a methodology for the risk 
assessment of onshore pipelines exposed to 
landslides using BN, and an integration with GIS. 

This model follows a risk assessment 
framework, which consists in identifying the 
relevant threats, the systems vulnerable to these 
threats, and their corresponding consequences. 

An illustrative case study was carried out in order 
to demonstrate the applicability and advantages of 

the developed model. The prognosis result showed 
a high state of risk for the conditions considered, 
while the diagnostic analyses highlighted the 
importance of the geotechnical stability of the 
ROW for achieving a low state of risk and the 
relevance of pipeline vulnerability for higher risk 
states. 

The illustrative case study is a first 
approximation to the integration of BN and GIS 
and serves as a preliminary result in the 
implementation of the risk assessment model for 
landslides affecting pipelines.  

Figure 6. Prognosis results 

Figure 7. Diagnosis results. Low States of Risk 

Figure 8. Diagnosis results. High States of Risk 
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