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ABSTRACT: This paper proposes a probabilistic site characterization approach, based on Bayesian statistical methods, 
that allows a design profile involving uncertainty to be determined automatically. Based on random field theory and 
Bayes’ theorem, the proposed method can integrate both geophysical and geotechnical datasets in a rigorous manner to 
derive a design profile automatically in two or more dimensions. The proposed approach is applied to a soft soil test site 
in Ballina, New South Wales, Australia, and compared with traditional approaches. The results show that by gradually 
incorporating more data into the Bayesian inversion, the uncertainty in the soil profile is greatly reduced.  
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1. Introduction 

Accuracy and reliability of geotechnical field test are 
of great significance to the construction process. The 
electric cone penetration test (CPT) is widely used in the 
geotechnical site investigation because it is fast, repeata-
ble and economical. Advances in geotechnical in situ 
testing like the seismic piezocone (SCPTU) can capture 
five independent readings in a single sounding. These 
soundings provide near-continuous data with depth on 
the stratigraphy, fundamental stiffness, stress state, 
strength, and flow characteristics of sub-soils, which can 
be used to determine soil stratigraphy, identify soil type 
and characterize soil properties. One approach is to use 
the chart developed by [1]. In this deterministic approach, 

the corrected cone tip resistance ( tq ) and sleeve friction 

( s
f ) are used to define a soil behavior type (SBT) index

cI , which is used to identify the soil. Some statistical 

methods have also been reported in the literature, e.g., 
Phoon et al. [2] proposed a modified-Bartlett method to 
statistically identify homogenous soil layers. Bayesian 
statistical methods were also used to identify soil stratig-
raphy by [3–5]. Apart from the Bayesian approach, Ching 
et al. [6] recently applied the Wavelet Transform Modu-
lus Maxima method (WTMM) to identify soil boundaries 
while small-scale spurious layer boundaries were 
avoided. It is noted, however, that all these methods pro-
vide a single 1D stratigraphy at a particular location. In 
practice, these individual 1D stratigraphies are usually 
jointly interpreted with diverse geophysical surveys to 
derive a single model of the probed subsurface region. 
This approach is, however, largely qualitative in nature 
and hence the outcome depends heavily on the back-
ground, experience and preconceptions of the interpreter. 
To obtain 2D soil stratigraphy based on 1D piezocone 
tests (CPTUs) and avoid subjective decisions, Li et al. [7] 
used a Kriging interpolation technique to estimate the 
corrected cone tip resistance and sleeve friction at un-
sampled locations. The interpolated corrected cone tip re-
sistance and sleeve friction were then used to identify 2D 
soil stratigraphy based on Roberson’s chart. However, 

only one type of geotechnical test (e.g., CPTU) was em-
ployed. Geophysics provides a wide variety of tools 
which can help to identify subsoil stratigraphy for subse-
quent detailed assessment. Data is obtained on a two- (or 
three-) dimensional (2D/3D) section of the ground. For 
example, in comparison to a conventional drilling ap-
proach, the Multichannel Analysis of Surface Wave 
(MASW) test [8,9] is conducted from the ground surface 
(non-invasive), covers the subsurface continuously and 
provides more complete coverage. Integration of differ-
ent methods and different datasets can provide a more re-
liable site characterization, reducing the uncertainties as-
sociated with a single measurement. Usually this 
integration is done manually and largely based on engi-
neering judgement and experience, and results in addi-
tional uncertainties. 

In conclusion, it is necessary to develop new tools that 
can integrate both geophysical and geotechnical datasets 
in a rigorous manner to derive a design profile automati-
cally in two or more dimensions. Based on random field 
theory and Bayes’ theorem, this paper proposes a rigor-
ous statistical framework to combine geotechnical and 

geophysical test data. The 1D tq measurement from 

CPTU tests and 2D shear wave velocity ( sV ) data from 

Multichannel Analysis of Surface Wave (MASW) tests 

are used as an example to derive a 2D tq  profile. The real 

engineering data from the Ballina site, NSW, Australia 
[10] are used to show the potential of the proposed ap-
proach. Traditional approaches are also applied to show 
the differences in the final soil profiles. Only 2D prob-
lems are considered, although the proposed procedure 
can be extended easily to 3D. 

2. Methodology 

2.1. Probabilistic site characterization based 

on random field theory 

Due to the weathering processes, pore fluids, and 
physical and chemical changes, the physical properties 



 

vary from place to place within a deposit. When the spa-
tial variation in a soil property is assumed to be controlled 
by a random process [11], it can be modelled as the sum 
of a trend component and a residual component [2,12–
16]. For example, the corrected cone tip resistance can be 
expressed as  

tt ( , ) = ( , ) ( , )qq x z x z x z +      (1) 

where x  and z  are the horizontal and vertical coor-

dinates respectively, 
t
( , )q x z  is a known trend, and 

( , )x z  is the residual variability about that trend. Usu-

ally, the strength of soil increases with depth [16], and it 
is common that the trend function is assumed to be a lin-
ear or non-linear polynomial according to site-specific 
conditions. 

Residuals are statistically modeled as random fields, 
which are characterized by mean, standard deviation and 
fluctuation range.[12]. Because CPTU can provide al-
most continuous readings with depth [1] , it is usually 
used to estimate the scale of fluctuation in the vertical di-
rection [14,16–18] . The spatial variation in the horizon-
tal direction is usually less than that in the vertical direc-
tion [15]. In cases where there is not enough data, the 
spatial correlation structure in the horizontal direction 
can be inferred from similar sites. 

Although random fields based on the three parameters 
(e.g., a mean, a standard deviation and a scale of fluctua-
tion) can represent the heterogeneity statistically, a more 
realistic site characterization should be based on the site-
specific conditions, i.e., the random fields should be con-
ditioned on site investigation data [7,19,20]. In addition, 
the above site characterization only uses the information 
from CPTU. As mentioned previously, if multiple source 
of information can be used together, the uncertainties in 
the soil profile can be reduced. 

2.2. Soil profile based on the Bayesian 

statistical methods 

In this paper, Bayesian statistical methods are adopted 
to integrate different sources of information. To illustrate 
the proposed approach, the Multichannel Analysis of 
Surface Wave (MASW) and CPTU test results are used 
to obtain a 2D profile of corrected cone tip resistance. 
Suppose a 2D MASW test has been conducted and the 
corresponding shear wave velocity results are denoted as

obs
s,2DV . The 2D shear wave velocity profile 

obs
s,2DV  is calcu-

lated over depth increments of say 0.5m to 1m and addi-
tional CPTUs are performed to increase the resolution of 
measurements along a line within the domain covered by 

the shear wave velocity data. The corresponding 1D tq

measurements are denoted as
obs
t,1Dq . 

As shown in Fig. 1, in the proposed approach, the 

model parameters of tq  random fields,
t,2Dq , derived 

based on the method presented in section 2.1 are used as 

prior knowledge on the subsoil profile. The 
t,2Dq  

uniquely define/control the 2D random filed t, 2Dq . Both 

the 
obs
s,2DV  and 

obs
t,1Dq  (denoted by red block diagrams) are 

used to update the prior soil profiles. Once the 
t,2Dq  is 

updated, the corresponding random field and soil profile 
can be updated. Based on Bayes’ theorem, the posterior 
probability distribution function (PDF) of parameters 

t,2Dq  for random field of tq  can be expressed as [21,22]: 

t,2D t,2D t,2D

obs obs
pos s,2D s,2D pri( | ) ( | ) ( )=P L Pq q qV V    (2) 

where 
t,2Dq  are the model parameters of random field 

t, 2Dq ; 
t,2Dpri ( )P q  is the prior PDF of 

t,2Dq  according to 

prior information; 
t,2D

obs
pos s,2D( | )P q V  is the posterior 

probability of 
t,2Dq  given the observations of 

obs
t,1Dq  and 

obs
s,2DV ,   is a normalization constant, and 

t,2D

obs
s,2D( | )L q V  is the likelihood of observing the meas-

ured data 
obs
t,1Dq  and 

obs
s,2DV  given the 

t,2Dq . 
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Figure 1. Flowchart of the proposed approach. 

2.2.1. Dimensionality reduction and prior 

distribution 

The resolution of t, 2Dq  is usually 1–5 cm [23]. If each 

tq  in space is associated with a random variable, the di-

mension of the problem will be unavoidably high. This 
implies that the computational time will be significantly 
increased. For illustration, in this study, the Karhunen-
Loève (KL) expansion method [24,25] is used to reduce 
the dimensionality according to 

tt, 2D de,
1

( , ) ( , )
M

q q i i i

i

f   
=

= +q x z x z    (3) 

where 1 2{ , , , }
M

    are the uncorrelated standard 

normal random variables; M is the number of random 



variables; ( , )
i

f x z  and i
  are the eigenfunctions and ei-

genvalues of the auto-correlation function, which can be 
obtained by solving the homogeneous Fredholm integral 
equation of the second kind [25]; The horizontal and ver-

tical scales of fluctuation are 
x

  and 
z

 , respectively, 

which control the spatial correlation of tq  at two random 

points; and de, q
  is the standard deviation of the de-

trended tq . Since Eq. (3) has to be truncated to a finite 

number of terms M, a significant concern is that the sim-
ulated variance will be reduced. In order to control this 
reduction, the eigenvalues are sorted in descending order 
and the number of terms is determined to ensure that the 
eigenvalues have decayed below a threshold [26].  

The prior knowledge of 
t,2Dq  is critical in Bayesian 

updating and can be obtained from site data, practical ex-

perience, and literature [27]. Its PDF 
t,2Dpri ( )P q  de-

scribes the prior knowledge of random field before 

Bayesian updating using data 
obs
t,1Dq  and

obs
s,2DV . The 

t,2Dpri ( )P q  is usually formulated in the form of joint dis-

tribution of model parameters [5,20,28–30] . The form is 
dependent on the technique (e.g., KL expansion) adopted 
for discretizing the random field and subsequent model 
parameterization approach [31]. For example, here the 
2D t, 2Dq  is modelled by KL expansion, thus the model 

parameters 
t,2Dq  contain the

tq , de, q
 , x

 , z
  and 

1 2, , ,
M

    in Eq. (3). The 
t,2Dpri ( )P q  is the joint dis-

tribution of 
t,2Dq ={

tq , de, q
 , x

 , z
 , 1 2, , ,

M
   }. 

Typically, the 
tq , de, q
 , x

 , z
  can either be deemed 

as normally distributed [28,29,32]  or uniformly distrib-

uted [4,30,33] and 1 2, , ,
M

    are standard normal 

variables [31]. It should be noted that the technique for 
discretizing the random field is case-dependent, and thus 
the corresponding model parameterization is also case-
dependent. If other techniques, e.g., matrix decomposi-
tion [5], are adopted to discretize the random field, then 
model parameterization and prior PDF may be different. 

2.2.2. Likelihoods and posterior random 

field sampling 

The 
t,2D

obs
s,2D( | )L qV   is another likelihood of observ-

ing 
obs
s,2DV  given

t,2Dq . It is noted that 
obs
s,2DV  and t, 2Dq  

have different resolutions. The CPTU readings are usu-
ally taken every 1–5 cm, while the resolution of the seis-

mic investigation values 
obs
s,2DV  could be half to several 

meters [8]. Thus, the high resolution t, 2Dq  is up-scaled to 

match the resolution of 
obs
s,2DV  by averaging. The averaged 

tq  field is t, 2Dq . 

Note that sV  and tq  are two different measurements 

of the engineering properties, and there is no analytical 
relationship between them. Some empirical relationships 

between the measured sV  and tq  are available in the lit-

erature [34,35]. These empirical regressions and transfor-
mation models, which can be evaluated by some pre-
screening model selection procedure [36], are deemed 
appropriate at a specific site [34]. The model is derived 
from 481 data pairs worldwide and expressed as: 

 s t Tln lnV a q b =  + +      (4) 

where a = 0.627, b = ln1.75; T s tln lnV a q b = −  −  

is the total transformation uncertainty [37] characterized 
in the regression model. The standard deviation (SD) of 

T  derived from the log regression is T  0.146 [34].   

The total transformation uncertainty may be spatially 
correlated, which has been proved in the literature [6,37]. 
These transformation uncertainties at different points in 
space shall be treated as correlated random variables if 
the characteristic dimension of a geotechnical structure is 
larger than the estimated vertical SOF of the transfor-

mation uncertainty [37]. Recall that T  in Eq. (4) is the 

total transformation uncertainty. According to [37], it can 
be decomposed as 

 T s r
w w e = + +       (5) 

in which r
w e+  is serving as zero-mean uncorrelated 

white noise with SD of r
 , s

w  is slowly fluctuating 

component which can be modelled as zero-mean station-
ary correlated random field. Thus the likelihood of ob-

serving T T,1 T,2 T,[ , , , ]
vN  =  at a 2D domain can be 

given as: 

t,2D t,2D

obs
2 s,2D T

T 1
T T T/2 1/2

T

( | ) ( | )

1 1
exp

2(2 ) det( )VN

P P


−

=

 =  − 
 

q q
V   

  


(6) 

where T  is the covariance matrix for T : 
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 (7) 

V
N  is the number of sV  in 

obs
s,2DV ; ( , )

ij ijx z    is the 

autocorrelation coefficient between spatial quantities 
(i.e., transformation uncertainties) at any two points, in 

which the lags 
ijx i j

x x = −  and 
ijz i j

z z = −  are the 

absolute distances between coordinates of the ith point 
and the jth point in domain (i, j = 1,2, …, Nv).  

In summary, the proposed approach combines the 
obs
t,1Dq  and 

obs
s,2DV  based on rigorous Bayesian statistical 

principles to derive a 2D tq  profile. Different sources of 

uncertainty: heterogeneity of the real data, transfor-

mation uncertainties for t sq V−  empirical regression 



 

model, measurement errors and scale changes are con-
sistently taken into account. 

Because random field theory is adopted in Eq. (3) and 

a large number of components in 
t,2Dq  are involved into 

Bayesian updating, it is impossible to derive an analytical 
expression for the posterior random fields. In this study, 
the Differential Evolution Adaptive Metropolis Method 
(DREAM-(ZS)) [38] is used to obtain the posterior samples 

of 
t,2Dq  according to [39,40]. Once the posterior sam-

ples of 
t,2Dq  are obtained, the updated soil profiles in the 

form of updated random fields will be determined. 

3. Case study 

The Australian Research Council Centre of Excel-
lence for Geotechnical Science and Engineering (CGSE). 
is operating the National Field Test Facility (NFTF) for 
soft soils in Ballina, New South Wales (NSW), Australia. 
In June 2013, prior to embankment construction (em-
bankments A and B in Fig. 2), initial geophysics surveys 
were carried out at the site. The MASW tests were under-
taken along two lines, an East-West alignment and a 
North-South alignment, which are shown in Fig. 2. The 
East-West geophysical line (MASW line-1) started at a 
chainage of approximately 80 m along the North-South 
line (denoted by the start and end points). CPT-6A is not 
along this alignment but is closely located south of this 
MASW line-1, as shown by the small red triangle in Fig. 
2.  

100m

 
Figure 2. Location of the Ballina site, and the location of CPT-6A and 

MASW-1 

3.1. Prior soil profile 

The MASW-1 field is specified on a 75.2 m long by 
19.2 m deep domain which is discretized using 0.376 m 
× 0.196 m cells to yield a grid size of 200 × 100. The 1D 

tq  data of CPT-6A and 2D sV  data of MASW-1 are in-

tegrated together using the proposed approach to derive 

the 2D tq  profile.  

Although site investigation is carried at the Ballina site 
[10,41], the sampling and drilling location is remote to 
the MASW line-1 (orthogonal distance is larger than 20 
m). These site data may not provide enough indicative 
information for determining the 2D stratigraphy along 
this section due to spatial variability [42]. Thus, the strat-
ification is not considered in this example. 

The non-stationary random fields can be turned into 
stationary random fields by removing the deterministic 
mean trend. The order of the trend is usually not higher 

than quadratic [43–45]. Because the CPT-6A tq  profile 

shows obvious nonlinearity with depth, a second-order 
mean trend is assumed. Based on Eq. (8), the mean trend 
is calculated as 

 
t

2( , ) 0.525 0.198 0.021q x z z z = − +    (8) 

After the deterministic trend has been removed, the 

standard deviation of tq  is found to be de, q
  = 0.54 MPa 

and the vertical scale of fluctuation z  is estimated to be 

0.92 m. According to [46], the horizontal scale of fluctu-

ation x  is set to be 9.5 m and the squared exponential 

auto-correlation function is assumed. The uncertainties 

of the trend 
tq , auto-correlation function model, and pa-

rameters de, q
 , x

 , z
  are not considered for simplifi-

cation. The vector 1 2, , ,
M

    contains M = 250 com-

ponents, and is formulated as an uncorrelated standard 
multi-normal distribution.  

3.2. Posterior soil profile by incorporating 

CPT-6A and MASW-1 

Compared to field tests such as the CPT, geophysical 
tests such as MASW can provide more economical, 
quick, but indirect information on the conditions of sub-
soils in two dimensions. The data from CPT-6A and 
MASW-1 are integrated herein. Because the length of the 
domain is larger than the SOF = 28.81 m of CPTU-Su 
model [37] , the spatial correlation of transformation un-

certainty T  should be considered. Thus, the Eq. (7) is 

used as the covariance matrix T  of T  in the likelihood 

(Eq. (6)). Following [37], in Eq. (7) single exponential 
model is adopted and given as: 

 s s( , ) exp( 2 / 2 / )
x z x z

      = − −    (9) 

in which s  = 27.81 m. Suppose that the SDs are r
  

= 0.05 and s
 = 0.137, the 2 2

r s
 +  equals to the SD 

of the total transformation T 0.146 =  given by [34]. 

Fig. 3 shows the posterior mean and standard devia-

tion of the posterior field tq  by incorporating both the 

CPT-6A and MASW-1 measurements. For the purpose 
of comparison, the in situ 2D shear wave velocity profile 
from MASW-1 and the 1D corrected cone tip resistance 
profile from CPT-6A are also included in Fig. 3. As 
shown in Fig. 3b, both the information from MASW-1 
and CPT-6A measurements greatly contributes to updat-
ing the configuration of the underground soil profile, i.e., 
the whole 2D domain, including the areas far away from 
CPT-6A, have clearly identified strata and details of cor-
rected cone tip resistance. 

Fig. 3c shows the posterior standard deviation of the 

tq  field. Compared to the case where only CPTU data is 

involved in the probabilistic inversion and only local un-
certainty is reduced near CPT-6A, the standard deviation 

of the whole tq  field has been greatly reduced. This is 



because the MASW tests provide information at un-sam-
pled places. It is also noted that the standard deviations 

of tq  at the locations far away from CPTU are still 

lightly higher than the ones near the CPTU. This may be 
because that the CPT-6A cannot provide reliable and 
enough information for areas remote from the CPTU. 

 

 

 

 
Figure 3. (a) In situ 2D shear wave velocity profile from MASW-1 

and the 1D corrected cone tip resistance profile from CPT-6A, 
(b) Mean and (c) standard deviation of the posterior realizations 
of the 2D corrected cone tip resistance field integrating field data 

obs
t,1Dq  and 

obs
s,2DV . 

4. Conclusions 

The main conclusion of this study is that the combina-
tion of geotechnical tests and geophysical tests can re-
duce uncertainties of 2D soil profiles in geotechnical site 
characterization.  

Based on random field theory and Bayes’ theorem, a 
rigorous probabilistic site characterization framework is 
proposed. The results of the case study of Ballina station 
show that this novel methodology is fully applicable to 
field data and can be used to estimate the spatial distribu-
tion of the corrected cone tip resistance field on a regional 
scale. 

The method also provides a quantitative measure of 
uncertainty throughout the domain. This data-combining 
method allows a geotechnical analyst to develop a prob-
abilistic model of the soil domain conditioned on site in-
vestigation data which can be utilized in subsequent en-
gineering calculations. Therefore, this approach is a 
fundamental precursor to the probabilistic method being 
used routinely in engineering practice. Although only 
cone tip resistance field is considered, the framework is 
also suitable for other engineering properties of soils. 
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