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ABSTRACT: A novel method is presented in this paper for subsurface soil classification and zonation in a two-dimen-

sional (2D) vertical cross-section using a limited number of cone penetration tests (CPT). CPT is usually performed 

vertically, and the number of CPT soundings in a site is often limited in geotechnical engineering practice due to time 

and budget constraints. It is, therefore, difficult to properly interpolate CPT results along horizontal direction for depicting 

spatial variation of geo-material properties. The method presented in this study aims to address this difficulty, and it 

consists of three modules: 2D interpolation of CPT data using 2D Bayesian compressive sampling, determination of soil 

behavior type (SBT) using Robertson chart at every location in the 2D cross-section, and soil layer/zone delineation using 

an edge detection method. High-resolution images of CPT data and SBT information in the 2D vertical cross-section can 

be obtained. Soil layer/zone boundaries are delineated automatically. The proposed method is illustrated using a simulated 

example. It shows that in the simulated example the method performs well even when only five sets of CPT soundings 

are available. 
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1. Introduction 

Delineation of subsurface soil stratification and 

zonation is an important task in site investigation for 

subsequent geotechnical design process. Cone 

penetration test (CPT) is a commonly used in-situ test for 

assessing engineering properties of subsurface soils [1-

5]. It consists of pushing a cylindrical steel probe into the 

ground and provides nearly continuous measurements 

(e.g., 2-5cm measurement interval) of penetration tip 

resistance, sleeve friction, and pore water pressure to 

evaluate the property variations of subsurface soils along 

depth. When the probe penetrates through different soil 

layers with different mechanical properties, the apparatus 

records distinct CPT readings. Therefore, CPT can well 

reveal subsurface soil stratification and has been a 

popular tool in geotechnical site investigation [6-14]. 

Note that the previous works abovementioned are only 

limited to one-dimensional (1D) profile analysis, i.e., 

along the depth. However, subsurface soil layers/zones 

were formed during complex geological processes (e.g., 

weathering, erosion, transportation, and metamorphic 

processes) and both the boundaries of soil layers/zones 

and soil properties (e.g., CPT sounding measurements) 

within soil layers/zones may vary vertically and 

horizontally. To depict the varying nature of soil proper-

ties along the horizontal direction, two- or three-

dimensional (2D or 3D) geotechnical analysis is often 

performed. In geotechnical engineering practice, a 2D 

vertical cross-section is commonly used to characterize 

the geology condition at a site, e.g., spatial variations of 

soil types along both vertical and horizontal directions 

[15-16]. 

Due to time and budget constraints, the number of in-

vestigation points (e.g., CPT soundings) at a site is often 

limited, especially in small to medium-sized projects. To 

interpret a 2D vertical cross-seciton, geotechnical 

engineers often delineate the stratification and zonation 

through linear interpolation between investigation points 

with supports of geological, geomorphological, as well as 

geophysical knowledges of the region. A common 

operation is to connect the boundaries that separate 

different soil layers in adjacent investigation points by 

straight lines [17], as shown in Fig. 1. Note that the actual 

shapes of soil layer boundaries are not necessarily linear. 

In addition, direct linear interpolation method cannot 

handle the situation when different numbers of soil layers 

are observed at different soundings, a scenario that is 

frequently encountered in site investigation. For 

example, in Fig. 1 four soil layers (i.e., clay, silt mixtures, 

sand mixtures and sand) are observed from CPT1, while 

only three soil layers (i.e., clay, sand mixtures and sand) 

are found from CPT2. It is very challenging to predict the 

soil types for the triangle zone filled with question marks 

because three sides of the triangles encounter three 

different soils. The issue in Fig. 1 underscores the need 

of a rational and objective method for identifying 

stratification and zonation in a 2D vertical cross-section 

from limited soundings. 

 
Figure 1. Challenge in subsurface soil zonation and stratification 

This paper presents a CPT-based method that 

addresses the above challenge in non-parametric and 

data-driven manners. CPT data are directly interpolated 

in a 2D vertical cross-section without assuming a 
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parametric spatial autocorrelation function. The 

delineation is derived automatically and subjective 

human manipulation shown in Fig. 1 is not required. The 

method is illustrated using a simulated example. The 

effect of amount of CPT soundings is also investigated in 

the simulated example. 

2. The proposed method 

The proposed method consists of three modules: (1) 

2D interpolation of normalized CPT soundings data (e.g., 

normalized friction ratio FR and normalized cone 

resistance Qt) using 2D Bayesian compressive sampling 

(2D BCS); (2) soil behavior type (SBT) classification at 

each location using the interpolation results and a SBT 

chart; and (3) delineation of soil layer or zone boundaries 

using an edge detection method. The three modules are 

introduced in details as follows. 

2.1. 2D interpolation of CPT data using 

Bayesian compressive sampling 

Two-dimensional Bayesian compressive sampling 

(2D BCS) is an application of compressive 

sampling/sensing (CS) in a 2D space. CS is a novel 

sampling theory in signal processing, and it asserts that a 

spatially varying signal (e.g., a CPT profile along depth) 

can be recovered from sparse sampling points [18-20]. In 

the context of 2D BCS, a 2D signal F (e.g., CPT data 

variations in a 2D vertical cross-section), which is 

spatially varying along coordinates x1 and x2 (e.g., depth 

and horizontal directions), is represented by a matrix of 

1 2
N Nx x . Mathematically, F can be expressed as 

weighted summation of a series of orthonormal 2D basis 

functions [21-23]; 
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where 
2D

t
B  is fixed 2D basis function (e.g., discrete 

wavelet function, discrete cosine function); 
2D

t
  is the 

corresponding weight coefficient. Note that for many 

natural signals (e.g., spatially autocorrelated geotechnical 

properties), most 
2D

t
  have negligibly small values 

except for a limited number of non-trivial ones with 

significantly large magnitudes [22, 24]. Therefore, F can 

be approximated properly as F̂  if the non-trivial 

components of 
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t
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sparse measurements data Y in the context of CS/BCS. Y 

is a sub-matrix of F with a dimension of 
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in which 
1xΨ  and 

2xΨ  are problem-specific 

measurement matrices with dimensions of 
1

Mx ×
1

Nx  and 

2 2
N Mx x , respectively, reflecting the positions of rows 

and columns of measured data Y in F. 
1xΨ  and 

2xΨ  can 

be adapted from an identity matrix. 
2 D

t
A  is a submatrix 

of 2D basis function 
2D

t
B , i.e., 

1 2

2 D 2 D=t x t xA Ψ B Ψ  and has 

the same dimension as Y. 

Using the Eq. (2), the non-trivial coefficients can be 

estimated through maximum likelihood estimation [25] 

for FR and Qt respectively. To distinguish from the 

underlying true coefficients 
2D

t
 , 

2Dˆ
t

  is used to denote 

the estimated ones. The best estimate of the 
2Dˆ
t

  vector 

is derived under Bayesian framework and expressed as 

[17, 18]: 

( )2D

1

ˆ trω
μ V

−= +J D  (3) 

where J is a matrix with element 2D 2D T[ ( ) ]t,s t sJ tr= A A , 

(t, s = 1, 2, …, 
1 2

N Nx x ). “tr” represents trace operation 
in linear algebra. D is a diagonal matrix with diagonal 

elements Dt,t = αt (t = 1, 2, …, 
1 2

N Nx x ) in which αt are 

non-negative parameters to be determined by maximum 

likelihood algorithm [22-25]. Vtr is a column vector with 

a length of 
1 2

N Nx x : 
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Using the best estimate of 
2Dˆ
t

  together with 

corresponding 2D basis function, the best estimate of 2D 

signal F can be obtained as 
F̂
μ  (e.g., complete CPT data 

in a 2D cross-section), which is expressed as [21-23]: 
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in which 2 Dˆ
t


  is the best estimate or expectation of 

2Dˆ
t

 . 

Detailed derivation of the Bayesian formulation is 

referred to Zhao et al. [22]. 

In contrast to conventional geostatistics (e.g., ordinary 

Kriging), the presented method can preserve non-

stationarity of CPT data (e.g., data from multiple types of 

soils with different statistics) without a de-trending 

process [26, 27]. The anisotropic pattern of CPT data in 

the 2D vertical cross-section is automatically preserved 

in a non-parametric manner [28]. 

2.2. Determination of soil behavior type 

(SBT) using SBT chart 

Once the 2D vertical cross-sections of normalized 

CPT data are interpolated, soil classification at each 

location can be performed using a SBT classification 

chart [6, 7]. An example of an SBT chart is shown in Fig. 

2. The horizontal and vertical axis are FR and Qt 

respectively. The expressions of FR and Qt are given as 

below: 
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where σv0 and σ'v0 are vertical total stress and vertical 

effective stress respectively; fs is sleeve friction; qt is 

corrected cone resistance, expressed as: 



( )1t cq =q + a u−  (7) 

where qc is original cone resistance; a is cone area ratio; 

u is pore pressure for cosideration of pore water pressure 

condition. The whole chart is divided into nine areas, 

corresponding to nine SBTs ranging from sensitive, fine-

grained to very stiff fine-grained soils, respectively. SBT 

at each location can be determined using a FR and Qt data 

pair from their respective interpolated 2D cross-sections 

at the same location. By checking which area the FR and 

Qt data pair is located on the SBT chart (see Fig. 2), the 

SBT at the corresponding location is determined. In a 

similar fashion, the SBT at every location in the 2D 

vertical cross-section is obtained, leading to a 2D SBT 

map or image for the vertical cross-section. 

 
Figure 2. Soil behavior type classification chart (after [6]) 

2.3. Delineation of soil layer or zone 

boundaries using an edge detection 

method 

Boundaries of different soil layers and zones are 

delineated to clearly define the stratification and 

zonation. In general, the locations where the SBT index 

changes abruptly in the SBT map may be interpreted as 

the boundaries of different soil units. For example, if two 

adjacent elements in the SBT map are classified as 5 (i.e., 

sand mixtures) and 6 (i.e., sands) respectively, the line 

between these two elements may be interpreted as the 

boundary between sand mixtures and sands zones (see, 

for example, black bold line in Fig. 3a). Determination of 

soil layers/zones boundaries is therefore equivalent to 

locating the abrupt changes of SBT values in an SBT map 

or image. 

In image processing, locating abrupt change may be 

achieved through edge detection methods [29]. For 

example, edge detection techniques can mathematically 

find the locations where the first order derivative of the 

image intensity (e.g., SBT value in this case) reaches a 

maximum [30]. In this study, first order derivatives along 

both vertical and horizontal directions at each location 

are calculated by convolving the SBT map with an edge 

detection operator, such as a Canny filter [30]. The 

convolution operation results in a 2D SBT gradient map, 

where those locations with maximum gradients are 

interpreted as the boundary. A binary matrix with the 

same dimension as the SBT map can be obtained, with 

“Y” representing the locations of boundaries, as shown 

in Fig. 3b. Using the above edge detection method, soil 

layer or zone boundaries can be delineated automatically 

from the SBT map. Note that the edge detection process 

can be implemented readily using commercial software, 

such as the “edge” function in image processing toolbox 
of MATLAB. 

 
Figure 3. Example of soil layer delineation in soil behavior type 

(SBT) map: (a) SBT map with two soil layers and boundary 

(black bold line) between soil layers; (b) SBT gradient map and 

boundary delineation by edge detection 

Fig. 4 briefly shows a flowchart summarizing 

implementation procedures of the proposed method. For 
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details, readers are referred to [23]. A simulated example 

is used to illustrate the method in the following section. 

 
Figure 4. Implementation procedures of the method 

3. Simulated example 

A synthesized 2D vertical cross-section with a 

thickness of 12.7m and a width of 25.5m is used, as 

shown in Fig. 5. Four different soil types are involved, 

i.e., clay, silt mixtures, sand mixtures and sand, with the 

corresponding SBT values of 3 to 6, respectively. Note 

that the Layers 1, 3 and 4 extend throughout the horizon, 

and the Layer 2 exists only around left and right hand 

sides of the cross-section. It should be clarified that the 

subsurface condition is unknown in practice, and the 

synthesized cross-section in Fig. 5 is for validation 

purpose only in this study. In this study, normalized CPT 

data, i.e., Qt and FR, are first simulated within each soil 

unit with a resolution of 0.1m along both depth and 

horizontal direction using a 2D random field generator 

with exponential autocorrelation structure [31]. The 

random field parameters (e.g., mean, standard deviation 

(SD), horizontal correlation length λh and vertical 

correlation length λv) used for each layer are summarized 

in the Table 1 [32]. The simulation produces 2D cross-

sections of Qt and FR, respectively, each of which is 

stored in a matrix with a dimension of 128×256. One pair 

of realizations of FR and Qt is shown in Fig. 6. The 

simulated FR and Qt cross-sections consider not only the 

spatially varying soil properties but also the spatially 

varying soil layer boundaries. 

Table 1. Parameters used in random field simulation 

Layer 
Mean of SD of λh λv 

lnFR lnQt lnFR lnQt lnFR lnQt lnFR lnQt 

Layer1 1.7 2.6 0.15 0.15 15m 15m 4m 6m 

Layer2 0.9 3 0.15 0.15 30m 30m 4m 6m 

Layer3 0.3 3.6 0.15 0.15 25m 25m 4m 6m 

Layer4 -0.3 4.4 0.15 0.15 20m 20m 4m 6m 

 

Suppose only five CPT soundings are performed in the 

2D vertical cross-section, as denoted by black dash lines 

(e.g., M1-M5) in Fig. 6. CPT profiles at M1-M5 (see Fig. 

7) will be used as input to the 2D BCS interpolation, and 

the complete FR and Qt data over the 2D vertical cross-

section (i.e., Figs. 6a&6b) are used for comparison  

 
Figure 5. A synthesized 2D cross-section with different soil zones 

 
Figure 6. Simulated FR and Qt data in a 2D vertical cross-section with 

spatially varying soil layer boundaries 

and validation  purposes only. Note that in this simulated 

example the zonation boundaries are clearly defined 

within the 2D vertical cross-section whereas in real case 

transitional regions may be expected. The transitional 

effect or thin layer effect can also be considered in this 

method. 

3.1. 2D interpolation of CPT data in a 2D 

vertical cross-section 

Before implementing 2D interpolation using 2D BCS, 

five sets of CPT sounding data are used to construct two 

measurement data matrices Y (i.e., one matrix for FR, and 

the other for Qt). Each CPT profile (i.e., subplot in Fig. 

7) has 128 data points, therefore two Y matrices with a 

dimension of 128×5 are constructed by Eq. (2) (i.e., one 

for FR, and the other for Qt). 

After inputting the above information, 2D 

interpolations are performed for FR and Qt, respectively, 

using 2D BCS, and the best estimate 
F̂
μ  for the 2D FR 

and Qt vertical cross-section are obtained using Eq. (4). 

Note that the interpolated 2D cross-section has a 

dimension of 128×256. The interpolation results of FR 

and Qt are demonstrated in Fig. 8. 

The 2D colormaps in Fig. 8 are generally consistent 

with that in Fig. 6. The 2D BCS provides reasonable 

interpolation results for the non-stationary and 

anisotropic CPT data. The interpolated 2D cross-section 

can be regarded as a high-resolution image of CPT data 

(e.g., one data point per 0.01m2 in this case) recovered 

from limited sounding data. Fig. 9 compares the original 



CPT data profiles at four unsampled locations (i.e., U1-

U4 in Fig. 8) with those interpolated ones. 

 
Figure 7. Profiles of simulated CPT soundings at M1-M5 

 

 
Figure 8. Interpolation results of FR and Qt from 5 CPT soundings us-

ing 2D BCS 

 
Figure 9. Comparisons between the original CPT profiles and interpo-

lated profiles at four unsampled locations U1-U4 

 

The locations of U1 to U4 are marked in Fig. 8 by dotted 

lines, and they are relatively far away from any of the five 

CPT soundings. In Fig. 9, the original and interpolated 

profiles are shown by black solid line and red dotted line, 

respectively. It shows that the global trends of the CPT 

data interpolated by BCS are consistent with the original 

ones, although some details or abrupt changes are not 

captured accurately. Then, the interpolation results are 

used to determine the SBT at each of the 128×256 points 

in the 2D vertical cross-section, as described in the 

following subsection. 

3.2. Soil classification using SBT chart 

The SBT at each location in the 2D vertical cross-

section can be determined using a SBT chart (see Fig. 2) 

and corresponding FR and Qt data at that location. 

Similarly, SBT at all 128×256 locations are determined, 

leading to an SBT map or image. Fig. 10a shows the 2D 

SBT image obtained from the BCS interpolation results. 

The underlying soil layer boundaries are also plotted by 

black solid lines for comparison in Fig. 10a. Fig. 10a 

shows that most SBTs in the 2D vertical cross-section 

obtained from the proposed method agree well with the 

original cross-section (see Fig. 5). To clearly investigate 

the performance of the proposed method at unsampled 

locations, four 1D profiles at unsampled locations (i.e., 

U1-U4 in Fig. 10a) are plotted in Fig. 11. Fig. 11 

compares SBT values obtained from the proposed 

method with their corresponding original SBT values. 

The original SBT versus depth in these four profiles are 

shown by black crosses, and the SBT values obtained 

from proposed method are shown by red diamonds. Fig. 

11 shows that most crosses are overlapped with red 

diamonds. The SBT values obtained from the proposed 

method with 5 CPT soundings are in good agreement 

with the original ones at the unsampled locations. 

In addition, the accuracy of the SBT image obtained 

from the proposed method is evaluated quantitatively. 

The accuracy for each soil layer is quantified by a ratio 

between the number of points with correctly obtained 

SBT values and the total number of points in the soil 

layer. The ratio ranges from 0% to 100%. For example, 

in the original cross-section shown in Fig. 5, there are 

6696 points representing the clay zone (i.e., Layer 1), 

among which SBT values are correctly obtained at 6525 

points when using the proposed method with five CPT 

soundings. Therefore, the accuracy is calculated as 

6525/6696 = 97.5%. Table 2 summarizes the accuracy 

calculated for the four layers shown in Fig. 5. The second 

column in Table 2 gives numbers of data points within 

each of the four layers, while the third column 

summarizes the corresponding number of SBT values 

correctly obtained from the proposed method with five 

CPT soundings. The accuracies are presented in 

parenthesis. The accuracies are calculated as 97.5%, 

82.7%, 94.6% and 93.9% for Layer 1 to 4, respectively, 

with a total accuracy of 93.6% for four soil layers 

together. The classification and zonation results obtained 

from the proposed method are accurate and reasonable. 

Table 2. Effect of number of CPT soundings on the accuracy of the 

SBT image 

Layer 
Number 

of points 

Number of correctly obtained points 

5 CPT soundings 20 CPT soundings 

Layer1 6696 6525 (97.5%) 6658 (99.4%) 

Layer2 3599 2976 (82.7%) 3393 (94.3%) 

Layer3 12441 11766 (94.6%) 12364 (99.4%) 

Layer4 10032 9417 (93.9%) 9839 (98.1%) 

Total 32768 30684 (93.6%) 32254 (98.4%) 
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3.3. Boundary delineation for soil layers 

and zones 

Boundaries of soil layers/zones can be delineated 

automatically using an edge detection method. A Canny 

filter is used in this study to estimate an SBT gradient 

map from the SBT map shown in Fig. 10a. By convolving 

a Canny filter with the SBT image in both directions, the 

SBT gradient map is obtained, which is colored coded 

and shown in Fig. 10b. Locations with maximun gradient 

are denoted by red dots in Fig. 10b. The red dots in Fig. 

10b divide approximately the cross-section into five 

zones, and the SBT values for each zone are consistent 

with the synthesized cross-section. The original 

boundaries are also shown by black solid lines in Fig. 

10b. In general, the red dots are consistent with the black 

solid lines. The boundaries and zonation obtained from 

the proposed method properly identify the spatially 

varying patterns of soil layers/zones boundaries. The 

challenge in Fig. 1 is well addressed in an objective 

manner by the method presented in this study. 

 
Figure 10. Subsurface soil zonation results: (a) SBT map obtained 

from the proposed method with five CPT soundings; (b) Soil zo-

nation from SBT gradient map 

 
Figure 11. Comparison between original SBT profiles and those ob-

tained from the proposed method with 5 CPT soundings 

4. Effect of adding CPT soundings 

It is well-recognized that sample size has important 

effect on the quality of site characterization [33]. In this 

Section, the effect of the number of CPT soundings on 

subsurface soil stratifications and zonation is 

investigated. One more scenario of CPT sounding 

scheme, i.e., M=20 is performed for the case shown in 

Fig. 6. 

Figs. 12a&b compare SBT maps obtained from M=5 

and M=20 CPT soundings. It shows that the soil 

layer/zone boundaries obtained from the proposed 

method become smooth and approach to the black solid 

lines when M increases to 20. Fig. 13 shows the estimated 

SBT profiles at the four unsampled locations for the 

added M=20 scenario. The legends used in Fig. 11 are 

also used in Fig. 13. When M increases to 20, more and 

more black crosses are overlapped by red diamonds. The 

subsurface soil stratification and zonation obtained from 

the method are more accurate and reliable when more 

CPT soundings are available. The fourth column of Table 

2 summarizes the accuracy for the M=20 scenarios. As 

M increases to 20, the accuracy for each layer improves. 

For example, the accuracy ratio for Layer 1 increases 

from 97.5% at M = 5 to 99.4% at M = 20. 

 
Figure 12. Effect of adding CPT soundings on obtained SBT map 

 
Figure 13. Effect of adding CPT soundings on interpolated SBT pro-

files 

5. Summary 

A CPT-based method is presented in this paper for soil 

classification and zonation in a two-dimensional (2D) 

vertical cross-section. The difficulty in interpreting strat-

ification and zonation from limited CPT sounding is ad-

dressed in data-driven and non-parametric manners. The 

method can apply to multiple soil layers simultaneously 

and bypass the stationary assumption in conventional ge-

ostatistics. In addition, it does not require a selection of a 

parametric form of semi-variogram functions, or an esti-

mation of semi-variogram parameters, for CPT data in a 
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2D vertical cross-section. The proposed method consists 

of three modules, and the implementation procedures 

have been summarized into a flowchart. The method pro-

vides high-resolution 2D image for CPT and SBT data in 

a vertical cross-section, similar to results from geophysi-

cal tests.  

A simulated example is used to illustrate performance 

of the method, and the method is showed to perform well. 

Both spatial variability of CPT data and layer boundary 

fluctuation are characterized rationally. Moreover, as the 

number of CPTs increases, the results obtained from the 

method converge to the underlying cross-section. 
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