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Abstract 

In this study, we perform an efficiency comparison between two methods for landslide susceptibility mapping 

(LSM): the machine learning technique random forest (RF), which is evidenced to be the most efficient for 

landslide susceptibility assessment tasks and the statistics-based frequency ratio (FR) method. We have selected 

an area comprising Kure City and its neighbourhood in Southern Hiroshima Prefecture in Japan. This area is 

known to suffer from frequent rain-induced landslide disasters and the most recent one occurred in July 2018. 

Both the above LSM methods require a collection of landslide conditioning factors (LCFs), which in this study 

are: (1) geology; (2) altitude; (3) slope angle; (4) slope aspect; (5) drainage density; (6) soil profile; (7) land use; 

(8) distance from lineaments; and (9) mean annual precipitation. The rainfall LCF data comprise of XRAIN 

(eXtended RAdar Information Network) radar records, which are novel in the task of LSM production. The 

accuracy of the produced LSMs was calculated with the receiver operating characteristic’s (ROC) area under 
curve (AUC), giving a result of 0.84 for the FR method and 0.92 for the RF method. It is also noteworthy that the 

RF method is substantially swifter and more practical than the FR method and allows for multiple and automatic 

experimentations with different parameters, providing fine and accurate outcomes with the given data.  The 

results evidence that machine learning techniques such as the RF method are most advisable for dealing with 

hazard assessment problems such as the one exemplified in this study, and that XRAIN radar-acquired mean 

annual precipitation data is effective when used as a LCF in the production of LSMs. 
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1. Introduction 

Landslides are common natural disasters that kill a few thousand people worldwide every year. If landslide 

prevention methods are not developed further, the damage caused by such disasters is expected to increase in 

the next few years due to urbanization, deforestation and climate change. A recent case of wide-area landslide 

disasters in Japan was recorded in July 2018. The landslides together with massive flooding in a large part of 

Southwest Japan were caused by heavy rains. During the course of about 10 days from 28th June until 8th July, 

the rainfall reached as much as 1800 mm on the island of Shikoku and 1200 mm in Tokai region. Many cities 

recorded more than 400 mm of rainfall over 72 hours (Japan Meteorological Agency, 2018). 

Property loss caused by the July 2018 disasters is estimated to be ¥1.09 trillion (i.e., about US$ 10 billion), 

including damage to industries and public infrastructures. Although emergency warnings were issued for eight 

prefectures, the death toll caused by the landslides and floods during the July 2018 disasters was above 225 

people. In Hiroshima Prefecture, one of the most affected areas was Kure, with 24 deceased due to landslides. 

Additionally, most transportation lines into the city (except maritime ways) were cut off and 760 houses were 

damaged. 

One of the strategies for minimizing the damage of landslide disasters is the production and use of landslide 

susceptibility maps, which assess the probability of landslide occurrence in an area considering slope failure-

related factors and the actual occurrence of past landslides in a GIS platform. Currently, there are various 

methods of calculating spatial landslide probability and producing landslide susceptibility maps. Yilmaz et al. 

(2009) defend that the Frequency Ratio (FR) method is one of the most practical and efficient methods for 

landslide susceptibility calculation in GIS platform. However, advancements in programming and computation 

technology in recent years have put through the extensive use of machine learning (ML) methods in myriads of 
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areas of application, including the domain of natural hazards and landslide susceptibility assessment, as 

advocated by Goetz et al. (2015), Youssef & Pourghasemi (2021). 

One of the landslide conditioning factors (LCFs) commonly used in the production of landslide susceptibility 

maps is precipitation volume, which may be measured with various methods, one of the most effective ones for 

spatial-related tasks being radar-based methods, such as XRAIN (eXtended Radar Information Network). XRAIN 

data is operated by the Ministry of Land, Infrastructure, Transport and Tourism (MEXT) and made available 

through University of Tokyo’s Data Integration & Analysis System (DIAS) platform. Starting operation in 2014, 

XRAIN comprises of a real time rainfall measuring system based on Multi-factor (MP) radars, which allow for 

more spatially accurate measurements of rainfall volume (Data Integration & Analysis System, 2022).  

 This study aims to produce landslide susceptibility maps through both the frequency ratio (FR) method and the 

random forest (RF) machine learning method for the area of Kure City, Southern Hiroshima, and compare the 

efficiencies of both methods. The current study has the particularity of utilizing long-range radar acquired rainfall 

XRAIN data as one of the factors for landslide probability mapping. Advancements in the landslide susceptibility 

assessment methods (such as the use of ML or radar-acquired rainfall data) may lead to more efficient strategies 

in minimizing damage caused by landslide disasters. 

 

2. Methodology 

2.1 Study area 

For this study, a rectangular area of 390.5 sq. km. (approximately 28 km x 14 km) covering Kure City, south of 

Hiroshima Prefecture, was used (Figure 1). A geographically small port town adjacent to the Seto Inland Sea, 

Kure started as a shipbuilding facility in the end of 19th century. Soon made into a major dockyard and military 

base, the port and the city around it grew quickly due to the Imperial Japanese Navy’s and its facilities’ rapid 
development until the end of World War 2. However, the area’s flat terrains are cramped and limited by 

mountains (a common scenario in Japan), which forced the town’s rapid expansion into and near adjacent hills. 
The most predominant bedrock lithology of the area, the Hiroshima Granitic Rocks group, is very easily 

weathered, changing into a soil commonly referred to as Masado. Masado granitic soil is known to have good 

permeability and be very brittle when wet, which causes it to be prone to lose its structure and stability when 

infiltrated, and thus be a very supscetible soil for landslide occurrence in heavy rainfall events. 

 

Figure 1: Localization map of the study area, in Kure City, Southern Hiroshima, along with landslide points 

referent to the July 2018 disasters. 

2.2 Landslide Susceptibility Map (LSM) production 

In this study, two different methods for production of the LSM were experimented, one being a statistical 

approach (frequency ratio) and the other a machine learning technique (random forest), in order to find which 

is most efficient for the intended objectives. Both LSMs contain 432,258 20-meters pixels. For both methods, 

final results were separated in 5 susceptibility zones (from very low to very high) with the natural breaks (Jenks) 

method. 
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Figure 2: LCFs used in the LSM production: (a) geology, (b) land use, (c) altitude, (d) slope angle, (e) slope 

aspect, (f) distance to drainage, (g) distance to linemanet, (h) mean annual precipitation. White areas comprise 

of slopes lower than 20° or higher than 50°, which were left out of the analysis for being considered not prone 

to landslides. 

An identical collection of landslide conditioning factors (LCFs) were used in shapefile form for both FR and RF 

attempts: (a) geology; (b) altitude; (c) slope angle; (d) slope aspect; (e) drainage density; (f) soil profile; (g) land 

use; (h) distance from lineaments; and (i) mean annual precipitation (Figure 2). The Digital Elevation Model as 

well as other LCF shapefiles such as drainage, land use and soil profile maps were provided by the Geospatial 

Information Authority of Japan (2018). The geological and lineament data was extracted from the Kure 

Geological map by Higashimoto et al. (1985). The mean annual precipitation factor comprises of recorded rainfall 

with XRAIN technology. Most LSM attempts take use of interpolated rain gauge station measurement data, 

which is not as spatially accurate. It is expected that XRAIN data, used as an LCF, may provide good results in the 

LSM production. Each pixel of the XRAIN data mesh used as a LCF has dimensions 280x230 meters, accounting 
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for 4999 pixels in the study area in a 96x67 grid. The collection of landslides used as output data in both methods 

comprises of 1177 landslide points referent to the July 2018 disasters, which were mapped and provided by the 

Geospatial Information Authority of Japan (2022) with aerial photography (Figure 1). The landslide points were 

randomly separated into training and test sets, with a ratio of 30% for the training set (353 landslide points) and 

70% for the test set (824 landslide points). 

2.3 Frequency ratio (FR) method 

The frequency ratio method uses the assumption that landslide occurrence is determined by factors that are 

related to the event, and thus new landslides will generally occur under the same conditions of past landslides 

(Lee & Talib, 2005; Yilmaz, 2009; Rasyid et al., 2016). In the frequency ratio method, FR values represent the 

ratio between the landslide occurrence and the area of specified factor for a given factor class. After the 

frequency ratio is calculated for each LCF class, the values are summed in each pixel of the susceptibility map to 

calculate the landslide susceptibility index (LSI) for that specific pixel (Lee and Talib, 2005; Yilmaz, 2009). Once 

the LSI values are established for each pixel of the map, a final landslide susceptibility map is produced, where 

higher LSI values represent higher risk of landslide occurrence in that location.  

2.4 Machine learning random forest (RF) method 

Machine learning (ML) is a form of artificial intelligence comprising of methods where a system “learns” based 
on a set of data, looking for patterns in it and how they affect a certain result relative to a problem. It was found 

that this technology is successful in completing varied specialized tasks, when set up with a sufficient dataset 

and adequate parameters. The utilization of ML methods in the domain of natural hazards (including landslide 

susceptibility assessment) is supported by Goetz et al. (2015), Youssef & Pourghasemi (2021). Some of the 

advantages compassed by the use of MLs include adjusting its internal structure to the experimented data, as 

well as efficiency and practicability even in large areas (Youssef & Pourghasemi, 2021). Bibliographical research 

suggests that the ML technique judged most effective for the specific case of landslide risk assessment mapping 

is the random forest (RF) technique (Youssef & Pourghasemi, 2021, Yilmaz et al. 2009). 

The RF technique is actually an expansion of another ML method, the decision tree. The decision tree technique 

is a supervised ML technique where the algorithm observes a provided dataset and looks for patterns that 

creates results, observed in the test dataset. The algorithm then recreates these patterns in a “tree”, where each 
decision (variance in the data) creates a new “branch”, until these finish at the results, or a “leaf”. Decision trees 
learners, however, are prone to create over-complex trees, which do not reflect an accurate representation of 

the data in which is known as overfitting. This is solved with the random forest ML technique, which, as the 

name suggests, is an ensemble model comprising of a “forest” with many decision trees. Each tree is a 

completely random and independent experiment, which prevents overfitting by outputting a result comprising 

of an ensemble averaged prediction for all the decision trees in the random forest (Youssef & Pourghasemi, 

2021). In this study, the RF algorithm utilized was the one provided in the scikit-learn ML library. Once the 

optimal parameter values for the algorithm were designated through automatic testing and evaluation, a final 

prediction model was executed and the resulting predictions were then laid in map form using ArcGIS Pro, 

providing the RF-based landslide susceptibility map. 

2.5. LSM validation method 

To assess the performance of the produced LSMs, the receiver operating characteristic (ROC) analysis was 

employed in this study. Initially developed for radar accuracy tests, the ROC method is recommended for 

landslide zoning validation tasks due to its threshold-independent nature (Beguería, 2006, Corominas et al., 

2014), that is, it doesn’t require a fixed value to determine that either negates or requires a landslide activation, 
since LSI is a probability assessment, not a deterministic one. Thus, ROC analysis uses multiple thresholds with 

different interspaces, and the points in the ROC curve represent these possible cutoff thresholds given by the 

multiple cases in a model (i.e., LSM). The area under curve (AUC) of the ROC curve value is used as a metric to 

assess the quality of the LSM, where a larger area (ranging from 0.5 to 1) represents better prediction 

performance, that is, how well the model separates the validations landslides throughout the susceptibility 

zones of the LSM. For that reason, AUC value is used as the primary meter for LSM accuracy in this study 

(Beguería, 2006; Corominas et al., 2014). As an additional method for LSM validation, landslide density is 

checked for each one of the 5 LSI zones attributed in the LSM. It expected that in an efficient LSM, the landslide 

density distribution will follow a proportionally direct growth with each zone change, from very low to very high.  
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3. Results 

3.1 Frequency ratio method LSM 

The calculation of FR values for each of the LCF classes used in the LSM production are presented in Figure 3. 

Calculation of the ROC curve’s AUC for this LSM (Figure 5) resulted in a score of 0.84, considered “good” for 
landslide susceptibility assessment methods (Rasyid et al., 2016). The distribution of landslide density for each 

one of the 5 LSI zones is shown in Figure 6. It is observed that the FR method presents good distribution of 

landslide density throughout the 5 susceptibility zones, showing good application for risk assessment tasks in 

the field of disaster prevention. 

 

Figure 3: Landslide susceptibility map (LSM) produced with the frequency ratio (FR) statistical method, along 

with landslide points from the July 2018 disasters (both training and test sets). 

 

3.2 Machine learning random forest method LSM 

Execution of the random forest algorithm using the LCFs provided LSI predictions which were then inserted into 

map view, producing the final RF LSM (Figure 4). This map showed an AUC value of 0.92, a rating considered 

“excellent” for susceptibility assessment (Figure 5). Figure 6 shows the distribution of landslide density 

throughout the 5 susceptibility zones of the LSM. Compared to the FR LSM, there is a more regular distribution 

on density of landslides on the high and very high zones, which accounts to the higher accuracy calculated in the 

ROC AUC validation method. 

 

Figure 4: Landslide susceptibility map (LSM) produced with the random forest (RF) machine learning method, 

along with landslide points from the July 2018 disasters (both training and test sets). 
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Figure 5: Receiver operating characteristic (ROC) area under curve (AUC) graphs for maps produced with FR 

(orange line) and RF (blue line) methods. 

 

Figure 6: Graphs representing landslide density distribution in units per square kilometer in the susceptibility 

zones for maps produced with FR (orange line) and RF (blue line) methods. 

 

4. Conclusions 

This study attempted to produce two LSMs with identical sets of LCFs and landslide test and training data, one 

with the statistical frequency ratio (FR) method, and another with the machine learning random forest (RF) 

method. Verification with ROC AUC method showed that both methods presented satisfactory results, with a 

rating of 0.84 for the FR method, and 0.92 for the RF method. Both maps also showed good performance with 

the use of XRAIN radar-acquired rainfall data as an LCF. 

Although the overall quality is verified to be higher in the LSM produced with the RF method, the FR method 

provides a visualization of FR values for each class of the LCFs, which provides a good opportunity for readily 

understanding of how each LCF and its patterns may more or less influence activation of landslides. Since the 
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random forest method takes use of an ensemble of decision trees, it’s not possible to examine the specific 

decision-taking process and the intricacies of each LCF and its influence in a final prediction. However, it was 

verified by the ROC AUC values that the RF LSM shows a better fit and thus higher efficiency in risk assessment 

tasks. Moreover, the automated process of the RF method provides the possibility of multiple experimentations 

with varied parameters, as well as presents a much more practical process for the whole approach, once the 

mechanisms of putting the algorithm into use are properly grasped. For these reasons, it is evidenced that the 

use of RF and other ML techniques are advisable for tasks in the natural disaster risk assessment area, such as 

the in the case of landslides susceptibility mapping. Moreover, the utilization of XRAIN radar-acquired annual 

precipitation data as an LCF to produce LSMs was attempted and verified as effective. 

It is recommended that future studies in the field include experimentations of other ML techniques other than 

the RF method, as well as the attempt of similar mappings in different areas, since the intricate qualities of 

various region and terrains may greatly affect the landslide process. 
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