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Abstract 

Meso and full-scale impact tests have historically been used to assess the capacity of high-deformation barriers 

used against natural hazards and to validate numerical models. However, the data acquired from such 

experiments is typically limited to peak barrier elongation and occasionally force-time-displacement curves 

acting on specific structural elements. In rare occasions, complex and expensive procedures such as 4D 

photogrammetry are employed. Herein, a procedure is developed to obtain a barrier deformation data in three 

dimensions using low-cost MEMS sensors and consumer-grade cameras. The procedure is validated against 

LIDAR data for both quasi-static and dynamic conditions. 
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1. Introduction 

The mitigation of natural hazards, such as rockfall, debris flows, avalanches, etc. is often carried out through 

high-deformation structures, i.e. flexible protection systems. For industry purposes, international guidelines 

(EOTA, 2013) prescribe the recording of Maximum and Service impact Energy Levels (MEL and SEM) and of the 

peak mesh deformation. In recent years, academics have been recording additional data such as boulder 

deceleration (Gao, Al-Budairi and Steel, 2018), load on structural elements (Buzzi et al., 2013) in order to 

calibrate numerical models (Thoeni et al., 2013, Previtali et al., 2021). Inertial measurement units (IMUs) have 

also seen some use, due to the low costs associated to their development, deployment and upkeep (Pieš and 
Hájovský, 2018; Yan et al., 2019). Due to the lack of readily available and affordable commercial solutions, some 

authors proposed sensors built out of MEMS consumer grade components (Niklaus et al., 2017; Coombs et al., 

2019). The combination of multiple high-speed camera viewpoints has been employed for 4D photogrammetric 

reconstruction (Caviezel et al., 2019), stereo camera deformation analysis (Ferrero, Segalini and Umili, 2015) and 

3D visual hull fragment reconstruction (Guccione et al., 2020).  

Unfortunately, the solutions provided in the literature often require expensive hardware (e.g. 4D 

photogrammetry requires high-speed and high-resolution cameras) or technical expertise (i.e. defining 

communication protocols). Depending on the time scale of the process, high-speed cameras can be substituted 

for commercial grade phone cameras, pi-cameras (e.g. IMX219) or other alternatives (Bruno et al., 2020). It is 

important to note that commercial solutions typically include video improving algorithms, that can produce 

uneven framerate, artificial blur, smoothing, etc.. Lossy video compression can also introduce its own set of 

issues. For the purpose of this paper, chroma subsampling (e.g. JPEG) and frame interpolation (e.g. MPEG4) 

should be avoided (van den Branden Lambrecht and Christian J, 2001). Regarding the IMU, the components 

proposed by Niklaus et al. (2017) has been used the base of the sensor. However, to allow people with no 

background in electrical engineering to reproduce the sensor, breakout boards are used instead of the MEMS 

themselves. All the components can be assembled with jumper cables and glued to the barrier. 

In the following, a procedure to obtain the discrete displacement of an arbitrary number of targets from multiple 

cameras is described. Three tests were carried out: (i) slow and (ii) dynamic deformation of a cloth surface. The 

IMU sensors are placed in the same position of the targets in order to provide redundancy for frames in which 

image-based tracking is lost. LIDAR sensing is used to validate the procedure. 
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2. The data acquisition procedure 

2.1 Image analysis 

Coloured targets, i.e. markers, are placed on top of the deforming surface, avoiding environmental colours. 

Multiple cameras are placed facing the object from various positions. In each frame, the markers are separated 

from the background through HSV space segmentation: the image is first converted into Hue-Saturation-Value 

(HSV) colour space. Successively, six thresholds are defined to produce a mask. Typically, low saturation values 

are characteristic of over and underexposed frames, that can be improved by reducing the frame opening time 

and camera ISO, respectively. Depending on the surface reflection and scattering, patches of colour within the 

desired hue threshold and can appear. Having high saturation values in the markers helps to alleviate this 

phenomenon. Figure 1 shows the procedure applied to 6 red markers on a cloth within the software MATLAB, 

using the Color Thresholder app, although it is easily replicable with open-source codes such as OpenCV (Bradski, 

2000). The position of the targets is obtained from the centroid of the regions created by the hue-based mask. 

Finally, James Munkres’ variant of the Hungarian assignment algorithm (Munkres, 1957) is used to match the 

positions of the targets to a list of tracks by minimizing the combined costs of Euclidean distance (i.e. how far 

the closest detected position is from a given track) and not assignment (i.e. how much the algorithm should try 

to match the position to an existing track). If a position cannot be matched to any existing track, a new one is 

created. As the target of a given track might momentarily disappear during the test, the Kalman filter is used to 

predict where its updated position should be, in order to match it with its previous track in case it reappears. 

Depending on the lighting conditions of the scene, using different colours for markers allows for more aggressive 

non-assignment weights. 

A

 

Figure 1: (A) Image binarization using the (B) HSV-space mask. (C) Evolution of the target positions in the 

image during the test. 

Assuming the lens distortion is negligible after camera resectioning correction, and the position and orientation 

is either manually measured or obtained from stereo calibration, the 3D position of each marker can be 

estimated for each frame through triangulation. The main advantage of using Particle Tracking Velocimetry (PTV) 

over classic stereo camera and photogrammetry algorithms is that by limiting the number of targets and 

separating the point matching and triangulation procedures, it is possible to obtain reliable results with limited 

resolution and frame rates. Here, lens distortion reduction has been carried out as described by Zhang (2000) 

while the 3D camera projection has been calibrated through manual measurement of the camera position and 

through the MSAC algorithm (Subbarao and Meer, 2006) within the software MATLAB. Synchronization is 

obtained by triggering the camera flash of a phone and setting the frame with peak lumina value as the starting 

point. 

2.2 Development of the Inertial Measurement Unit 

The pre-packaged solutions commercially available are not suited for this type of test: the large majority of IMUs 

are characterized by a sampling rate of up to 400 Hz and end scale of 16g. They are used for phones, console 

controllers, motion capture and other low velocity applications. On the other end of the spectrum there are 

shock sensors, typically used in the automotive industry for crash tests. While they are characterized by 
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sufficiently high sampling rates and end scales, they are also too large to fit within an artificial boulder or to 

attach to a wire mesh without modifying its behaviour. The system proposed herein is constituted by three 

portions: (i) the sensors, (ii) the microprocessor and (iii) the power supplier. The accelerometer and gyroscopes 

chosen are a very affordable solution for the required metering range, following Caviezel et al. (2018b). In order 

to avoid soldering and low-level circuit development, pre-made evaluation boards have been used instead: 

STEVAL-MKI153V1 for the accelerometer and Gyro-5-click (MIKROE-3669) for the gyroscope. These breakout 

boards can be connected using either Inter-Integrated Circuit (I2C) or Serial Peripheral Interface (SPI) Master-

Slave serial protocols. Without going into details, the main advantage of I2C is that it only requires 2 wires: Serial 

Data (SDA) and Serial Clock (SCK). All the data is sent to the SCA pin on different memory addresses, meaning 

adding a new device only requires connecting it to the SDA and SCK pins. On the other hand, SPI requires 4 wires: 

Master Out Slave In (MOSI), Master In Slave Out (MISO), Chip Select (CS) and SCK. Since SPI has one input and 

one output wire each, MOSI and MISO, respectively, the transmission speed is significantly higher, 10 Mbps vs 

5 Mbps. However, it also means adding extra slave devices, i.e. sensors, requires additional CS pins. While this 

is not a limitation for this specific acquisition system, I2C was chosen over SPI early in the development stage to 

allow for successive changes. The two sensors are connected to a RJ45 breakout board, which is the standard 

female connector for Ethernet cables. This type of connection has been chosen due to its extreme versatility: 

Ethernet cables are inexpensive, provide fast data transmission and shielding to reduce interference. The wires 

are doubled up to the eight internal wires of the cable to improve the signal to noise ratio. Additionally, an I2C 

extender (LTC4311) is placed on the main body of the acquisition system, which monitors the SCL and SDA lines. 

This is done to allow the acquisition system to be placed at a distance up to 30 meters from the sensors, while 

maintaining a good signal to noise ratio. When the signal is pulled up through the I2C resistors, the extender 

activates and dumps in some current to give it a boost. All the components are connected with a prototype 

board, which is then glued or screwed into a small container. The microcontroller is constituted by an ESP-32 

devkit: (i) it has exposed pins for both I2C and SPI, digital (General-purpose input/output, GPIO) and analogical 

(Analog-digital converter, ADC), (ii) it integrates WiFi and Bluetooth protocols and (iii) it has the same structure 

of the extremely popular Arduino open-source electronic prototyping platform, meaning there are a myriad of 

examples and tutorials for beginners available online. Another advantage is that the GPIO pins on the ESP32 

have an output of 3.3V, while other boards, such as the Arduino Uno, output to 5V. This means it interfaces 

directly with the sensors without needing to level shift while retaining the high number of pins and 

computational power. The data recorded by the instruments is stored in the microSD through ASCII files, while 

the Real Time Clock (RTC) module provides the timestamp to synchronize the data at a later date. Finally, the 

system is powered (5V) through the microUSB port of the ESP32, which means for indoor tests it can be 

connected to a computer, while a standard power bank for smartphones can be used on the field. A rocker 

switch is used to activate the instrument and three LEDs provide feedback on the system status. Table 1 lists the 

sensor components.  

Table 1: Selected components for the IMU sensor. 

Function Part Details 

Microcontroller ES ESP32 5V & 3.3V DC, 320 KiB SRAM, I2C & SPI 

Storage MicroSD Module 5V DC, SPI interface 

Clock RTC1302 3.3 DC, SPI interface 

I2C Extender LTC4311 5V 7 3.3 DC, 10K pullup SCL/SDA 

Accelerometer ST H3LIS331DL 2.16V to 3.6V DC, Triax 400g 1kHz 12 bit 

Gyroscope IS ITG-3071 1.71V to 3.6V DC, Triax 4000 deg/s, 32kHz, 16 bit 

Power supply Power bank / USB port 5V DC 

 

The accelerometer is calibrated with a tumble test: assuming its response is linear, the equation 𝑦 = 𝑚𝑥 + 𝑞 is 

fitted by rotating the accelerometer along its axes, so that 𝑚 is the half difference between the output values 

obtained at ± 1g, while the offset 𝑞 is the average of the value obtained when the sensor is oriented on a 

different axis. The gyroscope is calibrated in the same way, but instead of using its orientation, it is placed on 

top of a stepper motor, controlled from the same ESP32. 
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The displacement of the IMU sensor is obtained through deadreckoning: double integration in the time domain 

after removing the gravity acceleration, low-pass filtering (Butterworth S., 1930) and linear detrending (Kok, Hol 

and Schön, 2017). Herein, the sensor orientation is obtained through six-axial Kalman filtering (MEMS Industry 

Group, 2016) within MATLAB. 

 

3. Validation 

The data acquisition system is validated by comparing (i) 3D continuous LIDAR data and discrete target 

displacement on the deformed cloth and (ii) 1D data from the IMU sensor and target tracking. The cloth is placed 

at approximatively 2 meters from the LIDAR scanner (RIEGL VZ-1000) (Fig.2). A total of 6 targets, red table-tennis 

balls, Fig. 1, are used to track the discrete displacements of the cloth, with the IMU sensor being attached on 

the back of the mesh in proximity to the central target, shown in yellow in Figure 3. In the quasi-static cloth 

deformation test, it is possible to carry out a scan of the surface after it has been deformed, obtaining the 3D 

surface and the position in space of the target with high accuracy and precision. For this test, two cameras, 60 

fps at 1080p, are placed at a distance of 2 meters, with an angle 𝜃 of 60 degrees between each other and the 

cloth. Regarding the IMU sensor, integrating the gyroscope data on the Y axis, the result is a rotation of 55 

degrees, which is consistent with that obtained from the 2D section of the LIDAR data. However, computing the 

displacement from accelerometer data results difficult due to the small entity of the accelerations: a 

displacement of ≈22 cm over a time of 3.5 seconds means an average acceleration value of approximatively 0.15 m/s2, on the same magnitude of noise. Further details are available in Previtali et al., (2023). The discrete 

displacements and errors from LIDAR and Image Analysis are reported in Table 2. 

 

 

Figure 2: Scheme of the test. (a) Box used for the cloth displacement during the quasi-static test, (b) LIDAR 

Scanner, (c) Tennis ball used during the impact test, (d) Cameras. 
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Figure 3: Point cloud data of the barrier before and during the quasi-static displacement test. The targets are 

shown with black dots. The IMU sensor overlaps with one of the targets and it is highlighted in yellow. 

During the impact test, the ball hits the cloth roughly 15 cm to the bottom right of the target/IMU sensor, i.e. 

the yellow marker in Fig.3. The peak mesh acceleration being in the order of 3g, while the gyroscope data, Fig.4, 

shows a maximum rotation of 20 degrees on the Z axis. The LIDAR 1D time-displacement profile is obtained from 

the time-displacement matrix as a row corresponding to Z = 0.5 m, Fig.5. The different approaches are compared 

in Fig.6. The LIDAR data appears to be much noisier than the rest, as it corresponds to a set of laser passes 

between two constant angles in the Y axis, i.e. it does not follow the marker/IMU sensor, meaning slightly 

different portions of the cloth are captured at each pass. For this same reason, it does not follow the impact 

wave and the post-peak displacement bounces back in the other direction. The IMU and Image Analysis data 

have different peaks, possibly due to out-of-plane displacements toward the end of the braking phase. Once this 

phase ends, the IMU and Image analysis datasets both return to zero.  

Table 2: Discrete displacements of the targets. 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

X LIDAR [m] 2.6 2.59 2.6 2.61 2.6 2.62 

Y LIDAR [m] -0.45 -0.43 -0.15 0 0.13 0.12 

Z LIDAR [m] 0.15 0.5 0.51 0.3 0.14 0.5 𝚫X LIDAR [mm] -135.7 -38.8 -120.5 -188.3 -257 -117.4 𝚫Y LIDAR [mm] 3.0 28.2 2.0 7.4 -6.0 -8.3 𝚫𝐙 LIDAR [mm] 24.3 2.4 46.7 62.9 76.5 25.2 𝚫X IMG [mm] -165.7 -69.0 -110.2 -206.7 -253.4 -108.4 𝚫Y IMG [mm] 3.7 12.9 3.5 7.2 -6 -9.5 𝚫𝐙 IMG [mm] 20.3 -30.0 38.0 79.4 83.5 24.1 

Total error [mm] 34.7 73.1 20.5 35.1 10.6 11.3 

 

Figure 4: On the left, time-evolution of the IMU sensor spin and orientation. On the right, accelerometer data. 
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4. Conclusions 

In this paper, a procedure to obtain the dynamic deformation of a surface is described. The simplification of the 

geometry into a series of targets tracked using Open-Source PTV tools instead of cross-correlation based 

approaches (e.g. PIV/DIC) or photogrammetry allows the usage of cheap hardware to carry out unconstrained 

reconstruction. For cases in which the deformation prevents continuous tracking, a list of inexpensive MEMS-

based breakout boards is given, allowing end-users from different disciplines to assemble an high sampling 

frequency / scale IMU sensor without the requirement of soldering and knowledge of communication protocols. 

The use of IMU sensors is especially suited for impact experiments, as drift cumulation is insignificant throughout 

the test. The two examples provided have been validated against ToF LIDAR data, showing a good match for 

both quasi-static 3D data and 1D dynamic data. 

 

Figure 5: Time-evolution of the cloth profile in the position of the marker. Note the bottom of the cloth being 

lifted between t = 0.25s and t = 0.5s and the ball passing in front of the LIDAR beam after bouncing off at t = 1s. 

The black line represents the initial height of the target/IMU sensor. 

 

Figure 6: Displacement in the direction of the barrier normal measured with the three different approaches. 

 

Data availability  

The codes described in the paper, the connection scheme and the experimental data is available at 

gitlab.com/m.previtali.  



7 

 

 

References 

Bradski, G. (2000). ‘The OpenCV Library’, Dr Dobb’s Journal of Software Tools. 

van den Branden Lambrecht and Christian, J. (2001). ‘Vision Models and Applications to Image and Video 
Processing’, Vision Models and Applications to Image and Video Processing  

Bruno, N. et al. (2020). ‘A comparison of low-cost cameras applied to fixed multi-image monitoring systems’. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1033-2020. 

Butterworth, S. (1930). "On the Theory of Filter Amplifiers" . Experimental Wireless and the Wireless 

Engineer. 7: 536–541. 

Buzzi, O. et al. (2013). ‘Experimental testing of rockfall barriers designed for the low range of impact energy’, 
Rock Mechanics and Rock Engineering, 46(4), pp. 701–712. https://doi.org/10.1007/s00603-012-0295-1. 

Caviezel, A. et al. (2019). ‘Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-

based accelerometers and gyroscopes’, pp. 199–210. 

Coombs, S.P. et al. (2019). ‘Mobility of dry granular flows of varying collisional activity quantified by smart rock 
sensors’, Canadian Geotechnical Journal, pp. 1–13. https://doi.org/10.1139/cgj-2018-0278. 

EOTA (2013) ‘ETAG 027:2013 Falling Rock Protection Kits’, (December 1988). 

Ferrero, A.M., Segalini, A. and Umili, G. (2015). ‘Experimental tests for the application of an analytical model for 
flexible debris flow barrier design’, Engineering Geology .https://doi.org/10.1016/j.enggeo.2014.12.002. 

Gao, Z., Al-Budairi, H. and Steel, A. (2018). ‘Experimental testing of low-energy rockfall catch fence meshes’, 
Journal of Rock Mechanics and Geotechnical Engineering, 10(4), pp. 798–804. 

https://doi.org/10.1016/j.jrmge.2018.01.004. 

Guccione, D.E. et al. (2020). ‘EFFICIENT MULTI-VIEW 3D TRACKING OF ARBITRARY ROCK FRAGMENTS UPON 

IMPACT’. Available at: https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-589-2020. 

Hibert, C. et al. (no date). ‘Machine learning prediction of the mass and the velocity of controlled single-block 

rockfalls from the seismic waves they generate’. Available at: https://doi.org/10.5194/egusphere-2022-522. 

Kok, M., Hol, J.D. and Schön, T.B. (2017). ‘Using Inertial Sensors for Position and Orientation Estimation’, 
Foundations and Trends in Signal Processing, 11(2), pp. 1–153.  https://doi.org/10.1561/2000000094. 

MEMS Industry Group (2016). Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-

Source-Sensor-Fusion. 

Munkres, J. (1957). ‘Algorithms for the Assignment and Transportation Problems’, 
http://dx.doi.org/10.1137/0105003, 5(1), pp. 32–38. https://doi.org/10.1137/0105003. 

Niklaus, P. et al. (2017). ‘StoneNode : A Low-Power Sensor Device for Induced Rockfall Experiments’, 2017 IEEE 
Sensors Applications Symposium (SAS), pp. 1–6. https://doi.org/10.1109/SAS.2017.7894081. 

Pieš, M. and Hájovský, R. (2018). ‘Use of accelerometer sensors to measure the states of retaining steel networks 
and dynamic barriers’, Proceedings of the 2018 19th International Carpathian Control Conference, ICCC 2018, 
pp. 416–421. https://doi.org/10.1109/CARPATHIANCC.2018.8399666. 

Previtali, M., Ciantia, M. O., Spadea, S., Castellanza, R. P. & Crosta, G. B. (2021). ‘Multiscale modelling of dynamic 

impact on highly deformable compound rockfall fence nets’. In: Proceedings of the Institution of Civil Engineers: 

Geotechnical Engineering. 174, 5, p. 498-511 14 p. 

Previtali, M (2023). Experimental and numerical characterization of Double-Twisted hexagonal meshes for 

rockfall protection. University of Dundee, Dundee, UK. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1033-2020
https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
https://doi.org/10.1109/CARPATHIANCC.2018.8399666


8 

 

Subbarao, R. and Meer, P. (2006). ‘Beyond RANSAC: User Independent Robust Regression’, in Conference on 
Computer Vision and Pattern Recognition Workshop, pp. 101–111. 

Thoeni, K. et al. (2013) .‘Discrete modelling of hexagonal wire meshes with a stochastically distorted contact 
model’, Computers and Geotechnics, 49, pp. 158–169. https://doi.org/10.1016/J.COMPGEO.2012.10.014. 

Yan, Y. et al. (2019). ‘Monitoring and early warning method for a rockfall along railways based on vibration signal 
characteristics’, Scientific Reports, 9(1), pp. 1–10. Available at: https://doi.org/10.1038/s41598-019-43146-1. 

Zhang, Z. (2000). ‘A flexible new technique for camera calibration’, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 22(11), pp. 1330–1334. https://doi.org/10.1109/34.888718. 



INTERNATIONAL SOCIETY FOR 
SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE. 

The paper was published in the proceedings of the Geo-
Resilience 2023 conference which was organized by the 
British Geotechnical Association and edited by David 
Toll and Mike Winter. The conference was held in 
Cardiff, Wales on 28-29 March 2023.

https://www.issmge.org/publications/online-library
https://issmge.org/files/NUMGE2023-Preface.pdf

