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ABSTRACT: Robinia pseudoacacia is a nitrogen-fixing legume tree native to eastern North America, valued for its rapid 

growth, drought tolerance, durable timber, and suitability as a resilient urban tree. Through symbiosis relationship with Rhizobia 

bacteria, which reside in root nodules and convert atmospheric nitrogen into a plant-usable form, it thrives in nutrient-poor soils. 

However, little is known about how this symbiosis influences root system architecture (RSA). High-resolution X-ray computed 

tomography was used to investigate how RSA develops in response to symbiotic nitrogen fixation in nutrient-poor sand condi-

tions. Robinia plants, genetically identical clones of Robinia, were initially grown in agar and later potted in poorly graded sand 

to enable the identification of individual grains. Rhizobia were introduced after initial growth to establish nitrogen-fixing sym-

biosis. By scanning the plants before and after inoculation, we can track the development of RSA.  

A major challenge is image segmentation: root tissue and pore water exhibit similar X-ray attenuation, and nodules often fuse 

with fine root hairs. These factors hinder clean separation of the four present phases: Soil, root, water, and air. This study there-

fore focuses on developing segmentation workflows to achieve robust segmentation for further studies.  
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1 INTRODUCTION 

Soil bioengineering with roots is regarded as an environ-

mentally friendly approach to slope stabilization (Ni et 

al., 2018). A well-recognised influence of roots on slope 

stability is their role in providing mechanical reinforce-

ment by increasing the tensile and shear strength of the 

soil, while also inducing beneficial hydraulic effects 

such as increasing soil matric suction through root water 

uptake (Masi et al., 2021; Ni et al., 2018).  

For geotechnical applications, quantifying the micro-

structural changes in soil induced by root growth is es-

sential to understand root-soil interactions (Kemp et al., 

2022). X-ray micro-computed tomography (µCT), as a 

non-invasive approach, has been used progressively to 

quantify soil-root morphology and volumetric fraction 

metrics over time (Anselmucci et al., 2021; Kemp et al., 

2022) and is known as a powerful method for in situ 

quantification of root system architecture (RSA) (Gao et 

al., 2019).  

Effective CT image-based analysis of unsaturated, 

vegetated soils requires accurate, reliable multiphase 

segmentation of soil grains, roots, pore water and pore 

air, which can be achieved using either classical or ma-

chine learning-based approaches (Jiang et al., 2025).  

 

 

However, multiphase segmentation is challenging due 

to partial volume effects, the similar X-ray attenuation 

of different phases (especially water, roots, and organic 

matter), which yields low greyscale contrast (Xu et al., 

2018), and results in segmentation uncertainty (Jiang et 

al., 2025). Metzner et al. (2015) found that high water 

content especially near the pot bottom, degrades CT root 

segmentation.    

    Unlike deterministic segmentation, which assigns a 

single, definite prediction to each pixel/voxel and hides 

boundary ambiguity, probabilistic segmentation assigns 

per pixel/voxel class probabilities that capture segmen-

tation uncertainty (Krygier et al., 2021). 

In this study, we selected Robinia pseudoacacia, 

which has a fibrous root system, to investigate root-sys-

tem morphology due to its drought tolerance, fast 

growth, adaptability to degraded soils, high biomass 

yield, durable wood, and associated environmental and 

economic benefits (Ciuvăț et al., 2022). By scanning the 

same specimen in wet and dry states, the effects of water 

content on μCT image-based analysis were assessed. Us-

ing probabilistic segmentation, the root phase was seg-

mented in both scans and root volumetric fraction (θᵣ) 

and specific surface area (SSA) were compared to quan-

tify segmentation uncertainty.  
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2 MATERIALS AND METHODS 

2.1 Sample preparation 

Robinia plants germinated by the Institute of Plant 

Biology at Technical University of Braunschweig were 

transferred to cylindrical containers with 100 mm 

height, 68 mm inner diameter, and 2 mm wall thickness 

made of polypropylene homopolymer (PP-H). The 

cylinders were filled with a quartz sand with a mean 

grain size (D50) of 0.76 mm and particle sizes ranging 

from 0.63 to 2.0 mm based on standard sieve analysis. 

The samples were watered roughly every 24 h by adding 

water to trays beneath the pots, allowing uptake through 

five drainage holes; the water volume was adjusted so 

the trays dried within 24 h. Cool-running LED lamps 

above the plants provided a 16 h light /8 h dark cycle to 

simulate sunlight. Plants were inoculated once with 

Rhizobia bacteria by pipetting 1 mL of suspension 

around the root zone, followed by 5 mL of water to 

transport bacteria into the substrate. Thereafter, a 

nitrogen-free nutrient solution was applied to support 

plant growth under symbiotic conditions. X-ray micro-

computed tomography (µCT) was employed to 

investigate the RSA of Robinia plants. In addition to the 

regular scans during the measurement campaign,  one 

sample was scanned under moist conditions (degree of 

saturation 𝑆𝑟 =  𝑉𝑤𝑎𝑡𝑒𝑟/𝑉𝑝𝑜𝑟𝑒𝑠 ≈ 0.873), after which 

watering was ceased for three days to allow drying 

(𝑠𝑟 ≈ 0.0) in order to obtain a subsequent scan under dry 

sand conditions.   

2.2 Acquisition, preprocessing and segmentation 

of X-ray computed tomography images 

The µCT images were acquired using an EasyTom 160-

150 nano/micro-CT scanner (RX Solutions, France) at 

the Institute of Applied Mechanics (IAM), TU 

Braunschweig. Scans were performed at a voltage of 

150 kV and a current of 500 µA. 3D volumes were 

reconstructed using filtered back projection in RX 

Solutions’ reconstruction and analysis software X-Act. 

Full-field scans of the entire pot volume were acquired, 

with a voxel size of 59 µm. Raw 16-bit greyscale images 

(1705 × 1469 × 1469 voxels) were processed to extract 

the plant RSA. To reduce computational cost, the vol-

umes were converted to 8-bit in Fiji (Schindelin et al., 

2012), and inter-scan misalignment between wet and dry 

stacks was corrected by rigid 3D registration using the 

Software for the Practical Analysis of Materials (SPAM) 

toolkit (Stamati et al., 2020).  

CT images were preprocessed prior to segmentation. 

Denoising was performed using the GPU-accelerated 

Non-Local Means (NLM) filter in Avizo (Avizo, 2024) 

to reduce intra-phase noise while preserving edges 

(Jiang et al., 2025), with spatial standard deviation of 5 

and a search window of 10 px. To enhance phase bound-

aries, an Unsharp Masking (USM) filter (blur radius = 

1.5, mask weight = 0.7) was applied (Jiang et al., 2025). 

Then, the cylindrical pot wall was removed to process 

only the interior. Both steps were performed in Fiji 

(Schindelin et al., 2012). 

    After pre-processing, the four phases, root, soil, water, 

and air, were segmented using the open-source software 

Ilastik (Berg et al., 2019), which enables interactive 

learning and classification of image data.   

First, the Pixel Classification workflow in Ilastik was 

used. Training datasets were created by manually label-

ing pixels from each phase (soil, root, air, and water), 

while the outputs of various image filters (e.g., Gaussian 

smoothing, Laplacian of Gaussian, and others) were 

used as features for the Random Forest classifier. The 

classifier was then trained on these inputs, resulting in 

the generation of probability maps for all phases. In 

these maps, every voxel is assigned a class-specific 

probability Р (e.g., root, air, soil, water), representing the 

classifier’s confidence that the voxel belongs to that 

class. 

Second, the probability maps were then used as input 

for the Object Classification workflow in Ilastik. In this 

step, connected objects were extracted from the proba-

bility maps by applying smoothing and thresholding, and 

a comprehensive set of object-level features was calcu-

lated. These features include the intensity distribution 

within each object and its neighbourhood, as well as 

morphological descriptors. Using interactive annota-

tions, objects were assigned to different classes, and the 

trained object-level classifier enabled refinement of seg-

mentation (Berg et al., 2019).  

2.3 Quantitative metrics for root segmentation 

For each scan, the Ilastik root-probability map was 

thresholded at α = 0.3, 0.5, and 0.7 to obtain binary root 

masks. Here, α denotes the threshold for the root class in 

the probability map (voxels with Рroot ≥ α are labeled as 

root). The region of interest (ROI) was a fixed 

subvolume (290 × 340 × 410 voxels) containing the 

main root axis and fine roots. Isolated components 

smaller than 1000 voxels were removed in both 

tomographies (wet and dry) and for all α-thresholded 

masks before quantification to suppress noise and 

exclude disconnected fine hair-root fragments. Two 

metrics were reported: the root volumetric fraction and 

the specific surface area (SSA = root surface area/root  

volume) computed in Avizo (Jiang et al., 2025, Avizo, 

2024). The root volumetric fraction (θᵣ) was calculated 

as the ratio of root-labelled voxels to the total voxels in 

the ROI. The relative error (RE) in this study is defined 

as (𝜐𝑖 - 𝜐ref)/𝜐ref), with 𝜐ref set to the dry scan at α = 0.5, 

where 𝜐𝑖 is the value of metric i (either SSA or θᵣ).  

 

3 RESULTS AND DISCUSSION 

Figures 1a and b show the segmented root systems from 

the wet and dry scans obtained by thresholding the root 
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probability map at α = 50%. Figures 1c–h compare the 

segmented roots from the wet and dry scans at α = 0.3, 

0.5, and 0.7. In the wet scan, numerous small fragments 

and locally thickened surfaces appear as false-positive 

root voxels caused by overlap in X-ray attenuation 

(greyscale) between roots and water-filled pores and 

partial-volume mixing at the root–pore interface; these 

false-positive voxels diminish as α increases. In the dry 

scan, the contrast between the root and surroundings 

increases, and the segmentation retains the main root 

segments while eliminating many false-positive voxels. 

From the literature, fine hair roots exhibit higher 

segmentation uncertainty than coarse roots (Jiang et al., 

2025); therefore, increasing α can falsely remove true 

hair-root voxels in both wet and dry scans, with a 

stronger effect in the wet scan due to reduced greyscale 

contrast between roots and water.  

Figure 2 represents the root volumetric fraction (θᵣ) 

and specific surface area (SSA) as functions of α. 

Increasing the root-probability threshold reduced both 

metrics in both scans; from α = 0.3 to 0.7, θᵣ changed by 

about −39% (wet) and −20% (dry), while SSA changed 

by about −41% (wet) and −22% (dry). The decrease was 

markedly stronger for both metrics in the wet scan, 

indicating greater α-sensitivity as many low-confidence 

voxels were reassigned to other phases at higher α; the 

steeper drop in SSA is consistent with excluding 

spurious fragments and high-curvature surface voxels 

arising from greyscale overlap between roots and water,    

 
 

yielding a smoother root surface at higher thresholds. 

The dry scan showed a smaller decline and consistently 

lower metrics across α, indicating that drying the sample 

suppressed the root–water greyscale overlap that inflates 

apparent root volume and therefore fewer ambiguous 

boundary voxels near the root–pore interface; 

correspondingly, SSA was more weakly α-dependent, 

reflecting smoother surface and reduced sensitivity to 

threshold after drying. 

Figure 4 uses the dry scan at α = 0.5 as a baseline and 

shows the relative error for both metrics to quantify their 

sensitivity to α. At α = 0.3, the wet scan departs strongly 

from the baseline (𝑅𝐸θᵣ≈ 0.68, 𝑅𝐸SSA≈ 0.63), whereas 

the dry scan is closer (𝑅𝐸θᵣ ≈ 0.15, 𝑅𝐸SSA ≈ 0.22). At α 

= 0.5, the dry series is zero by definition and the wet 

series remains positive (𝑅𝐸θᵣ ≈ 0.22, 𝑅𝐸SSA ≈ 0.07). By 

α = 0.7, all curves approach the baseline (wet: 𝑅𝐸θᵣ ≈ 

0.03, 𝑅𝐸SSA  ≈ −0.03; dry: 𝑅𝐸θᵣ ≈ −0.08, 𝑅𝐸SSA ≈ −0.05). 

Overall, increasing α drives both series towards the base-

line, with the wet scan showing the largest deviations at 

low α, indicating greater sensitivity to thresholding. 

Negative RE values (e.g., at α = 0.7) mean that, relative 

to the baseline, the segmentation yields lower measured 

root volume and surface area because higher α excludes 

more ambiguous boundary voxels from the root label, 

reassigning them to non-root phases.  

 
Figure 2. Comparison of root volumetric fraction (θᵣ) and spe-

cific surface area (SSA) as a function of root probability 

threshold α for wet and dry scans 

 
Figure 3. Relative error (RE) of root volumetric fraction (θᵣ) 

and specific surface area (SSA) versus the root-probability 

threshold α; the results for the dry scan at alpha=0.5 serve as 

a reference 

 

Based on previous studies, SSA and θᵣ are key 

descriptors of soil-root interactions. Greater SSA, 

especially via root hairs, expands root-soil contact and 

the absorptive surface, thereby enhancing water and 

nutrient uptake (Goss et al., 1993; Duddek et al., 2023). 

The literature shows that θᵣ is an important parameter for 

evaluating soil hydraulic properties. Ng et al. (2016) 

proposed a new, simple model to predict how plant roots 

modify the soil-water retention curve (SWRC) using a 

single root parameter, the root volume ratio (Rv) which 

 

 

 

 

 

 

 

   

 

   

 

   

 

                     

 
   

 
 

  
 

  
 

 
  

  

 

              
            

    

 

   

   

   

   

   

   

   

                     

 
 

 

       

       

      

      

 

Figure 1. Central panel: segmented roots at α = 0.5: (a) 

wet scan; (b) dry scan. Top row: wet subvolume across α: 

(c) α = 0.3, (d) α = 0.5, (e) α = 0.7. Bottom row: dry sub-

volume across α: (f) α = 0.3, (g) α = 0.5, (h) α = 0.7 
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is defined as the total volume of roots per unit volume of 

soil. Hydraulic conductivity is affected by root biomass: 

fine roots can lower permeability by blocking pores, 

while coarse roots can increase it by rearranging soil 

particles (Jiang et al., 2025).  

From the results, in the wet scan, the RE values 

change substantially more with increasing α for both 

metric curves compared with the dry scan. This greater 

segmentation uncertainty, driven by the presence of 

water, reduces root-segmentation accuracy and can lead 

to erroneous soil–root interaction calculations and 

misinterpretation. Consistent with our results, prior work 

shows that lower saturation improves root-phase 

segmentation accuracy in CT image-based analysis of 

vegetated soils. (Jiang et al., 2025).  

4 CONCLUSIONS 

Accurate plant root segmentation is essential for reliable 

estimates of root metrics such as volumetric fraction (θᵣ) 

and morphological properties (e.g., SSA). These metrics 

underpin the interpretation of the hydromechanical 

effects of vegetation; when segmentation uncertainty is 

high, soil–root interactions are mischaracterized and 

interpretations become unreliable. Using probabilistic 

segmentation as a machine-learning approach, root-

segmentation uncertainty was quantified in X-ray CT 

images of a vegetated sample in the wet and dry states. 

Across α = 0.3–0.7, the wet-soil scan showed higher 

values and a stronger α-dependence for θᵣ and SSA, 

indicating greater segmentation uncertainty, whereas 

these metrics in the dry scan were lower and notably less 

sensitive to α. These observations are consistent with 

improved root–matrix contrast in the dry state and 

reduced segmentation uncertainty, yielding more robust 

estimates of root volume and surface area. Since hair 

roots are more susceptible to segmentation uncertainty 

than coarse root sections, increasing α resulted in their 

progressive loss in both scans; the effect was magnified 

in the wet scan. Minor wet–dry differences may also 

reflect root shrinkage after drying; this was not 

quantified in this study and should be considered when 

interpreting absolute values in future work. The analysis 

was limited to two metrics, and two saturation states. 

Extending to complementary morphology indices and 

more variations of saturation, respectively, would 

further generalise the findings. 
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