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ABSTRACT: Robinia pseudoacacia is a nitrogen-fixing legume tree native to eastern North America, valued for its rapid
growth, drought tolerance, durable timber, and suitability as a resilient urban tree. Through symbiosis relationship with Rhizobia
bacteria, which reside in root nodules and convert atmospheric nitrogen into a plant-usable form, it thrives in nutrient-poor soils.
However, little is known about how this symbiosis influences root system architecture (RSA). High-resolution X-ray computed
tomography was used to investigate how RSA develops in response to symbiotic nitrogen fixation in nutrient-poor sand condi-
tions. Robinia plants, genetically identical clones of Robinia, were initially grown in agar and later potted in poorly graded sand
to enable the identification of individual grains. Rhizobia were introduced after initial growth to establish nitrogen-fixing sym-
biosis. By scanning the plants before and after inoculation, we can track the development of RSA.

A major challenge is image segmentation: root tissue and pore water exhibit similar X-ray attenuation, and nodules often fuse
with fine root hairs. These factors hinder clean separation of the four present phases: Soil, root, water, and air. This study there-

fore focuses on developing segmentation workflows to achieve robust segmentation for further studies.
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1 INTRODUCTION

Soil bioengineering with roots is regarded as an environ-
mentally friendly approach to slope stabilization (Ni et
al., 2018). A well-recognised influence of roots on slope
stability is their role in providing mechanical reinforce-
ment by increasing the tensile and shear strength of the
soil, while also inducing beneficial hydraulic effects
such as increasing soil matric suction through root water
uptake (Masi et al., 2021; Ni et al., 2018).

For geotechnical applications, quantifying the micro-
structural changes in soil induced by root growth is es-
sential to understand root-soil interactions (Kemp et al.,
2022). X-ray micro-computed tomography (LCT), as a
non-invasive approach, has been used progressively to
quantify soil-root morphology and volumetric fraction
metrics over time (Anselmucci et al., 2021; Kemp et al.,
2022) and is known as a powerful method for in situ
quantification of root system architecture (RSA) (Gao et
al., 2019).

Effective CT image-based analysis of unsaturated,
vegetated soils requires accurate, reliable multiphase
segmentation of soil grains, roots, pore water and pore
air, which can be achieved using either classical or ma-
chine learning-based approaches (Jiang et al., 2025).

However, multiphase segmentation is challenging due
to partial volume effects, the similar X-ray attenuation
of different phases (especially water, roots, and organic
matter), which yields low greyscale contrast (Xu et al.,
2018), and results in segmentation uncertainty (Jiang et
al., 2025). Metzner et al. (2015) found that high water
content especially near the pot bottom, degrades CT root
segmentation.

Unlike deterministic segmentation, which assigns a
single, definite prediction to each pixel/voxel and hides
boundary ambiguity, probabilistic segmentation assigns
per pixel/voxel class probabilities that capture segmen-
tation uncertainty (Krygier et al., 2021).

In this study, we selected Robinia pseudoacacia,
which has a fibrous root system, to investigate root-sys-
tem morphology due to its drought tolerance, fast
growth, adaptability to degraded soils, high biomass
yield, durable wood, and associated environmental and
economic benefits (Ciuvat et al., 2022). By scanning the
same specimen in wet and dry states, the effects of water
content on uCT image-based analysis were assessed. Us-
ing probabilistic segmentation, the root phase was seg-
mented in both scans and root volumetric fraction (6;)
and specific surface area (SSA) were compared to quan-
tify segmentation uncertainty.
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2 MATERIALS AND METHODS

2.1 Sample preparation

Robinia plants germinated by the Institute of Plant
Biology at Technical University of Braunschweig were
transferred to cylindrical containers with 100 mm
height, 68 mm inner diameter, and 2 mm wall thickness
made of polypropylene homopolymer (PP-H). The
cylinders were filled with a quartz sand with a mean
grain size (Dso) of 0.76 mm and particle sizes ranging
from 0.63 to 2.0 mm based on standard sieve analysis.
The samples were watered roughly every 24 h by adding
water to trays beneath the pots, allowing uptake through
five drainage holes; the water volume was adjusted so
the trays dried within 24 h. Cool-running LED lamps
above the plants provided a 16 h light /8 h dark cycle to
simulate sunlight. Plants were inoculated once with
Rhizobia bacteria by pipetting 1 mL of suspension
around the root zone, followed by 5 mL of water to
transport bacteria into the substrate. Thereafter, a
nitrogen-free nutrient solution was applied to support
plant growth under symbiotic conditions. X-ray micro-
computed tomography (uCT) was employed to
investigate the RSA of Robinia plants. In addition to the
regular scans during the measurement campaign, one
sample was scanned under moist conditions (degree of
saturation S, = Viygrer/Vpores = 0.873), after which
watering was ceased for three days to allow drying
(sy = 0.0) in order to obtain a subsequent scan under dry
sand conditions.

2.2 Acquisition, preprocessing and segmentation
of X-ray computed tomography images

The pCT images were acquired using an EasyTom 160-
150 nano/micro-CT scanner (RX Solutions, France) at
the Institute of Applied Mechanics (IAM), TU
Braunschweig. Scans were performed at a voltage of
150kV and a current of 500 pA. 3D volumes were
reconstructed using filtered back projection in RX
Solutions’ reconstruction and analysis software X-Act.
Full-field scans of the entire pot volume were acquired,
with a voxel size of 59 um. Raw 16-bit greyscale images
(1705 x 1469 x 1469 voxels) were processed to extract
the plant RSA. To reduce computational cost, the vol-
umes were converted to 8-bit in Fiji (Schindelin et al.,
2012), and inter-scan misalignment between wet and dry
stacks was corrected by rigid 3D registration using the
Software for the Practical Analysis of Materials (SPAM)
toolkit (Stamati et al., 2020).

CT images were preprocessed prior to segmentation.
Denoising was performed using the GPU-accelerated
Non-Local Means (NLM) filter in Avizo (Avizo, 2024)
to reduce intra-phase noise while preserving edges
(Jiang et al., 2025), with spatial standard deviation of 5
and a search window of 10 px. To enhance phase bound-
aries, an Unsharp Masking (USM) filter (blur radius =

1.5, mask weight = 0.7) was applied (Jiang et al., 2025).
Then, the cylindrical pot wall was removed to process
only the interior. Both steps were performed in Fiji
(Schindelin et al., 2012).

After pre-processing, the four phases, root, soil, water,
and air, were segmented using the open-source software
llastik (Berg et al., 2019), which enables interactive
learning and classification of image data.

First, the Pixel Classification workflow in Ilastik was
used. Training datasets were created by manually label-
ing pixels from each phase (soil, root, air, and water),
while the outputs of various image filters (e.g., Gaussian
smoothing, Laplacian of Gaussian, and others) were
used as features for the Random Forest classifier. The
classifier was then trained on these inputs, resulting in
the generation of probability maps for all phases. In
these maps, every voxel is assigned a class-specific
probability P (e.g., root, air, soil, water), representing the
classifier’s confidence that the voxel belongs to that
class.

Second, the probability maps were then used as input
for the Object Classification workflow in Ilastik. In this
step, connected objects were extracted from the proba-
bility maps by applying smoothing and thresholding, and
a comprehensive set of object-level features was calcu-
lated. These features include the intensity distribution
within each object and its neighbourhood, as well as
morphological descriptors. Using interactive annota-
tions, objects were assigned to different classes, and the
trained object-level classifier enabled refinement of seg-
mentation (Berg et al., 2019).

2.3 Quantitative metrics for root segmentation

For each scan, the Ilastik root-probability map was
thresholded at o= 0.3, 0.5, and 0.7 to obtain binary root
masks. Here, o denotes the threshold for the root class in
the probability map (voxels with P> o are labeled as
root). The region of interest (ROI) was a fixed
subvolume (290 x 340 x 410 voxels) containing the
main root axis and fine roots. Isolated components
smaller than 1000 voxels were removed in both
tomographies (wet and dry) and for all a-thresholded
masks before quantification to suppress noise and
exclude disconnected fine hair-root fragments. Two
metrics were reported: the root volumetric fraction and
the specific surface area (SSA = root surface area/root
volume) computed in Avizo (Jiang et al., 2025, Avizo,
2024). The root volumetric fraction (6;) was calculated
as the ratio of root-labelled voxels to the total voxels in
the ROL. The relative error (RE) in this study is defined
as (Vi - Urer)/Urer), With vpef set to the dry scan at a.= 0.5,
where v; is the value of metric i (either SSA or 6,).

3 RESULTS AND DISCUSSION

Figures 1a and b show the segmented root systems from
the wet and dry scans obtained by thresholding the root
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probability map at a = 50%. Figures 1c—h compare the
segmented roots from the wet and dry scans at o = 0.3,
0.5, and 0.7. In the wet scan, numerous small fragments
and locally thickened surfaces appear as false-positive
root voxels caused by overlap in X-ray attenuation
(greyscale) between roots and water-filled pores and
partial-volume mixing at the root—pore interface; these
false-positive voxels diminish as o increases. In the dry
scan, the contrast between the root and surroundings
increases, and the segmentation retains the main root
segments while eliminating many false-positive voxels.
From the literature, fine hair roots exhibit higher
segmentation uncertainty than coarse roots (Jiang et al.,
2025); therefore, increasing o can falsely remove true
hair-root voxels in both wet and dry scans, with a
stronger effect in the wet scan due to reduced greyscale
contrast between roots and water.

Figure 2 represents the root volumetric fraction (0,)
and specific surface area (SSA) as functions of a.
Increasing the root-probability threshold reduced both
metrics in both scans; from o = 0.3 to 0.7, 6, changed by
about —39% (wet) and —20% (dry), while SSA changed
by about —41% (wet) and —22% (dry). The decrease was
markedly stronger for both metrics in the wet scan,
indicating greater a-sensitivity as many low-confidence
voxels were reassigned to other phases at higher a; the
steeper drop in SSA is consistent with excluding
spurious fragments and high-curvature surface voxels
arising from greyscale overlap between roots and water,

Figure 1. Central panel: segmented roots at o = 0.5: (a)
wet scan; (b) dry scan. Top row: wet subvolume across o.
(¢c) a =03, (d) a=0.5, (e o = 0.7. Bottom row: dry sub-
volume across o.: (f) a = 0.3, (g) o = 0.5, (h) oo = 0.7

yielding a smoother root surface at higher thresholds.
The dry scan showed a smaller decline and consistently
lower metrics across a, indicating that drying the sample
suppressed the root—water greyscale overlap that inflates
apparent root volume and therefore fewer ambiguous
boundary voxels near the root—pore interface;
correspondingly, SSA was more weakly o-dependent,

reflecting smoother surface and reduced sensitivity to
threshold after drying.

Figure 4 uses the dry scan at o = 0.5 as a baseline and
shows the relative error for both metrics to quantify their
sensitivity to a. At a = 0.3, the wet scan departs strongly
from the baseline (REg = 0.68, REgsp~ 0.63), whereas
the dry scan is closer (REg_ = 0.15, REsgp = 0.22). At a
= 0.5, the dry series is zero by definition and the wet
series remains positive (REg = 0.22, REssp = 0.07). By
a = 0.7, all curves approach the baseline (wet: REg_ =
0.03, REgsp =—0.03; dry: REg, ~—0.08, REggp = —0.05).
Overall, increasing a drives both series towards the base-
line, with the wet scan showing the largest deviations at
low o, indicating greater sensitivity to thresholding.
Negative RE values (e.g., at a = 0.7) mean that, relative
to the baseline, the segmentation yields lower measured
root volume and surface area because higher a excludes
more ambiguous boundary voxels from the root label,

reassigning them to non-root phases.
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Figure 2. Comparison of root volumetric fraction (6,) and spe-
cific surface area (SSA) as a function of root probability
threshold o for wet and dry scans
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Figure 3. Relative error (RE) of root volumetric fraction (6,)
and specific surface area (SSA) versus the root-probability
threshold a; the results for the dry scan at alpha=0.5 serve as
a reference

Based on previous studies, SSA and 0; are key
descriptors of soil-root interactions. Greater SSA,
especially via root hairs, expands root-soil contact and
the absorptive surface, thereby enhancing water and
nutrient uptake (Goss et al., 1993; Duddek et al., 2023).
The literature shows that 0, is an important parameter for
evaluating soil hydraulic properties. Ng et al. (2016)
proposed a new, simple model to predict how plant roots
modify the soil-water retention curve (SWRC) using a
single root parameter, the root volume ratio (Ry) which
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is defined as the total volume of roots per unit volume of
soil. Hydraulic conductivity is affected by root biomass:
fine roots can lower permeability by blocking pores,
while coarse roots can increase it by rearranging soil
particles (Jiang et al., 2025).

From the results, in the wet scan, the RE values
change substantially more with increasing o for both
metric curves compared with the dry scan. This greater
segmentation uncertainty, driven by the presence of
water, reduces root-segmentation accuracy and can lead
to erroneous soil-root interaction calculations and
misinterpretation. Consistent with our results, prior work
shows that lower saturation improves root-phase
segmentation accuracy in CT image-based analysis of
vegetated soils. (Jiang et al., 2025).

4 CONCLUSIONS

Accurate plant root segmentation is essential for reliable
estimates of root metrics such as volumetric fraction (0;)
and morphological properties (e.g., SSA). These metrics
underpin the interpretation of the hydromechanical
effects of vegetation; when segmentation uncertainty is
high, soil-root interactions are mischaracterized and
interpretations become unreliable. Using probabilistic
segmentation as a machine-learning approach, root-
segmentation uncertainty was quantified in X-ray CT
images of a vegetated sample in the wet and dry states.
Across a = 0.3-0.7, the wet-soil scan showed higher
values and a stronger a-dependence for 6, and SSA,
indicating greater segmentation uncertainty, whereas
these metrics in the dry scan were lower and notably less
sensitive to a. These observations are consistent with
improved root—matrix contrast in the dry state and
reduced segmentation uncertainty, yielding more robust
estimates of root volume and surface area. Since hair
roots are more susceptible to segmentation uncertainty
than coarse root sections, increasing o resulted in their
progressive loss in both scans; the effect was magnified
in the wet scan. Minor wet—dry differences may also
reflect root shrinkage after drying; this was not
quantified in this study and should be considered when
interpreting absolute values in future work. The analysis
was limited to two metrics, and two saturation states.
Extending to complementary morphology indices and
more variations of saturation, respectively, would
further generalise the findings.
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