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ABSTRACT 

 

This paper provides insight in the piping failure mechanism and deals with the specific properties 

of the pipes in the sand layer beneath clayey dikes. Briefly, the basic concepts of geometric, 

hydraulic and friction conditions are discussed in order to comprehend the interaction between 

the pipe height, hydraulic radius, pipe velocity, pipe discharge, and the mean hydraulic gradient 

in the pipes for different forms. The well-known theories of Darcy-Weisbach, Shields, Ohm, 

Hagen-Poiseuille and Newton are briefly summarized in order to understand the driving and 

resistance forces in the pipe erosion process.   

 

PIPING FAILURE MECHANISM 

 

Piping is a three dimensional phenomenon since pipes braid (or meander) and are irregular in 

shape. The relevant parameters that influence piping are the hydraulic head and the material 

characteristics of both the sand layer and the clayey dike. During high stream-stage flows, 

seepage through sand layers occurs, with the flow rate depending on the type of soil and how 

well the soil layer is compacted. Seepage can lead to piping and when the ditch is connected to 

the river through pipes the dike will eventually fail as the pipe flow changes from a laminar to a 

turbulent flow regime (Figure 1). 

  

 

Figure 1. Definition sketch of piping (not to scale).  

mailto:hoffmans.advice@outlook.com


 – 2 –   

The load is represented by the hydraulic head, which is usually the difference between 

the flow level in rivers (H1) and the surface level on the landside (H2), (see also Figure 1). The 

seepage length, the permeability (or particle size and porosity), and grading of the particles in the 

sand layer are determinant for the erosion resistance. The seepage length (L) is the distance 

between the entry point for seepage through the sand layer on the riverside and the exit point on 

the landside. 

As long as (H1 – H2) is sufficiently small, particle-free water will exit, resulting in a wet 

ground surface. If however (H1 – H2) and hence the flow velocities in the pores increase, 

particles could deposit around boils or craters that occur downstream of the dike toe. In such 

situations the lift, drag and frictional forces acting on the particles may exceed the critical forces 

for initiation of particle motion and small pipes form at the top of the sand layer directly under 

the clayey dike, which may grow in length in the direction of the river. This process is called 

backward erosion. 

 

GEOMETRIC CONDITIONS 

 

Although the pipes under the clayey dike do not realistically advance in a line from downstream 

to upstream, in the following model the pipes have a variable length in the x direction. At the 

laboratory scale, Van Beek et al. (2008, 2011) demonstrated that, at the beginning of the erosion 

process, the pipe formation is similar to that of braided rivers (Figure 2). Because of horizontal 

pressure fluctuations, a braided river consists of a network of small pipes separated by small and 

often temporary islands called braid bars (e.g. Jansen et al. 1979). 

 

  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

        

       Figure 2. Braiding of pipes (Van Beek et al. 2008, 2011) 
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Bonelli et al. (2007) deduced a time scale for breaching in hydraulic works (dams, dikes) by 

modelling the pipes as tunnels with a constant pipe height. In this study, the pipe height increases 

linearly from the entry points to the landside. Hence, the mean pipe height (ℓp) halfway along the 

pipes (in the longitudinal direction) can be given by (Figure 3) 

 

 ℓ𝑝 = 12 (ℓ𝑝,ℎ + ℓ𝑝,𝑚)   

 

where the initial pipe height (ℓp,h) is correlated to the pipe height (ℓp,m) on the landside through 

the geometry factor (Cℓ) 

 ℓ𝑝,ℎ = 𝐶ℓℓ𝑝,𝑚          

 
 

Figure 3. Schematization of circular pipes below clayey dike (A'p = Ap/np and B'p = Bp/np) 

 

If the pipes are cylinder-shaped then the wetted cross sectional area (Ap) and the effective wetted 

width (Bp) of np pipes (or half the perimeter) can be approximated halfway along the pipes by 

(see also Figure. 3) 

  

 𝐴𝑝 = 14 𝜋ℓ𝑝2𝑛𝑝    and   𝐵𝑝 = 12 𝜋ℓ𝑝𝑛𝑝   

 

For rectangular pipes the wetted cross sectional area and the effective wetted width of np pipes 

can be estimated halfway along the pipes by (with  as the ratio between the width and the height 

of the pipe; 30 <  < 50)  

 

 𝐴𝑝,𝑟𝑒𝑐 = 𝜒ℓ𝑝,𝑟𝑒𝑐2 𝑛𝑝,𝑟𝑒𝑐   and   𝐵𝑝,𝑟𝑒𝑐 = 𝜒ℓ𝑝,𝑟𝑒𝑐𝑛𝑝,𝑟𝑒𝑐  
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For elliptic pipes holds 

 𝐴𝑝,𝑒ℓℓ = 14 𝜒𝜋ℓ𝑝,𝑒ℓℓ
2 𝑛𝑝,𝑒ℓℓ  and   𝐵𝑝,𝑒ℓℓ ≈ 12 √12 𝜒𝜋ℓ𝑝,𝑒ℓℓ𝑛𝑝,𝑒ℓℓ  

 

HYDRAULIC CONDITIONS 

 

Various parameters can be used to determine the flow regime, e.g. hydraulic (or pressure) 

gradient, shear stress, shear velocity, filter velocity or pore velocity. All these parameters can be 

related to forces. When they are determined by the flow properties only the flow is laminar 

otherwise it is turbulent. 

 

When there are no pipes, that is, in the equilibrium phase the groundwater flow in the sand layer 

is fully laminar. The transition to turbulent flow in a porous medium is not defined by a unique 

Reynolds filter number (Ref), as this number is influenced by a characteristic particle size (for 

example by d15), the filter velocity (uf), and the kinematic viscosity (ν). Following Bear (1979) 

the groundwater is completely laminar if 

 Re𝑓 = 𝑑15𝑢𝑓𝜈 < 1 to 10    

 

The Reynolds pipe number (Re) depends on the pipe geometry, i.e., the hydraulic radius (R is the 

ratio between the wetted area (Ap) and the wetted perimeter (P)), the mean pipe flow velocity 

(Up) which is directed in the streamwise direction and the temperature (through ν) 

 Re = 𝑈𝑝𝑅𝜈        

 

For cylinders, rectangular and elliptic pipes the following relations hold R = ¼ℓp, Rrec = ½ℓp,rec 

and Reℓℓ  ⅓ℓp,eℓℓ. Note that the hydraulic radius for a squeezed elliptic pipe with  = 40 is 

somewhat larger Reℓℓ  ⅜ℓp,eℓℓ and that ℓp  ℓp,rec  ℓp,eℓℓ. 

 

The pipe flow is laminar provided Re is smaller than 500 and is turbulent if Re reaches a value of 

2000. The continuity equation with Qp as the pipe discharge reads 

 

 𝑈𝑝 = 𝑄𝑝𝐴𝑝     

 

Three regimes may be distinguished, namely 1) laminar flow in both the pipes and the sand 

layer, 2) turbulent flow in both the pipes and the gravel layer, and 3) turbulent flow in the pipe 

and laminar flow in the sand layer. 
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According to Den Adel (1986) the flow in a gravel layer is turbulent if the mean particle 

size is greater than 1 cm. In this study, only the first regime is considered, that is, the mean 

particle diameter (d50) ranges from 0.1 mm to 0.5 mm (0.1 mm < d15 < 0.3 mm with d15 is the 

particle diameter below which 15% of the particles are smaller).  

 

FRICTION CONDITIONS 

 

The friction in the pipes can be expressed with the Darcy-Weisbach equation 

 

 𝜏0 = 18 𝑓𝐷𝑊𝜌𝑈𝑝2   

 

in which  represents the density of water and 0 is the (mean) wall (or bed) shear stress. The 

Darcy-Weisbach friction factor (fDW) is not a constant and depends on the parameters of the pipe 

and the flow velocity. Figure 4 shows results of non-Newtonian fluids, including aqueous 

suspensions of bentonite and kaolin, and aqueous solutions of synthetic polymer carboxymethyl 

cellulose (CMC). The 16/Re line represents also laminar water (clean sand). 

 

 𝑓𝐷𝑊 = 16𝑅𝑒        

 

 
 

Figure 4. Friction factor as function of Reynolds number for 3 different fluids 

(Haldenwang, 2010) 
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Following Chow (1959) the coefficient 16 represents a mean value as it ranges from 14 (for 

triangle pipes) to 24 (for rectangular pipes). By using the Shields (1936) approach the wall shear 

stress for laminar flow can be written as 

 𝜏0 = Ψℓ𝑎𝑚(𝜌𝑠 − 𝜌)𝑔𝑑50    

 

where g is the acceleration of gravity, s is the density of the sediment and ℓam represents the 

Shields parameter for laminar flow conditions. 

 

 PIPE RESISTANCE 

 

The law of Ohm (1872) states that the current through a conductor between two points is directly 

proportional to the potential difference across the two points and inversely proportional to the 

resistance between them. The mathematical equation is  

 𝐼 = 𝑉
Ω

     

 

where I is the current through the conductor, V is the potential difference measured across the 

conductor and  represents the resistance of the conductor. Similar to Ohm’s law the Hagen-

Poiseuille equation can be written as 

 𝑄𝑝 = 𝑆
Ω𝑝       

 

with p as the horizontal pipe resistance (of one pipe) 

  

 Ω𝑝 = 2𝜈𝑔𝐴𝑝𝑅2       

 

The mean energy slope (S) is the slope of the hydraulic grade line. In open channel flow, it is the 

slope of the water surface. In pipes under pressure, it is the slope of the water pressure (or the 

mean hydraulic gradient). For laminar flow conditions S is 

 

 𝑆 = 2𝜈𝑈𝑝𝑔𝑅2 = 2𝑈𝑝3𝑔 𝑅𝑒2 𝜈         

 

which is the equation of Hagen-Poiseuille, i.e., the law that the pipe velocity is directly 

proportional to the hydraulic gradient and the square of the hydraulic radius.  
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 FORCE BALANCE 

 

Newton’s Second Law states that the acceleration of a control volume times the mass of that 

volume is equal to the sum of all forces acting on it. If the control volume is the water in a short 

reach of steady, uniform flow, the volume undergoes no accelerations and the forces acting on it 

have to be balanced. These forces (per unit width) are the downslope component of the weight of 

water in the reach (FA = gApS) and the total boundary shear force, which is resisting the flow 

(FR = 0P). Equating these forces (FA = FR) the depth-slope product can be deduced which is 

used to calculate the shear stress at the bed of an open channel (e.g. Chow, 1959) 

 𝜏0 = 𝜌𝑔𝑅𝑆      

 

Though this equation is widely used in river engineering, stream restoration, sedimentology, and 

fluvial geomorphology, thus for turbulent flow, it can also be applied for piping if the flow is 

laminar. It is the product of the hydraulic radius and the mean hydraulic gradient, along with the 

acceleration due to gravity and density of the water. The local hydraulic gradient can be written 

with x is the longitudinal distance as 

 𝑆(𝑥) = 𝜏0(𝑥)𝜌𝑔𝑅(𝑥)      

 

For very fine sand there is hardly a vertical inflow from the aquifer to the pipes due to the very 

low permeability of the sand. In such cases, the hydraulic radius of the pipes is almost constant 

in the streamwise direction. If the intrinsic soil properties in the sand layer do not change then 

the wall shear stress is also constant and thus the hydraulic gradient on the entry points equals 

approximately the hydraulic gradient on the landside. These conditions are comparable with 

open-channel flow.  

Usually there is a vertical inflow as a result of the (high) permeability. Then the pipe 

dimensions increase gradually towards the landside. Consequently, the hydraulic gradient in the 

pipes decreases slowly to the polder. However, occasionally the pipe flow decelerates which is 

observed temporarily. Then particles can block the pipes because the wall shear stresses are 

smaller than the critical ones. Particles are only transported to the landside provided the wall 

shear stresses exceed their critical values at every location in the pipes.   

If the pipes grow to the riverside then the hydraulic gradient near the entry points can 

increase to large values, theoretically to infinity (Sellmeijer 1988 and Van Beek 2015), since at 

these locations the local hydraulic radius is about nil. In the streamwise direction the local 

hydraulic gradient decreases enormously due to an increasing hydraulic radius.  

 

  

  



 – 8 –   

 CONCLUSIONS 

 

This paper describes the erosion in the pipes which governs partly the failure mechanism piping. 

For predicting the latter mechanism a resistance equation is needed that describes not only the 

pipe resistance (this paper) but also the seepage resistance in the sand layer (e.g. Hoffmans and 

Van Rijn, 2017).   

In this study the wall shear stress is expressed threefold. These three equations refer to 

the critical pipe velocities (Darcy Weisbach), initiation of motion (Shields) and the critical pipe 

dimensions (through the hydraulic radius) and the critical hydraulic pipe gradient (Newton). For 

describing erosion in the pipes these conditions must be met. 

Typically in geotechnical engineering the hydraulic gradient which expresses the driving 

force, is often used to describe the groundwater flow in aquifers. However, for the description of 

the flow in pipes the product of the hydraulic gradient and the hydraulic radius is needed or the 

wall shear stress (second law of Newton).  
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