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TIME RATE OF LOCAL SCOUR AT A CIRCULAR PILE 

by 

William Miller Jr.1 and D. Max Sheppard2

ABSTRACT 

A mathematical model for the time variation of local scour depth at a singular circular pile has 
been developed.  The scour hole shape is assumed to be that of an inverted frustum of a right 
circular cone with an angle equal to the angle of repose of the submerged sediment.  It is 
assumed that the area being eroded is confined to a narrow band adjacent to the pile and that the 
surrounding sediment avalanches into this region so as to maintain the slope of the scour hole 
equal to the angle of repose.  The area of erosion is further limited to an arc roughly extending 

from the stagnation point to the point of flow separation (~ 0
 90± from the leading edge).  

Sediment transport in the area of erosion is assumed to be due to the effective shear stress in this 
area created by the mean and secondary flows (horseshoe vortex).  The variation of effective 
shear stress with normalized scour depth has been established based on accurate time history 
scour data and a flat bed sediment transport function.  The form of the sediment transport 
function is based on those for transport on a flat bed. As might be expected, the shape of the 
normalized shear stress versus normalized scour depth plots was found to depend on the same 
sediment, flow and structure dimensionless parameters that govern the equilibrium scour depth.  
This model requires the use of predictive equations for computing equilibrium scour depths for 
the conditions encountered in the analysis.  The model was developed for clearwater conditions 
but can be extended to include live bed scour when sufficient data is available for model 
validation.

INTRODUCTION

Current practice in bridge foundation design requires that design scour depths be estimated as the 
ultimate (or equilibrium) scour depth for steady flow under design flow conditions.  However, 
for many situations the duration of the peak velocity is insufficient for the scour hole to reach an 
equilibrium state.  This is especially true in the coastal environment where the design flow 
conditions are usually unsteady, episodic events of relatively short duration (e.g. hurricane 
generated storm surge).  Another factor affecting the percentage of equilibrium scour depth 
achieved during a design flow event is the magnitude of the design flow velocity.  In the tidal 
plains of many coastal areas, where the terrain is very flat, design flow velocities can be 
relatively low and thus the rate of scour is small.  In order to predict scour depths under these 
conditions a time dependent model that is capable of handling unsteady flows is needed. 

1 Graduate Research Assistant, Civil and Coastal Engineering Department, University of Florida, Gainesville, FL 
32611, wmiller@ufl.edu. 
2 Professor of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, sheppard@ufl.edu 
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MODEL DERIVATION 

The model developed in this paper assumes that the geometry of the scour hole can be 
approximated as an inverted frustum of a right circular cone.  Also, as observed by Melville 
(1975), Ettema (1980) and Nakagawa and Suzuki (1975), it is assumed that sediment is removed 
only from within a region immediately adjacent to the pier and that this area (the erosion zone) is 
fed by sediment avalanching down the sides of the scour hole. Following Nakagawa and Suzuki 
(1975), the width of the erosion zone is assumed to be constant with time and only a function of 
the diameter of the cylinder. Figure 1 defines the erosion zone and Figure 2 defines the volumes 
used in the model development and calculation. 

The following relationships can be developed using the variables defined in Figures 1 and 2:  
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The volume of the annulus at the base of the scour hole (∆V1) can be calculated from 
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The volume of avalanche material (∆V2)  is calculated as follows 
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It can be shown that the small wedge shaped volume (∆VA2) beside the erosion zone annulus is a 
function of ∆ds

2 and ∆ds
3 and in the limit goes to zero, so that it is neglected in this calculation.  

Adding Equations (1) and (2) gives the total change in volume for a given time increment, ∆t.
Therefore, the rate of change of volume of the scour hole is 
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Next, relate this rate of change in volume to the transport of material out of the scour hole.  
Defining porosity (p) as 
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the volume of sediment (Vs) removed can be related to the volume of the scour hole (V) by 

 

828



( )p1

V
V s

−
= .       (4) 

The volume rate of transport of sediment can be described by 

qwQ
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Vd s == ,     (5) 

where Q is the rate of transport of material by volume (m3/s), q is the rate of transport of material 
by volume per unit width (m2/s) and w is the width of the area over which the sediment transport 
function acts.  Combining Equations (4) and (5) gives 
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If it is assumed that the sediment is transported out of the erosion area perpendicular to the pile 
as shown in Figure 3, than the width in Equation (6) can be estimated by 

( )1n2DnD
2

D
2r2w mmm +β=+β=β= ,

where βm is half of the perimeter of the erosion zone in radians (see Figure 1), D is the diameter 
of the cylinder and nD is the width of the erosion zone.  Equation (6) then becomes 
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Combining Equations (3) and (6) gives the relationship between the rate of change of depth of 
the scour hole and the sediment transport 
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Equation (8) can be non-dimesionalized with respect to length and the non-dimensional scour 
depth can be defined as y = ds/dse.  Solving for dy/dt gives 
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Note that dy/dt has dimensions of time-1. To reduce the algebra, introduce the variable K, defined 
as follows:   
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This reduces the rate equation to the following form: 

K

q

dt

dy
=  .      (11) 

The next step is to decide on an appropriate sediment transport relationship.  Many formulas 
exist in the literature and it should be kept in mind that the shear stress in the erosion zone within 
the scour hole is highly episodic, due to the unsteady nature of the horseshoe vortex, and the 
flow has a strong downward component. Therefore, any formula developed for flow over a flat 
bed can only approximate a time mean transport in the scour hole.  Though somewhat arbitrary, 
the choice made here was that of Engelund and Hansen (1972), who based their sediment 
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transport formula on an energy balance.  This choice was based on both the simplicity of the 
formula and the use of an energy balance concept where an excess shear stress serves to mobilize 
the sediment which is then carried away by the near bed flow.  It is hoped that such a scheme 
will smooth out the effects of the episodic flow.  Thus, q in Equation (11) becomes 

( )cCq θ−θθ=  ,     (12) 

where ( )2
* 50  u sg -1 gD≡  is the non-dimensional bed shear stress (also known as the sediment 

number) and θc is the critical non-dimensional bed shear stress for the given sediment.  The 
coefficient, C, is assumed to be constant with time and depth for a given set of flow conditions.  
This is not the constant based on depth and sediment size in the Engelund and Hansen 
formulation.  Thus, equation (12) is not the actual bedload formula of Engelund and Hansen.  
The bed shear stress is actually an "effective" bed shear stress and may be thought of as the time 
averaged bed shear stress produced by the mean and secondary flows in the erosion area. 

Combining Equations (11) and (12) results in an equation for the time rate of change of the scour 
depth in terms of effective bed shear stress in the erosion area and the geometry of the scour 
hole,

( )
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= .      (13)

EFFECTIVE SHEAR STRESS BEHAVIOR 

The initial value of the non-dimensional bed shear stress in the erosion zone near the pile, θ0, can 
be related to the value on the flat bed upstream of the pile using the following reasoning.  For 
scour to be initiated at the structure, the local bed shear stress must exceed the critical shear 
stress for the sediment.  For circular piles, experiments show that the scour does not occur for 
values of upstream depth averaged velocity below approximately 0.45Vc.  In other words, the 
upstream depth averaged velocity must be approximately 0.45Vc in order for the velocity near 
the pile to be Vc and scour initiated.  Assuming that the bed shear stress (τ) is proportional to the 
depth averaged velocity squared, we find that   
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where τ0 is the bed shear stress at the pile prior to local scour and τu is the upstream bed shear 
stress.  In non-dimensional terms, θ0 = 4.9θu.

The value for the constant, C, in Equation (12) can now be estimated from experimental data by 
applying initial conditions to Equation (13).  Knowing the time history of the scour depth, dy/dt 
at t = 0 and K at t = 0 and y = 0 can be determined.  The value for C becomes 

( )c00

0

0

K

dt

dy
C

θ−θθ
= .      (14) 

Substituting this value into Equation (13) and calculating dy/dt from a known time history plot, 
an "effective shear stress" in the erosion area can be back calculated for each data set.  
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Many researchers (e.g. Sheppard et al., 1995; Ontowirjo, 1994; Melville and Sutherland, 1989) 
have found that equilibrium scour depths at circular piles can be adequately expressed in terms 
of the dimensionless quantities V/Vc, y0/D and D/D50.  It is reasonable to assume that the 
functional dependence of the effective shear stress on scour depth will depend on these same 
quantities.  In order to determine this functional dependence, time history scour depth data is 
needed from experiments where these quantities are varied; preferably, experiments where two 
of these groups are held constant while varying the third.  The data set used in this study 
provides the minimal data needed for this analysis.  More data is needed and is currently being 
acquired.

EXPERIMENTAL DATA USED IN THIS ANALYSIS 

All of the experimental data used in this investigation is from a study by Sheppard et al. (2002).  
A number of clearwater scour experiments were conducted in a large 6.1 m wide, 6.4 m deep, 
38.4 m long, flow-through type flume located in the USGS Laboratory in Turners Falls, 
Massachusetts. Three different circular piles (with diameters 0.915 m, 0.305 m, and 0.114 m), 
three different sediment grain sizes (D50 = 0.22 mm, 0.80 mm and 2.9 mm) and a range of water 
depths were investigated.  

The flow parameters monitored were flow discharge (indirectly), velocity, and water depth and 
temperature.  The scour depth was monitored with video cameras inside the piles and with arrays 
of acoustic transponders attached to the exterior of the piles, just below the water surface.  This 
system provided scour depth measurements at 12 locations along three radial lines throughout 
the experiments.  The tests lasted from 41 hours to 650 hours and were such that near 
equilibrium scour depth conditions were achieved.  Equilibrium scour depths were estimated by 
extrapolating the curve fit Equation (15), first used by Bertoldi and Jones (1998) and found by 
Sheppard et al. (2002) to adequately fit their data. 
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( ) ( )+

−+
+

−=
cdt1

1
1c

abt1

1
1atds ,    (15)

where a, b, c, d are constant coefficients determined from the data and t is time.  Table 1 
summarizes the results. 

Experiment numbers 7, 8, 9 and 10 (with D50 = 2.9 mm sediment and D = 0.914 m diameter pile) 
give the best information about the effects of the aspect ratio, y0/D, on the shear stress versus 
scour depth relationship. D/D50 is the same and V/Vc is nearly constant (0.78 – 0.89) for these 
experiments.  Normalized excess shear stress [shear stress in excess of the critical value, (θ-θc)] 
versus normalized scour depth plots for Experiments 7-10 are presented in Figure 4.  The excess 
shear stress is normalized by the maximum excess shear stress, (θp-θc), where θp is the peak 
shear stress, and the scour depth is normalized by the equilibrium scour depth, dse.

Figure 5 compares the results from Experiments 1 and 6 and illustrates the case where the aspect 
and velocity ratios are nearly constant and the normalized sediment size varies.  There were no 
tests in this data set with both D/D50 and y0/D constant and variable V/Vc.  The closest 
approximation of constant D/D50 and y0/D and variable V/Vc is between Experiments 7 and 11 
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(Figure 4, plot 1 and Figure 6, plot 1, respectively).  Though an effect from the aspect ratio 
difference is expected, since the shear decreases from Experiment 7 to Experiment 11 while the 
aspect ratio increases (an effect opposite to the trend of Figure 4), it can be assumed that this is 
the result of the reduction in V/Vc.  Also included in Figure 6 is a plot of Experiment 14 which 
illustrates the effect of large values of D/D50 and V/Vc, with an average value for the aspect ratio.

Table 1, Summary of Experiments 
exp D (m) D50 mm) y0 (m) V (m/s) V/Vc y0/D D/D50 dse/D

1 0.114 0.22 1.19 0.29 0.89 10.44 518 1.38 

2 0.305 0.22 1.19 0.31 0.96 3.90 1386 1.34 

3 0.915 0.80 1.27 0.40 0.85 1.39 1143 1.20 

4 0.915 0.80 0.87 0.39 0.84 0.95 1143 1.04 

5 0.305 0.80 1.27 0.39 0.82 4.16 381 1.41 

6 0.114 0.80 1.27 0.41 0.87 11.14 143 1.58 

7 0.915 2.90 1.22 0.76 0.89 1.33 315 1.51 

8 0.915 2.90 0.56 0.65 0.85 0.61 315 1.20 

9 0.915 2.90 0.29 0.57 0.83 0.32 315 1.05 

10 0.915 2.90 0.17 0.50 0.78 0.19 315 0.79 

11 0.915 2.90 1.90 0.70 0.75 2.08 315 1.28 

12 0.305 0.22 1.22 0.40 1.23 4.00 1386 1.28 

13 0.305 0.22 0.18 0.30 1.10 0.59 1386 0.95 

14 0.915 0.22 1.81 0.30 0.95 1.98 4155 1.06 

The general behavior of the shear stress with scour depth obtained by this method is consistent 
with descriptions of local scour processes published in the literature and observed by the authors 
of this paper.  Melville (1975) and Ettema (1980) described three phases of scour as an "initial 
phase" where the scour hole forms from the flat-bed condition, followed by the "principle 
erosion phase" where the horseshoe vortex grows rapidly in size and strength and settles into the 
scour hole.     Finally, the "equilibrium phase" occurs where the flow is no longer able to remove 
sediment.  Nakagawa and Suzuki (1975) gave a similar description with four stages: "1) scour 
near the side of the pier caused by tractive force of the main flow, 2) scour near the leading edge 
generated by a horseshoe vortex, 3) scour developed by the stable vortex flowing along the pier, 
and 4) reduction in scour rate due to decrease in transport capacity in the hole."   

The observed size and intensity of the horseshoe vortex prior to local scour is, in general, less 
than it is once the scour hole is formed.  Flow separation at the edge of the scour hole feeds 
energy to the vortex and increases both its size and strength.  It is logical that the shear stress will 
increase initially with scour depth and then at some depth start to decrease.  Ultimately, it must 
reach a value near the critical shear stress where the removal of sediment stops.  It also appears 
that the maximum obtainable size and strength of the horseshoe vortex is primarily a function of 
the pile diameter and the mean flow velocity.  The dependence on pile diameter is believed to 
diminish with increased pile diameter (Sheppard et al., 2002).  The rather abrupt change in the 
slope of the shear stress versus scour depth when the depth reaches about half the equilibrium 
value is thought to be the point when the horseshoe vortex is submerged in the scour hole.  The 
rate of shear stress decrease with scour depth is much less from this point to the equilibrium 
depth.
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The combined effects of the aspect ratio (normalized water depth, y0/D) and normalized velocity 
(V/Vc) on these processes can be seen in the sequence of plots in Figure 4.  As the water depth 
decreases, for a given pile size, the interference between the surface vortex (surface roller) and 
the horseshoe vortex increases.  This attenuates the strength of the horseshoe vortex and retards 
its ability to increase the shear stress as the scour hole initially progresses.  This also causes the 
shear stress to be reduced to near the critical value at about half of the equilibrium depth.  In the 
limiting cases of shallow water the rate of scour is very slow for the latter half of the depth.  An 
additional effect reducing the shear stress is the reduction in normalized velocity in this sequence 
of plots.  More data is needed to separate the effects of aspect ratio and velocity.  

The effects of normalized sediment size, D/D50 can be seen in the plots in Figure 5 and the first 
plot of Figure 4 (Experiment 7).  As the diameter of the pile is decreased (or the sediment size 
increased) the shear stress remains above the initial value for a greater portion of the scour hole 
development and the flatter portion of the curve becomes almost non existent.  Possible 
explanations for this behavior are given from the standpoint of changing pile size while keeping 
the sediment size constant and vice versa.  If the sediment diameter is fixed and the pile diameter 
allowed to decrease (thus decreasing the values for D/D50), as in going from Experiment 14 to 1 
to 7 to 6, the size of the horseshoe vortex in comparison with the pile diameter increases.  Thus a 
greater proportion of the scour hole is achieved before the vortex is submerged.  If the pile 
diameter is held constant and the sediment size is allowed to increase (thus decreasing the values 
for D/D50), the velocity must increase in order for V/Vc to remain constant.  With the increased 
velocity there is more energy available in the mean flow to feed the vortex and thus the shear 
stress remains above the initial value for a greater proportion on the scour hole. 

The data set used in this study is much less suitable for analyzing the effects of normalized 
velocity, V/Vc on the shear stress versus scour depth relationship.  There are no two experiments 
where both y0/D and D/D50 are held constant while varying the values of V/Vc.  There are, 
however, experiments with different values of V/Vc in which information for the V/Vc

dependency can be extracted if the above described effects of y0/D and D/D50 are taken into 
consideration.  In some cases, the effects of y0/D and D/D50 can even be assumed to have 
reached a limit (i.e. conditions are such that the dependency on y0/D and D/D50 is minimal).  
More data is being obtained to improve and verify the relationships developed and presented in 
this paper. 

In order to solve Equation (13) for a given situation the above described relationships must be 
expressed analytically.  The shear stress – scour depth relationship was divided into three 
segments.  The initial segment can be approximated by a parabola with its vertex at the peak of 
the curve and its y = 0 intersection at θ = θ0.  The second segment (from the peak to the point of 
sharp change in slope) can likewise be represented by a second parabola with its vertex also at 
the peak and going through the point where the slope of the curve changes abruptly (called the 
peak point with y = yb and θ = θb).  Finally, a straight line can be used to approximate the third 
segment.  The general equations for these segments are as follows: 

( )p1pp yya,yy0 −−θ=θ≤≤ , where 
2
p

0p

1
y

a
θ−θ

= ,  (16) 

and yp is the location of the peak. The second parabola can be expressed as 
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( )p2pbp yya,yyy −−θ=θ≤≤ , where 
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a
−

θ−θ
= .  (17) 

The final straight line segment can be expressed by the following equation:  

( )1ym,1yy 2cb −+θ=θ≤≤ .     (18) 

Empirical relationships for 
t=0
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, θp, yp, yb, and m2 were obtained from the data set and are 

given in the following equations:  
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Note that Equation (19) has dimensions of time-1 (specifically, hours-1) while Equations (20) 
through (23) are non-dimensional.  Figure 7 shows three shear stress curves calculated with 
Equations (16) through (18) and (20) through (23) plotted against the back-calculated shear 
stress curves.  The results are reasonable considering the extent of the data and the approximate 
nature of the curve fits. 

Using these relationships, Equation (13) was solved for the conditions of the experimental data 
using a simple fourth order Runga-Kutta technique.  Predicted, measured and curve fit of the 
measured scour depth time history plots for four of the experiments are given in Figures 8 and 9.  
The first plot in Figure 8 is the prediction with the least error and the second is the prediction 
with the greatest error.  The plots in Figure 9 are for experimental data sets with average error.  
Once again reasonable accuracy was achieved.   

Next a hypothetical prototype scale situation was examined.  A 10 m diameter circular dolphin 
located in cohesionless, uniform diameter sand (D50= 0.3 mm) in a water depth of 10 m is 
subjected to a steady, depth averaged flow velocity of 0.4 m/s (V/Vc = 1).  Sheppard’s Equation 
(Sheppard et al., 2002) was used to compute an equilibrium scour depth of 4.2 m.  The computed 
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scour depth as a function of time is shown in Figure 10.  The time required to reach 50% and 
90% of the equilibrium scour depth is approximately 13 days and 124 days, respectively.  This is 
only a hypothetical problem for which there is no measured data but the results appear to be 
reasonable based on the authors’ experience with prototype structures.  

CONCLUSIONS 

A method for estimating the rate at which local scour depths occur is badly needed by both 
researchers and practicing engineers.  Attempts to produce either an empirical or computational 
model for this purpose have been hampered by the complexity and unsteady nature of the flow 
and sediment transport processes involved.  Any practical attempt to analyze the time 
dependency of scour depths must, by necessity, work with time averaged and “effective” 
quantities such as shear stress.  The mathematical model developed as part of the work reported 
here is for the local scour at a single circular pile under clearwater scour flow conditions.  The 
model utilizes experimental data from a study by Sheppard et al. (2002) where time histories of 
scour depths were measured for a range of pile and sediment sizes and water depths and flow 
velocities.   

The resulting model does a reasonable job of predicting the time histories of the experiments on 
which it is based, as would be expected.  This does, however, show that the relationships 
developed for the dependency of the effective shear stress versus scour depth on the structure, 
sediment and flow parameters are close to those displayed by this data set.  In addition, the 
results of the hypothetical prototype scale example seem reasonable and are consistent with what 
the authors have observed in their field studies.  As more laboratory data is available the model 
can be fine tuned and improved. 

The next step is to extend the model to live bed scour conditions.  Good time history data for live 
bed scour tests is difficult to obtain and to interpret.  Adding the influx of sediment to the scour 
hole in the model will be easy.  The more difficult part will be in obtaining accurate effective 
shear stress versus scour depth information. 
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NOTATION

a1 directrix (x 4) for the initial shear stress curve parabolic approximation 
a2 directrix (x 4) for the second shear stress curve parabolic approximation 
D pile/cylinder diameter 
C transport function coefficient 
D50 median sediment diameter 
ds instantaneous scour depth 
dse equilibrium scour depth 
∆ds change in depth of scour in time ∆t
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m2 slope for the final shear stress curve linear approximation 
n width of the entrainment zone as a fraction of the pier diameter  
p sediment porosity 
Q the rate of transport of material by volume (m3/s) 
q the rate of transport of material by volume per unit width 
sg Sediment specific gravity (ρs/ρ)
V depth averaged upstream flow velocity 
V0 initial depth averaged flow velocity at the pile required to initiate scouring 
Vc depth averaged critical velocity 
V scour hole volume 
Vs volume of sediment solids 
Vw volume of water 
w the width of the area over which the sediment transport function acts 
y non-dimensional instantaneous scour depth (y = ds/dse)
y0 upstream water depth 
yp non-dimensional instantaneous scour depth at which the shear stress peak occurs 
yb scour depth at which the slope of the shear stress curve changes abruptly ("break") 
dy/dt time rate of scour in units of hours-1 

dy/dt|0 initial time rate of scour in units of hours-1 

 
βm half of the perimeter of the erosion zone in radians 

φ sediment angle of repose 

θ non-dimensional bed shear stress or sediment number, ( ) 50
2 gd1sgu −=θ ∗

θ0 initial non-dimensional shear stress at the pile required to initiate scouring 

θc critical non-dimensional shear stress 

θp peak non-dimensional shear stress 

θb shear stress value at which the slope of the shear stress curve changes abruptly 

θu upstream non-dimensional shear stress  

ρ density of water 

ρs density of sediment particle 

τ bed shear stress, 2u∗ρ=τ

τ0 initial bed shear stress at the pile required to initiate scouring 

τc critical bed shear stress 

τu upstream non-dimensional shear stress 
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Figure 4. Effects of aspect ratio and velocity ratio on effective (back-calculated) shear stress vs. 
scour depth. 
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Figure 5. Effective (back-calculated) shear stress vs. scour depth for experiments 1 and 6. 
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Figure 6. Effective (back-calculated) shear stress vs. scour depth for experiments 11 and 14. 
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Figure 7. Modeled and back-calculated normalized shear stress, (θ-θc)/ (θp-θc) vs. Scour Depth. 
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Figure 8. Fitted, modeled and measured normalized scour depth versus time for experiments 14 
(least error) and 10 (greatest error). 
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Figure 9. Fitted, modeled and measured normalized scour depth versus time for experiments 7 
and 8 (average error). 
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Figure 10. Computed scour depth versus time for a hypothetical prototype structure. 
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