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ABSTRACT 
 
Soil settlement leads to serviceability issues of ground infrastructure and is a threat to the stability of 
overlying structures. To recover the soil shear strength, microcapsules-based self-healing materials are 
proposed. The purpose of this paper is to review the various cementing cargos with a greater potential 
to be applied in soils. At first, the review briefly introduces microcapsules-based self-healing materials, 
the application of microcapsules in other engineering fields, and the significance and importance of 
applying self-healing approaches to ground engineering. Secondly, a summary of cementing cargos for 
soil stabilization is provided, including their properties and their effect on soil reinforcement. Finally, the 
last section discusses the encapsulation methods and corresponding cargos with the greatest potential 
to be applied to soil shear strength recovery. 
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1 INTRODUCTION 
 
Excessive soil settlement leads to serviceability issues in structures due to excessive primary and 
secondary consolidation, shrinkage of clay and formation of desiccation cracks, and damage of drainage 
and pipeline systems (Ike, 2005; Tsige et al., 2022). Such undesired effects can be minimized through 
the implementation of various ground improvement measures including compaction and soil stabilization 
with cementitious materials (Firoozi et al., 2017; Guetif et al., 2007). However, ground improvement 
methods cannot be used to ‘repair’ soils due to their disruptive nature and limited accessibility for 
maintenance (Harbottle et al., 2014). Therefore, other methods should be developed to recover soil 
shear strength, arrest soil deformation, and alleviate the damage of structures. 
 
There has been an ongoing interest in applying self-healing materials to repair the damage or recover 
the performance of degraded materials. Self-healing materials refer to the type of material that can fully 
or partially recover a functionality that is mediated by operational use without human intervention (Bekas 
et al., 2016; Kanellopoulos, 2022). Typical self-healing materials include microcapsules and hollow 
fibbers (Huang et al., 2010; Zhu et al., 2015). Self-healing materials have been applied in various types 
of infrastructure. Microcapsules-based self-healing materials have been synthesized to repair the 
microcracks and recover the mechanical strength of concrete (Alghamri et al., 2016). With the 
application of microcapsules, past results show a strength recovery of approximately 80% (Alghamri et 
al., 2016). Cargos of microcapsules used for concrete include polyurethane, epoxy resin, sodium silicate, 
and bacterial spores, among others. The repairing mechanism of polyurethane and epoxy resin is based 
in the polymerization and hardening of the cargo which fills micro-cracks in concrete (Feiteira et al., 
2016; Haiyan et al., 2012). For microcapsules with sodium silicate cargos, the healing property is based 
on the reaction between sodium silicate and calcium cations (Alghamri et al., 2016; Huang et al., 2011). 
For microcapsules with bacterial spores, cracking was repaired by the precipitation of calcium carbonate 
(Wang et al., 2014). In asphalt, sunflower oil has been encapsulated and applied in pavements and 
increased the crack-healing properties of asphalt (Norambuena-Contreras et al., 2019).  
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More recently, there have been developments on the application of microcapsules in cemented soils. 
Urea-formaldehyde microcapsules were fabricated by in-situ polymerization and mixed with cemented 
coral sand. The results indicate that the microcapsules can release their cargo when intersected by 
cracks or subjected to compression, leading to the filling and self-healing of the internal cracks (Xu et 
al., 2020). Microcapsules with a sodium silicate cargo were synthesized and their self-healing 
performance in a soil-cement mix cutoff wall was demonstrated. The embedded microcapsules were 
opened during cracking, releasing sodium silicate and healing the cracks with a 44% increase of its 
initial compressive strength (Cao et al., 2021). In other relevant studies, a retention criterion has been 
proposed for microcapsules mixed with granular soils under the influence of seepage (Chen et al., 2023).  
 
This review takes inspiration from research on self-healing approaches in cementitious materials and 
aims to investigate the potential cargo and encapsulation methods for soil shear strength recovery by 
microcapsules. The potential cargo, their properties, and past studies on soil stabilization were 
summarized. Besides, the potential methods to encapsulate the cargo were discussed. 
 
 
2 CORE MATERIALS 
 
The function of microcapsules’ cargos is to improve the soil geotechnical properties to meet engineering 
purposes (Afrin, 2017; Eme & Agunwamba, 2014; Tan et al., 2020). Soil stabilizers are potential 
candidates for microcapsules cargos and divide into calcium-based stabilizers, which include cement, 
lime, and fly ash, and other chemical stabilizers, including silica-based, polymer emulsions, and 
hardening oils. The properties of the stabilizers are presented in this section. 
 
2.1 Calcium-based stabilizers 
 
Powdered cement and lime are the most frequently used traditional chemical stabilizers (Tan et al., 
2020). Cement can be used to improve the soil strength and stiffness (Ramaji, 2012). Cement 
stabilization is applicable to most soils as the hydration reaction is not dependent on the water rather 
than the type of soil minerals (Afrin, 2017). Past studies showed soil stabilization by cement for sandy 
soils (Kennedy et al., 1987), clayey soils (Prusinski & Bhattacharja, 1999), and peat (Boobathiraja et al., 
2014). However, cement-based stabilization is not suitable in some conditions. For organic soils, the 
organic content affects the hydration reaction and decreases the soil stabilization strengths (Skels et 
al., 2013; Tan et al., 2020; Zulkifley et al., 2014). Also, For soils with pH less than 5.5, The hydration 
reaction is retarded, resulting in slower soil strength after the stabilization (Skels et al., 2013; Tan et al., 
2020). Lime is another type of calcium-based soil stabilizer which is a white or greyish-white, odorless, 
lumpy, very slightly water-soluble solid (Ramaji, 2012). The quicklime (CaO) can react with water and 
form slaked lime (Ca(OH)2). Both can be used for soil stabilization. The mechanism of lime based soil 
modification is based on cation exchange capacity, which transfers the soil structure and increases the 
soil strength(Afrin, 2017; Sherwood, 1993). Lime is suitable for the stabilization of clayey soils with 
medium to high plasticity but less suitable for granular soils (Little, 1995; Negi et al., 2013; Petry & Lee, 
1988). 
 
2.2 Silica-based stabilizer 
 
Silica-based soil stabilizer include sodium silicate and colloidal silica. Colloidal silica is an aqueous 
dispersion of silica nanoparticles with low initial viscosity and it is applied for grouting in soils and 
fractured rock (Wong et al., 2018). The colloidal silica was used in sandy soils and increased the 
unconfined compression test strength to 0.41 MPa (Persoff et al., 1999). Sodium silicate consists of 
silicate monomers and is considered as non-hazardous and environmentally safe. Sodium silicate have 
a higher viscosity compared to colloidal silica. The sodium silicate is proven to increase the strength of 
sand (Maher et al., 1994) but is less effective for organic soils (Kazemian et al., 2012). The mechanism 
of silica based soil stabilization is the reaction between silicate and calcium salt in soil or groundwater, 
which form calcium silicate and bonds the soil particles together. (Hurley & Thornburn, 1971).  
 
2.3 Resins and polymers 
 
Resins are applied to soils for mechanical improvement and waterproofing (Spagnoli, 2018). The main 
categories of resins are epoxy and polyurethane, which improve soil strength by forming strong polar 
bonds with the surfaces of soil particles it comes in contact with (Spagnoli, 2018). The resin showed a 
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strength enhancement in sand, which had an 8 MPa UCS value after 90 days of curing. Polymers were 
employed for the stabilization of bored piles. Past studies invested the soil strength increase by the 
addition of various polymers, including vinyl acetate, acrylic-based copolymer latexes, and styrene-
butadiene (SB) copolymer latex (Ohama, 1998). By mixing polymer with silty sand and curing for 28 
days, the soil samples have an average of 3.5 MPa UCS strength. The advantage of polymers-based 
stabilizers is that they have a strong cohesive strength and are non-polluting. However, the polymers 
are less effective to coat on the surface of fine-grained soils, and are limited to use in sandy soil (Tingle 
et al., 2007).  
 
2.4 Hardening oils 
 
The hardening of oils refers to the process of converting unsaturated esters of fatty acids into saturated 
esters by hydrogenation. One of the most common hardening oils is tung oil, which is obtained from the 
seeds of the tung tree. Ecotoxicity assessments revealed that tung oil had a minimal impact on soil 
microorganisms and was safe to use in soils (Lin et al., 2022). As fatty acids with multiple conjugated 
double bonds, the tung oil undergoes polymerization when exposed to air, which transfers from a liquid 
form into hard films (Dodiuk, 2021). As the tung oil was mixed with soil, the hardening of tung oil can 
effectively bond the soil particles, which contributes to soil cohesion and leads to a remarkable increase 
in the unconfined compressive strength of the soils (Lin et al., 2021). 
 
 
3 ENCAPSULATION METHODS 
 
3.1 Physical methods 
 
Pan coating and spray drying are the most common physical encapsulation methods. Pan coating is 
applied to create another shell on the surface of solid tablets, which is the oldest encapsulation 
technique. The shell of the microcapsule is produced by spraying the liquid form through a pressure 
nozzle, and the hardening of the shell through raising the environment temperature. The size of 
microcapsules produced by pan coating depends on the size of the solid tablets and is typically larger 
than 1 mm (de Koster et al., 2015). Smaller sizes can be reached by controlling the spraying of liquid 
and the rotation speed. Cement and lime are solid cargos and can be encapsulated with pan coating 
method. Figure 1 shows the microcapsules with cement cargo encapsulated with the pan coating 
method. 
 

 
 
Figure 1. Microcapsules produced by the pan coating method: (a) Photographs of microcapsules with 
cement cargo; (b) SEM image of microcapsule with cement cargo; (c) SEM image of ruptured 
microcapsule with cement cargo. 
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3.2 Chemical methods 
 
Interfacial polymerization and in suit polymerization are the most common physical encapsulation 
methods. The chemical encapsulation methods involve polymerization reactions to form the shell of the 
microcapsules. The lipophilic monomers are dispersed in oil, which is typically used as cargo. The 
hydrophilic monomers are dispersed in aqueous solutions. By emulsifying the cargo into aqueous 
solutions, the polymerization happened at the interface of the oil-in-water surface, which formed the 
shell of the microcapsules (Kanellopoulos et al., 2017). The reaction of in suit polymerization happened 
in the continuous phase, and there are no reactants in the core material. The polymerization of in suit 
polymerization method is typically triggered by the pH conditions of the continuous phase. The typical 
shell formed by in suit polymerization includes urea-formaldehyde, melamine-formaldehyde, and urea-
melamine-formaldehyde (Bakry et al., 2016; Bruyninckx & Dusselier, 2019; Kanellopoulos et al., 2017). 
Figure 2 (a) and (b) shows epoxy resin and tung oil encapsulated by the in-situ polymerization method 
with a urea-formaldehyde shell. A silicon-based cargo can also be encapsulated with the interfacial 
polymerization method. Sodium silicate has been encapsulated with the interfacial polymerization 
technique with a polyurea shell, as shown in Figure 2 (c) and (d). The results suggested that the cargo 
content (sodium silicate content) of the microcapsules could reach around 90% (Mao et al., 2020).  
 

 
 
Figure 2. Microcapsules with various cargo produced by chemical methods: (a) microphotograph of 
microcapsules with epoxy resin cargo produced by the in-situ polymerization method; (b) 
microphotograph of microcapsules with tung oil cargo produced by the in-situ polymerization method; 
(c) microcapsules with sodium silicate cargo produced by the interfacial polymerization method; (d) 
microcapsules with sodium silicate cargo produced by the interfacial polymerization method. 
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3.3 Physiochemical methods 
 
Complex coacervation is one of the physiochemical encapsulation techniques and popular in the food 
industry. The shell of microcapsules forms through the polymerization of two differently charged 
polymers. The typical polymers used for complex coacervation are gum arabic and gelatin. It produced 
a shell that is non-toxic and biodegradable. The advantage of complex coacervation is that it has a high 
encapsulation efficiency of cargos, reaching up to 99% (Timilsena et al., 2019). Complex coacervation 
can be applied to encapsulate: (1) hardening oils, which form the shell in the interface of oil and water 
phase (Timilsena et al., 2019), as shown in Figure 3 (a) and (b); (2) calcium-based powders, by 
dispersing the powder into oils and form microcapsules; (3) silica-based stabilizers, which form a water 
in oil emulsion and from the shell in the surface of the emulsion (Kanellopoulos et al., 2017), as shown 
in Figure 3 (c) and (d). Figure 3 (e) and (f) shows the SEM of microcapsules produced by the complex 
coacervation method. 
 

 
 
Figure 3. Microcapsules with various cargo produced by the complex coacervation method: (a) and 
(b) microcapsules with tung oil cargo; (c) and (d) microcapsules with sodium silicate cargo; (e) SEM 
image of microcapsules with tung oil cargo; and (f) SEM image of microcapsules with tung oil cargo 
mixed with sand particles. 
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4 CONCLUSIONS AND FUTURE WORK 
 
This review synthesizes the properties of potential cargos for soil shear strength recovery and presents 
the various encapsulation methods, encapsulation mechanism, and microcapsules properties used in 
allied fields. Soil stabilizers used in past research can be categorized into calcium-based stabilizers, 
silica-based stabilizers, resins and polymers, and hardening oils. The effects on soil shear strength 
increase of the stabilizers depend on the soil types. As a result, the soil types should be considered in 
the selection of microcapsules cargos. The encapsulation methods can be classified into physical, 
chemical, and physiochemical methods. So far, the application of microcapsules-based healing material 
is limited on cemented soils, which have similar properties to cementitious materials. For the application 
of microcapsules-based healing materials on soils, future work could encompass: (1) testing the 
encapsulation performance of various cargos that have been used in soil stabilization, (2) 
characterization of properties of the selected microcapsules, and (3) testing the mechanical properties 
recovery of different types of soils with suitable microcapsule.  
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