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ABSTRACT 
 
According to Darcy, Darcy’s velocity is proportional to the hydraulic gradient via hydraulic conductivity. 
Darcy’s law was initially developed to calculate the one-dimensional flow velocity through porous media. 
Darcy’s law has since been generalized by the scientific community to analyse 2D and 3D seepage flow. 
Because hydraulic gradient, and Darcy’s flow velocity are vectors hydraulic conductivity needs to be 
treated as a scalar for isotropic soils and or a tensor for anisotropic soils. In general, the tensor has 
three categories of major, intermediate, and minor principal hydraulic conductivity scalar values where 
the minor principal orientation is normal and the major and intermediate principal ones are aligned within 
the soil stratigraphic plane. Since, the soil is generally axisymmetric on mesoscale, within stratigraphic 
planes major and intermediate principal hydraulic conductivities are generally equal. In a case where 
the seepage is analysed in the orthogonal system of coordinates aligned with the three principal 
orientations of the tensor (e.g., stratigraphic and XY planes are both horizontal), the tensor can be 
assumed diagonal.  In this paper, a 2D finite-difference numerical model developed using the MATLAB 
interface, capable of simulating seepage through anisotropic soils employing a full nondiagonal 
hydraulic-conductivity tensor, to examine and analyse the characteristic impacts of considering 
nondiagonal tensors due to various degrees of stratigraphic tilt with respect to system of coordinates. 
 
Keywords: Seepage flow, nondiagonal hydraulic conductivity tensor, soil stratigraphy, finite-difference 
scheme, numerical model  
 
 
1 INTRODUCTION 
 
In nature, soil deposits are inherently anisotropic (He et al., 2022) but within the stratigraphic plane 
axisymmetric, caused by natural deposition or human activity such as tillage and field traffic (Pulido-
Moncada et al., 2021). Anisotropic soils' physical properties, such as hydraulic conductivity, structure, 
and strength, exhibit changes with the direction of measurement (Peng, 2011). For instance, naturally 
or artificially induced orientation of soil stratigraphic planes results in a variation in the hydraulic 
conductivity, commonly referred to as permeability, typically expressed as a tensor. Determination of its 
correct value is computationally costlier and not straightforward especially if the soil is anisotropic as in 
this case hydraulic conductivity in one direction could vary from other directions. Therefore, to accurately 
capture the impact of the orientation of soil stratigraphic planes on the seepage flow pattern-in the case 
the coordinate axes are not aligned with the stratigraphy-one needs to consider the impact of the 
relationship between the hydraulic conductivity tensor, the stratigraphic orientation, and the system of 
coordinates choice. In other words, to realistically simulate the change in the seepage flow pattern 
through anisotropic soil, a nondiagonal full tensor needs to be used to fully capture the characteristics 
of the nature of the hydraulic conductivity.  
 
However, in instances, to reduce computational cost, the nondiagonal members may be neglected. This 
approximation may be accurate in resident column or similar test where the flow is constrained to be 
one dimensional. Hence, for particular types of problems constrained to be 1D, the directional 
dependency of hydraulic conductivity has been disregarded, and the hydraulic conductivity has been 
treated as a scalar. For instance, in a recent study (Iradukunda & Farid, 2022), a 1D seepage numerical 
model was coupled with another numerical transport model to simulate the fate and transport of Per-
and Polyfluoroalkyl substances (PFAS) through vadose and saturated zones within soil,  incorporating 
advection-dispersion, air-water interface, and solid-phase adsorption, where hydraulic conductivity was 
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considered a scalar because the flow was assumed one dimensional. This 1D numerical model was 
used to simulate various scenarios of seepage and transport of PFAS, and output was validated against 
the experimental data found in the literature (Guo et al., 2020).  
 
For 2D or 3D cases of anisotropic soil, the impact of this approximation needs to be studied. For 
example, the fluid-flow equations that haves been used to simulate many commercial reservoirs rely on 
the assumption that nondiagonal elements of the tensor  can be neglected (Ertekin et al., 2001; Fanchi, 
2005), which results in erroneous flow calculations (Fanchi, 2008). In the case of reservoir systems, 
which are influenced by the hydraulic conductivity, Fanchi (2008) estimated the error that appears in the 
magnitude and direction of flow rate due to neglecting off-diagonal terms of the hydraulic conductivity 
tensor. Additionally, Fanchi (2008) provided a formula for appropriately calculating a 2D hydraulic 
conductivity tensor that can be applied for any plane rotation angle. 
 
Other researchers demonstrated that in most realistic settings, including rare fractured reservoir 
modelling (Gupta et al., 2001), geomechanics (Settari et al., 2001), and up-scaling (Young, 1999), full 
hydraulic conductivity tensors need to be considered unless the flow is aligned with the coordinate 
system, e.g., one where the XY plane is aligned within the stratigraphic plane. Even improper 
consideration of the full hydraulic conductivity tensor could result in inaccurate outcomes. In a recent 
study, the  full permeability (hydraulic conductivity) tensor of coal samples under different effective stress 
was calculated (Feng et al., 2020) in the sense of Mohr’s circles, which may be confusing if not 
misleading , especially the sign convention for its nondiagonal elements, in the scenario of tilted 
stratigraphic planes. Therefore, the proper accountability of the relationship between coordinates’ 
orientation and hydraulic conductivity tensor is essential to avoid inaccuracies in results. 
 
Even some of the well-established numerical approximation methods neglect nondiagonal terms in the 
hydraulic conductivity tensor in exchange for reduced computational cost. In a previous study (Cao et 
al., 2019), the effectiveness of two numerical schemes, namely the Two-Point Flux Approximation 
(TPFA) and MultiPoint Flux Approximation (MPFA), was investigated to model the incompressible 
single-phase flow in an anisotropic porous medium with a full hydraulic conductivity tensor. It was 
discovered that, while the TPFA demonstrated greater computational efficiency, failing to account for 
the off-diagonal terms in the hydraulic conductivity tensor caused an overestimation of the total flux and 
severe inaccuracies in calculating the pore-water pressure and flux in nondiagonal cases. 
 
In the present study, to simulate the seepage flow for various degrees of stratigraphic tilt with respect to 
the system of coordinates (XYZ), a 2D numerical model incorporating the finite-difference method has 
been developed where hydraulic conductivity has been treated as a full nondiagonal tensor. Various 
scenarios of 2D seepage flow have been simulated for different degrees of orientation of the planes to 
investigate and analyze the impact of nondiagonal elements of the hydraulic conductivity tensor. 
Graphical illustrations of the seepage flow in these cases with and without considering nondiagonal 
tensor elements are also shown in order to demonstrate how disregarding nondiagonal tensor terms 
replicates erroneous directions and values of seepage flows.  
 
The following sections will discuss some background of seepage and the mathematical development of 
the full hydraulic conductivity tensor and the mathematical formulations and the development of the 2D 
numerical seepage model, as well as results for a few scenarios with different degrees of stratigraphic 
tilt based on assumed constraints to illustrate the impact of nondiagonal components of the hydraulic 
conductivity tensor.  
 
 
2 BACKGROUND  
 
The following describes the background of seepage and the technique used to calculate the full 
anisotropic hydraulic conductivity tensor to enable evaluation of the impact of hydraulic conductivity on 
the seepage flow. 
 
2.1 Seepage 
 
In the presence of a hydraulic gradient, there will be flow. In the most general case, using conservation 
of mass, the governing equation of seepage can be found. In addition, assuming the density of water is 
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constant, the conservation of mass turns into the conservation of volume. For an element of soil, this 
results in the following equation for transient seepage (Fredlund & Rahardjo, 1993). 
 ∇⃗⃗ ∙ 𝑣 = − ∂θ∂𝑡,                                                                                                                                         (1) 

 
where 𝑣  is Darcy’s velocity, otherwise known as discharge velocity, 𝜃 = 𝑛𝑆𝑤 is the volumetric water 
content, where 𝑛 is the soil porosity and 𝑆𝑤 is the degree of water saturation.  
 
Variations in the volumetric water content can be found (Genetti Jr, 1999) as a function of the 
specific/elastic capacity (i.e., retention) of water, 𝑚𝑣, and temporal variations of the hydraulic head, ℎ resulting in: 
 ∇⃗⃗ ∙ 𝑣 = −𝑚𝑣 𝜕ℎ𝜕𝑡,                                                                                                                                    (2) 

 
where for unsaturated soils, the water-retention characteristics can be approximated to a two-segment 
polynomial with the two values for its slope, 𝑚𝑣 ≈ 0.001 𝑚−1 for unsaturated soils and 𝑚𝑣 ≈ 0.00001 𝑚−1 
for saturated soils. 
  
2.2 Full hydraulic conductivity tensor 
 

Darcy’s velocity 𝑣  is the discharge velocity of groundwater flow, which can be calculated from Darcy's 
law: 
 𝑣 = −𝑘𝑖 ,                                                                                                                                             (3) 
 

where 𝑘 is the hydraulic conductivity,𝑖 = ∇⃗⃗ ℎ is the hydraulic gradient, and ℎ is the total (hydraulic) head. 
The negative sign shows that the water moves from the higher total head toward a lower total head. 
Thus, Equation (3) can be rewritten as follows. 
 𝑣 = −𝑘∇⃗⃗ ℎ.                                                                                                                                           (4) 
 
If the soil is isotropic (𝑘 is the same in all directions), then 𝑘 could be treated as a scalar. If the soil is 
anisotropic, since hydraulic conductivity is different in different directions, 𝑘 needs to be treated as a 

tensor, 𝑘. 

 
Hence, if 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 are the velocity component in X, 𝑌, and 𝑍 directions, respectively, Darcy’s law 

can be written as follows.  
 

[𝑣𝑥𝑣𝑦𝑣𝑧] = − [𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧] [  
  𝜕𝜕𝑥𝜕𝜕𝑦𝜕𝜕𝑧]  

  ℎ,                                                                                                          (5) 

 
where 𝑘𝑥𝑥, 𝑘𝑦𝑦, 𝑘𝑧𝑧 are diagonal elements and 𝑘𝑥𝑦, 𝑘𝑥𝑧, 𝑘𝑦𝑥, 𝑘𝑦𝑧, 𝑘𝑧𝑥, and 𝑘𝑧𝑦 are nondiagonal elements 

of hydraulic conductivity tensor, 𝑘. The nondiagonal elements of 𝑘 are symmetric.  

 
If the system of coordinates is considered such that one plane (e.g., XY) is aligned with the stratigraphic 

plane on the mesoscale, the tensor 𝑘 can be assumed to be a diagonalized tensor. In other words, in 

these cases, seepage is analysed in an orthogonal system of coordinates aligned with the three axes 
of coordinates aligned with the three principal orientations (major: 𝑘1, intermediate:  𝑘2, and minor: 𝑘3)  

of the tensor 𝑘 in which, 𝑘3 is normal to the stratigraphic plane and 𝑘1 and 𝑘2 within stratigraphic planes. 

In most cases, soils are axisymmetric within the stratigraphic plane; hence, 𝑘1 and 𝑘2 are equal. Since 
the XY plane is almost always considered horizontal, and most soil stratigraphic planes are horizontal 
and axisymmetric, this represents most cases. 
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However, stratigraphic planes can be titled due to several reasons such as tectonic plate movements. 

In the case of tilted stratigraphic planes, nondiagonal elements of the hydraulic conductivity tensor 𝑘  

must be considered. In 2D, if 𝛼 is the angle of stratigraphic tilt, then the hydraulic conductivity tensor 𝑘 

will be nondiagonal and Darcy’s velocity will be: [𝑣𝑥𝑣𝑧] = − [𝑘𝑥𝑥 𝑘𝑥𝑧𝑘𝑧𝑥 𝑘𝑧𝑧] [ 𝜕𝜕𝑥𝜕𝜕𝑧] ℎ,                                                                                                                 (6)                                    

 

where 𝑘 = [𝑘𝑥𝑥 𝑘𝑥𝑧𝑘𝑧𝑥 𝑘𝑧𝑧],                                                                                                                                   
 
considering Equation (5), 𝑘𝑥𝑥and 𝑘𝑥𝑧 contribute to 𝑣𝑥 through the impact of the X and Z components of 
the hydraulic gradients, respectively. On the other hand, 𝑘𝑧𝑥 and 𝑘𝑧𝑧 contribute to 𝑣𝑧 through the impact 
of the X and Z components of the hydraulic gradients, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The schematic oblong rectangle (  ) shown on the figure represents the 

stratigraphic plane with a positive slope (used 𝛼 > 0°); 𝑘1 aligns with the length of the schematic 
rectangle, representing the stratigraphic plane orientation.  

 
In a 2D system of coordinates and the stratigraphic plane with a positive slope 𝛼 shown in Figure 1, 

positive values of (− 𝜕ℎ𝜕𝑥) and (− 𝜕ℎ𝜕𝑧) can be projected on the 𝑘1and 𝑘3 axes. Then, the flow velocities 

along the 1 and 3 directions can be simplified as follows. 
 𝑣1 = 𝑘1 [(− 𝜕ℎ𝜕𝑥) cos 𝛼 + (− 𝜕ℎ𝜕𝑧) sin 𝛼],                 (7a) 𝑣3 = 𝑘3 [(− 𝜕ℎ𝜕𝑥) sin 𝛼 + (− 𝜕ℎ𝜕𝑧) cos 𝛼].                 (7b) 

 
If the resultant of two vectors 𝑣1and 𝑣3 are found and projected onto the X and Z directions, 𝑣𝑥𝑥 and 𝑣𝑧𝑧 
can be computed and simplified as follows.  
 𝑣𝑥𝑥 = 𝑣1𝑥 + 𝑣3𝑥 = − [(𝑘1+𝑘32 ) + (𝑘1−𝑘32 ) cos 2𝛼] 𝜕ℎ𝜕𝑥 − [(𝑘1−𝑘32 ) sin 2𝛼] 𝜕ℎ𝜕𝑧.                                           (8a) 𝑣𝑧𝑧 = 𝑣1𝑧 + 𝑣3𝑧 = − [(𝑘1−𝑘32 ) sin 2𝛼] 𝜕ℎ𝜕𝑥 − [(𝑘1+𝑘32 ) + (𝑘1−𝑘32 ) cos 2𝛼] 𝜕ℎ𝜕𝑧.                                            (8b) 

 
Comparing Equations (8) and (6), 𝑘𝑥𝑥, 𝑘𝑧𝑧, 𝑘𝑥𝑧 , and 𝑘𝑧𝑥 for a 2D case, can be written in terms of 𝑘1 and 𝑘3, which agrees with what was found by (Fanchi, 2008).  
 𝑘𝑥𝑥 = (𝑘1+𝑘32 ) + (𝑘1−𝑘32 ) cos 2𝛼,                                                                                                        (9a) 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = (𝑘1−𝑘32 ) sin 2𝛼,                                                                                                              (9b) 𝑘𝑧𝑧 = (𝑘1+𝑘32 ) − (𝑘1−𝑘32 ) cos 2𝛼.                                                                                                        (9c) 

 
 
 

𝛼 > 0° 
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3 METHODOLOGY 
 
3.1 Mathematical formulation 
 
Substituting Darcy’s law into Equation (2), the governing equation of seepage can be found.  
 ∇⃗⃗ ∙ (−𝑘∇⃗⃗ ℎ) = −𝑚𝑣 𝜕ℎ𝜕𝑡 .                                                                                                                      (10) 

 
Then, for a 2D case, Equation (10) takes the following form. 
 − [ 𝜕𝜕𝑥 𝜕𝜕𝑧] [𝑘𝑥𝑥 𝑘𝑥𝑧𝑘𝑧𝑥 𝑘𝑧𝑧] [ 𝜕𝜕𝑥𝜕𝜕𝑧] ℎ = −𝑚𝑣 𝜕ℎ𝜕𝑡 ,                                                                                             (11) 

 
where hydraulic conductivity tensor 𝑘 whose elements for any orientation angle 𝛼 of soil stratigraphic 

planes are given by Equation (9). Equation (11) can then be simplified as follows. 
 − [𝜕𝑘𝑥𝑥𝜕𝑥  𝜕ℎ𝜕𝑥 + 𝑘𝑥𝑥 𝜕2ℎ𝜕𝑥2 + 𝜕𝑘𝑥𝑧𝜕𝑥  𝜕ℎ𝜕𝑧 + 𝑘𝑥𝑧 𝜕2ℎ𝜕𝑥𝜕𝑧 + 𝜕𝑘𝑧𝑥𝜕𝑧  𝜕ℎ𝜕𝑥 + 𝑘𝑧𝑥 𝜕2ℎ𝜕𝑧𝜕𝑥 + 𝜕𝑘𝑧𝑧𝜕𝑧  𝜕ℎ𝜕𝑧 + 𝑘𝑧𝑧 𝜕2ℎ𝜕𝑧2] = −𝑚𝑣 𝜕ℎ𝜕𝑡 .              (12)           

 
    
3.2   Numerical Modelling 
                                                                                                          
Using the MATLAB interface, a 2D numerical model was developed to solve the governing equation of 
transient seepage, Equation (10) to simulate the impacts of the nondiagonal 𝑘 tensor on the seepage 

flow for soils with tilted stratigraphic planes (i.e., there is a tilt between the X and 𝑘1 axes and, in turn, Z 
and 𝑘3 axes), types, and different orientations of soil stratigraphy. 
 
For our seepage model, two types of boundary conditions were considered: Neumann boundary 
conditions on most of the domain boundary, which stimulates impermeable boundaries, and Dirichlet 
boundary conditions at inlets and outlets, where hydraulic heads are constants: 𝐻1 and 𝐻2, respectively, 
to allow flow.  
 
The finite difference (FD) with the forward difference in time derivatives and first-order space derivatives 
and central difference in higher-order space derivatives to discretise the time and space domains in 
order to linearize Equation (12) to the following form. In Equation (13), superscripts (𝑡𝑘, 𝑡𝑘+1)represent 
time steps and subscripts (𝑖, 𝑗) represent space discretization. The implicit scheme was applied to ℎ on 

the left side of Equation (12) and all ℎ terms are considered at time 𝑡𝑘+1. Thus, ℎ𝑖,𝑗𝑡𝑘  represents the 

hydraulic head at Row 𝑖, Column 𝑗, i.e., Node (𝑖, 𝑗) in the space, and at time instance 𝑡𝑘; ℎ𝑖,𝑗𝑡𝑘+1 is the 

hydraulic head at Node (𝑖, 𝑗) at time 𝑡𝑘+1and so on. 
 𝑘𝑥𝑥(𝑖,𝑗)(∆𝑥)2 ℎ𝑖,𝑗−1𝑡𝑘+1 − (𝑘𝑥𝑥(𝑖,𝑗+1)−𝑘𝑥𝑥(𝑖,𝑗)(∆𝑥)2 + 2 𝑘𝑥𝑥(𝑖,𝑗)(∆𝑥)2 + 𝑘𝑥𝑧(𝑖,𝑗+1)−𝑘𝑥𝑧(𝑖,𝑗)∆𝑥∆𝑧 + 2 𝑘𝑥𝑧(𝑖,𝑗)∆𝑥∆𝑧 + 𝑘𝑧𝑥(𝑖+1,𝑗)−𝑘𝑧𝑥(𝑖,𝑗)∆𝑧∆𝑥 + 2 𝑘𝑧𝑥(𝑖,𝑗)∆𝑧∆𝑥 +𝑘𝑧𝑧(𝑖+1,𝑗)−𝑘𝑧𝑧(𝑖,𝑗)(∆𝑧)2 + 2 𝑘𝑧𝑧(𝑖,𝑗)(∆𝑧)2 + 𝑚𝑣(𝑖,𝑗)∆𝑡 ) ℎ𝑖,𝑗𝑡𝑘+1 + (𝑘𝑥𝑥(𝑖,𝑗+1)−𝑘𝑥𝑥(𝑖,𝑗)(∆𝑥)2 + 𝑘𝑥𝑥(𝑖,𝑗)(∆𝑥)2 + 𝑘𝑧𝑥(𝑖+1,𝑗)−𝑘𝑧𝑥(𝑖,𝑗)∆𝑧∆𝑥 ) ℎ𝑖,𝑗+1𝑡𝑘+1 + (𝑘𝑥𝑧(𝑖,𝑗)∆𝑥∆𝑧 +𝑘𝑧𝑥(𝑖,𝑗)∆𝑧∆𝑥 ) ℎ𝑖−1,𝑗−1𝑡𝑘+1 + 𝑘𝑧𝑧(𝑖,𝑗)(∆𝑧)2 ℎ𝑖−1,𝑗𝑡𝑘+1 + (𝑘𝑥𝑧(𝑖,𝑗+1)−𝑘𝑥𝑧(𝑖,𝑗)∆𝑥∆𝑧 + 𝑘𝑧𝑧(𝑖+1,𝑗)−𝑘𝑧𝑧(𝑖,𝑗)(∆𝑧)2 + 𝑘𝑧𝑧(𝑖,𝑗)(∆𝑧)2 ) ℎ𝑖+1,𝑗𝑡𝑘+1 + (𝑘𝑥𝑧(𝑖,𝑗)∆𝑥∆𝑧 +𝑘𝑧𝑥(𝑖,𝑗)∆𝑧∆𝑥 ) ℎ𝑖+1,𝑗+1𝑡𝑘+1 = − 𝑚𝑣(𝑖,𝑗)∆𝑡 ℎ𝑖,𝑗𝑡𝑘 ,                                                                                                                         (13)      

 
Diagonal elements of 𝑘: 𝑘𝑥𝑥(𝑖,𝑗), 𝑘𝑧𝑧(𝑖,𝑗), 𝑘𝑥𝑥(𝑖,𝑗+1), and 𝑘𝑧𝑧(𝑖+1,𝑗) are at Nodes (𝑖, 𝑗), (𝑖, 𝑗 + 1)and (𝑖 + 1, 𝑗) 
correspondingly, to account for the flow velocity in one direction based on the hydraulic gradient in the 
same direction whereas nondiagonal elements 𝑘𝑥𝑧(𝑖,𝑗), 𝑘𝑧𝑥(𝑖,𝑗), 𝑘𝑥𝑧(𝑖,𝑗+1), 𝑘𝑧𝑥(𝑖+1,𝑗) are at Nodes (𝑖, 𝑗), (𝑖, 𝑗 + 1)and (𝑖 + 1, 𝑗) accordingly to account for the flow velocity in one direction based on the hydraulic 
gradient in the orthogonal direction.   Here, 𝑖 = 1,2,⋯⋯ ,𝑀 and 𝑗 = 1,2,⋯⋯ ,𝑁 are the number of nodes 
in the vertical and horizontal directions, respectively. Values 𝑀 and 𝑁 are selected to be odd to allow a 
midpoint row to accommodate symmetry and calculated based on the horizontal length, 𝐿, and vertical 
length (thickness of soil), 𝑇.  
 

128



 
Impact of Nondiagonal Elements of Hydraulic Conductivity Tensor on Seepage through Anisotropic Soils 

 

The model simulates seepage flow for a domain consisting of two soil types deposited in two layers 
stacked up together with the same length, which can also be used to simulate the flow for a single layer 
of soil considering the fact that hydraulic conductivity for both of the types is the same. In addition, the 
code is flexible to simulate other scenarios, e.g., soil layers stacked either horizontally or vertically, and 
there could be any degree of tilt, 𝛼, of the soil stratigraphic planes with respect to the X (in this case 
horizontal) axis. 
 
However, for the selected values of hydraulic conductivity along the major principal orientations, 𝑘1, and 

minor principal orientations, 𝑘3, of 𝑘 for both soils, the hydraulic conductivity tensor elements were 

calculated using Equation (9). To ensure relative proper selection of space and time discretization 
resolution, the following mathematical expressions are used to approximate the horizontal space grid 
size, ∆𝑥, and vertical space grid size, ∆𝑧, for a given time step ∆𝑡. 
 ∆𝑥 = −𝑘𝑥𝑥 𝐻2−𝐻1𝐿 ∆𝑡, and 

∆𝑥∆𝑦 = √𝑘1𝑘3,                                                                                                                        (14)      

 
where 𝐻1 and 𝐻2 are constant hydraulic heads at inlets and outlets. In the case of two types of soils, the 
values 𝑘𝑥𝑥 , 𝑘1, and 𝑘3 are assumed to be the average of the corresponding values for the two soil types. 
 
In this model, in the case of unsaturated soil, with each time step, both diagonal and nondiagonal 
components of the hydraulic-conductivity tensor are updated using the following soil water-retention 
formula. 
 

 𝑘𝑝,𝑞 = 𝑘0𝑝,𝑞1+𝑎1|ℎ𝑝,𝑞−𝑧𝑝,𝑞|𝑎2,                                                                                                                        (15)  

 
where 𝑘0𝑝,𝑞 is the saturated hydraulic conductivity for the soil; two constant coefficients 𝑎1 = 1 and 𝑎3 =3 are used in this formula; 𝑘𝑝,𝑞, represents  𝑘𝑥𝑥, 𝑘𝑧𝑧 , 𝑘𝑥𝑧, and 𝑘𝑧𝑥 at Nodes 𝑝 = 𝑖 − 1, 𝑖, 𝑖 + 1,  𝑞 = 𝑗 − 1, 𝑗, 𝑗 + 1, and 𝑧𝑝,𝑞 is the elevation head at any Node (𝑝, 𝑞). 
 

The term ℎ𝑝,𝑞 in the denominator of Equation (15) can be considered at either of Times 𝑡𝑘, 𝑡𝑘+1, or an 

average of the two. In here, a scheme similar to the Crank-Nicholson scheme(Chávez-Negrete et al., 

2018) is used, and the average of  ℎ𝑝,𝑞𝑡𝑘 ,  and  ℎ𝑝,𝑞𝑡𝑘+1 ,  was used in Equation (15). 

 𝑘𝑝,𝑞 = 𝑘0𝑝,𝑞1+𝑎1| ℎ𝑝,𝑞𝑡𝑘 + ℎ𝑝,𝑞𝑡𝑘+1,2 −𝑧𝑝,𝑞|𝑎2.                                                                                                                        (16)       

 

Due to the presence of the unknown ℎ𝑝,𝑞𝑡𝑘+1 in the denominator of Equation (16), if Equation (16) is 

substituted in Equation (13), the resulting equation will be nonlinear, which will defeat the purpose of 
linearization to enable solving the system of linear equations. Hence, instead of solving this resulting 

equation, all coefficients 𝑘𝑝,𝑞 need to be found separately and substituted as known values in Equation 

(13) to maintain the linearity of Equation (13). Since neither ℎ𝑝,𝑞𝑡𝑘+1 nor 𝑘𝑝,𝑞 are known, 𝑘𝑝,𝑞 (𝑘 based on 

average values of ℎ for the time increment between 𝑡𝑘 and 𝑡𝑘+1) are found using a successive iteration 

scheme. Basically, for each time step, initially, 𝑘𝑝,𝑞 is found using only  ℎ𝑝,𝑞𝑡𝑘 , the solver is used to find ℎ𝑝,𝑞𝑡𝑘+1, then, 𝑘𝑝,𝑞 is updated using this newly calculated  ℎ𝑝,𝑞𝑡𝑘+1,  which is then used to solve and find 

updated 𝑘𝑝,𝑞.This successive iteration is continued until the code converges to the best answer for ℎ𝑝,𝑞𝑡𝑘+1 

and in turn, the best 𝑘𝑝,𝑞. Only then, the code is ready to advance (i.e., “march to the next step in time”) 
using ℎ𝑝,𝑞𝑡𝑘+1 through another successive iteration that converges to the best ℎ𝑝,𝑞𝑡𝑘+2 and corresponding 𝑘𝑝,𝑞 

(average for the increment between 𝑡𝑘+1 and 𝑡𝑘+2). This applies to all elements of the hydraulic 
conductivity tensor. The code then advances to all following time steps. The total head at each time and 
space node is used to calculate Darcy’s velocity and pore-water pressure values.  
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4 RESULT  
 
4.1 Problem setup 
 
The developed 2D transient seepage numerical model outlined above was used to analyse the impacts 
of nondiagonal components of the hydraulic conductivity tensors in an anisotropic soil on seepage flow 
for various stratigraphic tilts. Several scenarios were simulated based on variations of inlet and outlet 
combinations as well as single and double layers of soil where each of the scenarios has been simulated 
for both considering and neglecting nondiagonal elements of the hydraulic conductivity tensor to 
visualize the error in the directions of flows associated with disregarding the tensor’s nondiagonal terms. 
Figure 2 shows the schematic diagram of the model with different inlet and outlet combinations on the 
boundary walls. 
 
  

 
 

 

                            
    
    (a)                                                        (b)                                                    (c) 

Figure 2. Schematic of diagram of the model for combinations of (a) a mid-point inlet on the left vertical 
boundary and three outlets on the right vertical boundaries (one at the midpoint and two at the top and 
bottom corners); (b) a mid-point bottom inlet on the left boundary, and three outlets at mid- and both 
endpoints of the top boundary, (c) an upstream (inlet) and an downstream(outlet) at the top boundary.  
 
The following is considered for all of the scenarios: (i) initially soil is unsaturated with total head, ℎ = 0 
(capillary rise and suction exists at all elevations); (ii) except for inlets and outlets, all other boundaries 
of soil are impermeable; (iii) initial hydraulic heads at the inlet(s)  𝐻1 = 7 𝑚 and at outlet(s)  𝐻2 = 3 𝑚, 
(iv) each scenario was analysed for 1000 seconds at time step of ∆𝑡 = 10 seconds; (v) the horizontal 
length 𝐿 and vertical length (thickness) 𝑇 of soil assumed to be 2.1 𝑚 and 2 𝑚, respectively.   
 
In the following subsections, more specifics for these scenarios will be described followed by results and 
analysis. 
 
4.2 Simulation result 
 
Due to limited space, the following only shows a couple of scenarios though the model was tested for 
numerous other scenarios.  
 
4.2.1 Scenario 1: single layer soil with no stratigraphic tilt  
 
The first case is a simple one, where seepage flow is simulated through an anisotropic soil with no tilt 

between the soil stratigraphic plane and the horizontal X axis, i.e., 𝛼 = 0°, with a major principal hydraulic 
conductivity value of 𝑘1 = 5.5 × 10−3 𝑚/𝑠 and a minor principal hydraulic conductivity value of 𝑘3 =1.5 × 10−3 𝑚/𝑠  of the hydraulic conductivity tensor 𝑘. Here, a mid-point inlet on the left vertical boundary 

and three outlets on the right vertical boundaries (one at the midpoint and two at the top and bottom 
corners) were considered. 

Outlets 
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Figure 3. Flow velocity vectors and equipotential lines when 𝛼 = 0°, hence, nondiagonal hydraulic 
conductivity, i.e., 𝑘𝑥𝑥 = 𝑘1, 𝑘𝑧𝑧 = 𝑘3, and 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = 0. A midpoint inlet on the left boundary and three 
outlets on the right-side boundary. The schematic oblong rectangle (  ) shown on the figure 

represents the stratigraphic plane with slope 𝛼 = 0°; 𝑘1 aligns with the length of the schematic 
rectangle.  

 
In the case of Figure 3, there is the hydraulic conductivity tensor is actually diagonal; hence, the 

nondiagonal elements are actually zero (𝑘𝑥𝑧 = 𝑘𝑧𝑥 = 0) when 𝛼 = 0°.  
 
4.2.2 Scenario 2: single layer soil with a tilted stratigraphic plane 
 

 
(a) 

 
 

 
 
 
 
 
 
 
 
 

(b)       (c) 
 
 
                                   (b)                                                                                  (c) 

Figure 4. Flow velocity vectors and equipotential lines for (a) erroneously diagonalized hydraulic 

conductivity tensor when 𝛼 = −20° and 20°; (b) correct nondiagonal hydraulic conductivity tensor used 

for the case with 𝛼 = −20° (c) correct nondiagonal hydraulic conductivity tensor used for the case with 𝛼 = 20°. A midpoint inlet on the left boundary and three outlets on the right-side boundary. The 
schematic oblong rectangle (  ) shown on the figures represent the stratigraphic plane with 
their corresponding slope 𝛼; 𝑘1 aligns with the length of the schematic rectangle.  
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In this scenario, there is a tilt for all cases; hence, the hydraulic conductivity tensor where  𝑘𝑥𝑥 < 𝑘1, 𝑘𝑧𝑧 > 𝑘3, and 𝑘𝑥𝑧 = 𝑘𝑧𝑥 ≠ 0. Figures 2b and 2c show the results for 𝛼 =  20° and 𝛼 =  −20°, respectively 
where all nonzero values of nondiagonal elements (𝑘𝑥𝑧 and 𝑘𝑧𝑥) for the two cases are correctly 
considered nonzero. In these two cases, 𝑘𝑥𝑥 and 𝑘𝑧𝑧are the same. Hence, if the cases are erroneously 
diagonalized (𝑘𝑥𝑧 and 𝑘𝑧𝑥 are forced to zero), and the same erroneous result is created for both cases.  
 

As seen from Figure 4, in the case of a tilt above the horizon (𝛼 = 20°) and down (𝛼 = −20°) titled 
stratigraphic plane, disregarding nondiagonal tensor terms (erroneously forced 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = 0) leads to 
an erroneous seepage flow pattern that is symmetric across a horizontal axis of symmetry while the soil 
stratigraphy in neither case guarantees symmetry. However, correcting considering nonzero 
nondiagonal elements correct seepage pattern on both cases that are asymmetric following the 
stratigraphic tilt, i.e., flow tilted downward for 𝛼 =  −20° and tilted upward for 𝛼 =  20°. The values of 
the nondiagonal elements are 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = −1.3 × 10−3 𝑚/𝑠 and 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = 1.3 × 10−3 𝑚/𝑠respectively. 
 
4.2.3 Scenario 3: tilted single layered soil stratigraphic plane with inlet at the bottom and outlets at 
the top 
 

A case with one soil type with a stratigraphic plane at (𝛼 = 15°) with 𝑘1 = 4.5 × 10−3 𝑚/𝑠 and 𝑘3 =2.5 × 10−3 𝑚/𝑠 with a midpoint bottom inlet and three outlets at mid- and both endpoints of the top 
boundary is considered. For this problem setup, the full hydraulic conductivity tensors’ diagonal 
elements are 𝑘𝑥𝑥 = 4.4 × 10−3 𝑚/𝑠 and 𝑘𝑧𝑧 = 2.6 × 10−3 𝑚/𝑠, whereas nondiagonal elements are 𝑘𝑥𝑧 =𝑘𝑧𝑥 = 5.0 × 10−4 𝑚/𝑠. Based on forced diagonalized (erroneous approximation) and exact nondiagonal, 

i.e., full hydraulic conductivity tensors 𝑘, the following simulations are generated. 

 

 
(a)       (b) 

Figure 5. Flow velocity and equipotential lines for the seepage flow considering, (a) forced 
diagonalized (erroneous approximation); (b) nondiagonalized (exact) hydraulic conductivity tensor 
with 𝛼 = 15°, a mid-point bottom inlet on the left boundary, and three outlets at mid- and both endpoints 
of the top boundary. The schematic oblong rectangle (   ) shown on the figures represent the 
stratigraphic plane with their corresponding slope 𝛼; 𝑘1 aligns with the length of the schematic 
rectangle.  

 
It is evident that as the stratigraphic plane is slanted above the horizontal plane, seepage flow contour 
lines should also be slanted. As a result, the flow patterns depicted in Figure 5(a) are inaccurate because 
only diagonal elements are considered (while nondiagonal elements are omitted), while Figure 5(b) is 
accurate since it takes into account both diagonal and nondiagonal elements of the tensor. 
 
4.2.4 Scenario 4: concrete dam with single soil type with a tilted stratigraphy  
 
For this scenario, a concrete dam with an upstream lake and a downstream lake as inlets and outlets at 
the top and a stratigraphic plane of soil tilted below the horizon with an angle 𝛼 = −10° and hydraulic 
conductivity values along the major principal orientation 𝑘1 and minor principal orientation 𝑘3 of the 

hydraulic conductivity tensor 𝑘 are the same as the previous scenario. Illustrations based on the 

neglecting and considering nondiagonal elements of 𝑘 are shown in Figure 6. 
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(a)       (b) 
Figure 6. Flow velocity and equipotential lines for the seepage flow considering, (a) a forced 
diagonalized (erroneous approximation) and (b) nondiagonalized (exact) hydraulic conductivity tensor 
with 𝛼 = −10°. The schematic oblong rectangle (           ) shown on the figures represent the 
stratigraphic plane with their corresponding slope 𝛼; 𝑘1 aligns with the length of the schematic 
rectangle. 
 

Since the soil stratigraphic plane is tilted below the horizon, the seepage flow directions should not be 
symmetric. Thus, it is clear from Figure 6(a) that off-diagonal elements, 𝑘𝑥𝑧 = 𝑘𝑧𝑥 = −3.4202 × 10−4 𝑚/𝑠 

of the tensor 𝑘 must be considered to simulate the flow directions correctly to result in Figure 6(b). 

 
 
5 CONCLUSIONS 
 
In this paper, a 2D numerical modelling framework for simulating seepage flow was developed. 
Employing this 2D numerical model, several scenarios of seepage flow through unsaturated soil 
considering both the approximated diagonalized and exact nondiagonal (full) hydraulic conductivity 
tensors based on variations in the degree of the soil stratigraphic plane(s) tilt, the number of inlets and 
outlets and their positions, the values of hydraulic conductivity along the minor and major principal 
orientations, and the orientations of soil layers. All these scenarios demonstrate how ignoring 
nondiagonal terms results in incorrect seepage flow simulation. Unless the flow is aligned with a 
diagonalized coordinate system (i.e., X and/or Z axes are aligned with 𝑘1 or 𝑘3), a full hydraulic 
conductivity tensor that includes both diagonal and nondiagonal elements must be taken into account 
to accurately simulate seepage flow, as in the case of flow simulation for reservoir systems (Fanchi, 
2008). While this 2D model and the enforced assumptions allow for a demonstration of how the 
nondiagonalized hydraulic conductivity tensor impacts seepage flow, a 3D model is necessary to 
simulate more realistic circumstances.  
 
 
REFERENCES 
 
Cao, J., Gao, H., Dou, L., Zhang, M., & Li, T. (2019). Modeling flow in anisotropic porous medium with full 

permeability tensor. Journal of Physics: Conference Series, 1324(1), 012054. https://doi.org/10.1088/1742-
6596/1324/1/012054 

Chávez-Negrete, C., Domínguez-Mota, F. J., & Santana-Quinteros, D. (2018). Numerical solution of Richards’ 
equation of water flow by generalized finite differences. Computers and Geotechnics, 101, 168–175. 
https://doi.org/10.1016/j.compgeo.2018.05.003 

Ertekin, T., Abou-Kassem, J. H., & King, G. R. (2001). Basic Applied Reservoir Simulation. 
http://store.spe.org/Basic-Applied-Reservoir-Simulation--P12.aspx 

Fanchi, J. R. (2005). Principles of Applied Reservoir Simulation. Elsevier. 

Fanchi, J. R. (2008). Directional Permeability. SPE Reservoir Evaluation & Engineering, 11(03), 565–568. 
https://doi.org/10.2118/102343-PA 

133



 
Impact of Nondiagonal Elements of Hydraulic Conductivity Tensor on Seepage through Anisotropic Soils 

 

Feng, R., Chen, S., & Bryant, S. (2020). Investigation of Anisotropic Deformation and Stress-Dependent Directional 
Permeability of Coalbed Methane Reservoirs. Rock Mechanics and Rock Engineering, 53(2), 625–639. 
https://doi.org/10.1007/s00603-019-01932-3 

Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons. 

Genetti Jr, A. J. (1999). Groundwater Hydrology. CORPS OF ENGINEERS. 
https://apps.dtic.mil/sti/citations/ADA402479 

Guo, B., Zeng, J., & Brusseau, M. L. (2020). A Mathematical Model for the Release, Transport, and Retention of 
Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone. Water Resources Research, 56(2), 
e2019WR026667. https://doi.org/10.1029/2019WR026667 

Gupta, A., Penuela, G., & Avila, R. (2001). An Integrated Approach to the Determination of Permeability Tensors 
for Naturally Fractured Reservoirs. Journal of Canadian Petroleum Technology, 40(12). 
https://doi.org/10.2118/01-12-02 

He, Y., Li, Z., Wang, W., Yuan, R., Zhao, X., & Nikitas, N. (2022). Slope stability analysis considering the strength 
anisotropy of c-φ soil. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-20819-y 

Iradukunda, P., & Farid, A. (2022). Multiphysics Numerical Modeling of Transient Transport of PFAS. 149–158. 
https://doi.org/10.1061/9780784484050.016 

Peng, X. (2011). Anisotropy of soil physical properties. Encyclopedia of Agrophysics, 55–57. 

Pulido-Moncada, M., Labouriau, R., Kesser, M., Zanini, P. P. G., Guimarães, R. M. L., & Munkholm, L. J. (2021). 
Anisotropy of subsoil pore characteristics and hydraulic conductivity as affected by compaction and cover crop 
treatments. Soil Science Society of America Journal, 85(1), 28–39. https://doi.org/10.1002/saj2.20134 

Settari, A., Walters, D. A., & Behie, G. A. (2001). Use of Coupled Reservoir and Geomechanical Modelling for 
Integrated Reservoir Analysis and Management. Journal of Canadian Petroleum Technology, 40(12). 
https://doi.org/10.2118/01-12-04 

Young, L. C. (1999). Rigorous treatment of distorted grids in 3D. 207–220. http://pascal-
francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6225125 

   

134



INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

The paper was published in the proceedings of the 9th 
International Congress on Environmental Geotechnics 
(9ICEG), Volume 3, and was edited by Tugce Baser, Arvin 
Farid, Xunchang Fei and Dimitrios Zekkos. The conference 
was held from June 25th to June 28th 2023 in Chania, Crete, 
Greece. 

https://www.issmge.org/publications/online-library

