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ABSTRACT  

The use of bender element is one of the most popular methods of determining shear wave velocity, and hence elastic shear 

modulus due to its relatively straightforward experimental set-up. While several analysis methods have been proposed, 

manual interpretation using the first arrival continues to be favoured owing to its simplicity. This paper presents a novel 

automated program for determining the shear wave velocity and associated maximum shear modulus. The proposed new 

method involves the use of Convolutional Neural Networks (CNNs) to predict the most probable shear wave velocity 

using a range of input frequencies as the inputs. Estimates made by the trained CNN are compared to values determined 

using more traditional interpretation methods (first-arrival, cross-correlation and frequency domain). The program is able 

to autonomously determining the shear modulus in the three principal orientations (���, ���, and ���) at a range of stress 

levels. The shear modulus determined using the range of techniques showed great agreement. Statistical analysis of the 

determined shear modulus regression of over 0.99 between interpretations made using first arrival and that estimated 

using the new CNN approach. 
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1. Introduction 

It is now well known that the stress-strain behaviour 

of soil is highly non-linear and the shear modulus, �, 

may decay with strain by orders of magnitude. This has 

led to the development of methods of analysis for 

geotechnical structures that routinely takes into stiffness 

nonlinearity into account.  The shear modulus at small 

strains near the start of loading is ��. While it is possible 

to measure soil stiffness in the small strain range using 

local instrumentation, it is much easier to measure soil 

stiffness using dynamic methods. One of the most 

widely used methods for estimating the small strain 

shear modulus is to make use of bender elements (BE), 

small piezoceramic devices that can generate and detect 

waves in the soil. Using BE, the maximum shear 

modulus can be indirectly determined by estimating the 

travel time, ���� , of a shear wave between two piezo-

ceramic plates embedded in the sample. It is well known 

however that the accuracy of determined �� is largely 

dependent on the interpretation method of the travel 

time.  

Since the development of BE test in the late 1970s 

(Shirley and Hampton, 1978), many researchers have 

been dedicated to seeking a scientific interpretation 

method of the shear wave velocity. The most currently 

used methods can be divided into two main parts: time 

domain (TD) and frequency domain (FD). TD method 

directly measures the time lag among input and output 

signals, whereas the FD method determines the arrival 

time from the inclination of the unwrapped phase 

spectrum by assuming a non-dispersion Soil-BE system. 

An alternatively TD method, the cross-correlation (CC) 

method has been developed to measure the correlation 

between the input excitation signal and the received 

signal. These approaches do however give a range of 

travel times due to a number of issues related to signal 

interpretation, such as NFE, wave reflection, wave 

dispersion in the specimen, and the discrepancies in 

frequency component and waveform between two 

signals (Greening and Nash, 2004; Gu, X. et al., 2015; 

Viana da Fonseca et al., 2009; Yamashita et al., 2009; 

Yang and Gu, 2013). More recently, new approaches 

have been developed to overcome some of these 

deficiencies, such as applying the Akaike information 

criterion to automatically detect the shear wave arrival 

time (Finas et al., 2016) or using wavelets to transform 

signals into an easy-handle state (Fernández Lavín and 

Ovando Shelley, 2020). While these newer approaches 

are recognised as having the potential to improve the 

accuracy of the determined shear wave travel time, the 

interpretation process becomes increasingly complex.  

Machine learning (ML) algorithms are seen as an 

alternative, more robust method for determining the 

travel time of a shear wave in routine tests using BEs. 

As the use of neural networks for signal data processing 

have been shown to be highly effective in other fields, 

such as speech recognition, real-time electrocardiogram 

monitoring, and damage detection based on vibration 

signals (Kiranyaz et al., 2019), this paper will present an 

implementation of a Convolutional Neural Network 

(CNN) algorithm in the determination of shear wave 

velocity using BEs in a triaxial apparatus. It will be 

shown that the CNN algorithm provides a reliable and 

consistent estimate of the shear wave velocity using 



independent sets of training, validation and testing 

input/output BE signals. 

2. Description of laboratory test 

In BE test, the small-strain shear modulus of the soil 

sample is simply related to the velocity of the shear 

wave, 	
, and the bulk density of the soil sample, ��: 

�� � �� ⋅ 	

� (1) 

The shear wave velocity, 	
, is given by: 

	
 � � ����⁄  (2) 

where L is shear wave travel distance (tip-to-tip 

distance) and ����  is the interpreted shear wave travel 

time. The shear wave travel time can be determined 

using either a time domain or frequency domain 

approach. For more details on these methods, refer to 

Viggiani and Atkinson (1995) or Yamashita et al., 

(2009). 

Bender element tests were performed in a 100mm 

Bishop and Wesley triaxial apparatus equipped with 

pairs of BEs mounted in the base pedestals and across 

the mid-height of the specimen to generate and detect 

shear waves in three orientations, namely, waves 

propagating vertically with horizontal vibration (	��), 

waves propagating horizontally with vertical vibration 

(	��)  and waves propagating horizontally with 

horizontal vibration (	��) . The bender elements are 

measured to have a length of 5mm beyond the face of 

the housing. A TiePie Handyscope HS5 High 

Resolution Oscilloscope with arbitrary function 

generator provided excitation of the bender elements. 

Input signals, with an amplitude of 20V, were used for 

to generate the shear wave. The TiePie Handscope was 

controlled using a bespoke Python script which 

automatically varied the input waveform and stacked a 

user defined number of outputs received signal. In this 

study, 10 stacked received signals was found to result in 

a sufficiently clear waveform for interpretation. A 

variety of continuous and pulsed input waveforms were 

used in this study. Four different types of input signals 

at a range of frequencies, as shown in Fig. 1, are used: a 

single sine wave, square wave, triangle wave and a 

sweep of sine waves, commonly referred to as a chirp 

waveform.  

A 100mm diameter by 200mm high intact sample of 

London Clay was fitted with the three pairs of bender 

elements and isotopically consolidated from an initial 

isotropic effective stress of 92 kPa to a maximum of 400 

kPa by slowly ramping the cell pressure at a rate of 

1kPa/hr. Hold stages at 100, 150, 200, 250, 300 and 400 

kPa isotropic effective stress were defined in order for 

the bender element data to be collected.  

3. Convolutional neural networks (CNNs) 

3.1. Data samples preparation 

Bender element test data was obtained by recording 

and pairing the input and received signals from opposing 

elements in the three orientations. At the end of each 

consolidation stage, 15 different input frequencies were 

tested to form a single set of data for each signal 

waveform with 4 sets of data being collected for each 

type of input signal. The signal data were subsequently 

divided into a training, validation and test data set in a 

ratio of 2:1:1 in order to calibrate and test the ML 

algorithm. 

Besides the paired signals, a labelled value was 

required for each data sample to enable the CNN to learn 

and modify its weights and biases during the training. 

To develop a CNN that can make predictions on the 

�� of the soil sample, the attached label value should 

reflect the best-estimated �� of the soil sample.  

As �� is an intrinsic property of the soil specimen 

and is independent of the type of input signals and 

interpretation technique employed, a constant best-

estimated �� using the first arrival method at an optimal 

frequency was assigned to all paired signals for a given 

consolidation stage and measured orientation. 

An appropriate input sine frequency for the first 

arrival technique in order to minimise signal distortion 

effects, near field effects (NFE) and wave attenuation 

(Dyvik and Madshus, 1985; Blewett et al., 2000, 

Kawaguchi et al., 2016; Ogino et al., 2015; Sanchez-

Salinero et al., 1986; Styler and Howie, 2013; Viggiani 

and Atkinson, 1995; Yamashita et al., 2009). Fig. 2 

presents three sets of bender element signals at 

increasing frequencies in the horizontal orientation with 

vertical propagated at 300kPa. The clarity of the 

received signal is shown to vary with input frequency, 

as expected. The most stable received signal is shown in 

Fig. 2 (b). In contrast, Fig. 2 (a) shows an intense 

vibration around the shear wave arrival point caused by 

NFE, while the output signal in Fig. 2 (c) fails to 

maintain a reasonably sinusoidal waveform due to wave 

attenuation. The clarity of the received signal is noted to 

remain approximately constant with additional stacking. 

In this paper, 4 kHz, 7 kHz, and 7 kHz are determined 

as the optimal frequency for vh, hh, and hv orientations 

respectively. Signals measured at these frequencies 

resulted in the clearest signals and therefore provided 

the greatest confidence in estimated shear wave 

velocity. The travel distance to wavelength ratio was 

noted to be approximately 4 for all orientations. The 	
, 

and hence ��, values determined at these frequencies 

are assumed to be the best-estimated 	
 and should be 

taken as label values assigned to data samples. 

3.2. Architecture of CNNs 

Traditional CNNs are generally 2D and are used for 

image recognition, with 2D image data serving as the 

input layer. However, as data samples collected in the 

BE test are composed of 1D amplitude data based on 

time series 1D CNNs are introduced to receive the signal 

data measured from the BE test. 

 Input and output layer 

The time range for both the input and received signal 

was set to 2ms with a total 10,000 data points being 

recorded for each signal. In this study, input and output 

signals were included as 1D datasets containing 10,000 

data points. Accordingly, the input layer is supplied with 

signal information of size 10,000 × 2. The “10,000” 



refers to the length of signal data while “2” stands for 

the two channels involved, the input signal channel 

(Channel-I) and output signal channel (Channel-O), as 

shown in Fig. 3.  

The output layer of CNNs adopted in this paper is 

designed to estimate the travel time of shear wave for 

each given input-output signal pair so that it is 

constituted by one single output unit. 

 
Figure 1. Schematic diagram of the input signals. (a): sin-wave signal, (b): triangle-wave signal, (c): square-wave signal, and (d): 

chirp-wave signal 

 
Figure 2. Comparison on ��� signal data with different input frequencies. (a): 1 kHz, (b): 6 kHz, and (c): 15 kHz 

 

 Other layers 

The main advantage of choosing an CNN algorithm 

has been the availability of the hidden layers to aid in 

the interpretation complex data sets over traditional ML 

methods (Tang et al. 2020). In general, the components 

of a CNN are the input layer, convolutional layer, 

pooling layer, activation layer, fully-connected layer 

and output layer, as shown in Fig. 4. Table 1 describes 

the hidden layers employed in the CNN algorithm for 

feature extraction and imputation. The exact 

implementation of the CNN can be found in Wenzhang 

(2022). 

To evaluate the extent to which the predicted 	
 of 

the CNNs differs from the best-estimated 	
 , Mean 

Squared Errors (MSE) is adopted as the loss function for 

CNN training in this study. 

 

 
Figure 3. The composition of the input layer for CNN  



3.3. Training of CNNs 

Due to simple computation and high sparsity of 

generated output, rectified linear unit (ReLU) was one 

of the most notable activation functions in the last 

decade. This study employs ReLU as the activation 

function for CNN training since it works more 

efficiently on training than others, such as sigmoid and 

tanh (Maas, Hannun & Ng, 2013; Russakovsky et al., 

2015; Zeiler et al., 2013). The mathematic expression of 

ReLU is defined as: 

��,� � ���(��,� , 0) (3) 

where ��,� is the input of the activation at location i 

on the k channel. 

Overfitting is recognized as a key factor in the 

training and subsequent performance of the neural 

network. Dropout is an established method to overcome 

overfitting of data (Hinton et al., 2012). For the CNNs 

in this paper, dropout layers are employed behind each 

fully-connected layer to prevent overfitting. The output 

of dropout layer is given by  

� �  ∗ �("#$) (4) 

where $ � [�', ��, . . . , �)]#  is the input to the 

fully-connected layer, " ∈  ℝ-×/ is the weight matrix 

and  � [0', 0�, . . ., 01]  is dropout vector whose 

elements satisfy Bernoulli distribution with parameter 2 

(0�~45067899:(2)) (Gu, J. et al., 2018). 

The CNN algorithm is additionally optimised using 

an Adaptive Moment Estimation (Adam) as it has 

proven to effectively converge the less loss function as 

well as its relative insensitivity to initialized 

hyperparameters through the introduction of the 1st 

moment (mean) and the 2nd raw moment (uncentered 

variance) of the gradient. The Adam algorithm is given 

by: 

�� � ;' ⋅ ��<' + (1 − ;') ⋅ ?�  (5) 

A� � ;� ⋅ A�<' + (1 − ;�) ⋅ ?�
� (6) 

�C� � ��/(1 − ;'
�) (7) 

AF� � A�/(1 − ;�
�) (8) 

H� � H�<' − 90 ⋅ �C�/(IAF� + J) (9) 

where ?� represents the gradients with reference to 

the stochastic objective at timestep t (Kingma & Ba, 

2014). �� and A� are biased first moment estimate and 

second raw moment estimate respectively, while �C� and 

AF�  are corrected estimate for ��  and A� . To initialize 

moment vector, �� =0 and A� = 0. H�  is the updated 

parameters at timestep t. ;', ;� J[0,1), are exponential 

decay rates for the moment estimates. In Eq. 9, 90 is the 

learning rate and J>0 is a constant and introduced to 

avoid zero denominator. A value of ;'=0.9, ;�=0.999 

and J=10-8 is typically recommended in practice, and 

was used in this study.  

Batch normalisation (BN) layers are applied and 

attached behind the convolutional layers and are fully 

connected layers so that the weights and biases can be 

updated as expected, improving the overall performance 

of CNNs. Suppose the input layer has n dimension, i.e., 

$ � [�', ��, . . . , �)]# , the normalized kth dimension 

shows as follows: 

�F� � (�� − Mℬ)/IOℬ
� + J (10) 

where the Mℬ  and Oℬ
� are the mean and variance of 

the mini-batch, and J  is a constant. The normalized 

input �F� is further transformed into: 

P� � 4QR,S(��) � T�F� + ; (11) 

where T  and ;  are learned parameters. Compared 

with global data normalization, BN reduces the internal 

covariant shift as well as the dependence of gradients on 

the scale of the parameters and of their initial values 

which is beneficial to the gradient flow through the 

neural network (Gu et al., 2018). 

As detailed previously, 4 sets of data are collected at 

the end of each consolidation stage. During the training 

of CNNs, 50% of the data samples are used for model 

training, 25% of data samples are for validation, 

allowing the real-time evaluation of the prediction 

accuracy and overfitting and simplifying the 

optimization of CNN. The remaining 25% is left for 

final testing to evaluate the performance of the entire 

CNN architecture. 

By referring to the architecture of the VGG net 

(Simonyan & Zisserman, 2014), a trained CNN that 

meets the accuracy requirements has been developed. 

As shown in Fig. 4, A pair of two-channel data 

formed by an input and output signal with a size 2 × 

10,000 is fed into CNN algorithm. The data are 

processed by a series of convolution blocks, each 

comprising of two convolution layers and one attached 

pooling layer. The setting on filter size, stride, and 

padding of these layers, the data length is compressed 

down to 1 before being further processed by a fully-

connected layer. In order to prevent feature loss on the 

signals during compression, the output channels were 

increased up to 1,024 to obtain more feature maps.  

Table 1. Types and functions of employed hidden layers 

Categories Functions 

Convolutional layer Extracting and mapping features 

Pooling layer 

Sparsifying the feature map 

Reducing the amount of data computation 

Reducing overfitting and improving the fault tolerance of CNNs 

Activation layer Introducing non-linear mapping 

Fully-connected layer Refitting and reducing the loss of feature information 

Dropout layer Applying to fully-connected layer to reduce overfitting. 

Batch normalisation layer Preventing gradient dispersion and accelerating network training 



 

 
Figure 4. The architecture of the CNN 

Finally, the fully-connected layer integrates the feature 

information and regresses to determine the output with 

respect to ����, and hence the ��. 

Table 2 lists the required hyperparameters for 

training CNNs, which are determined by trial and error 

until a steadily decreasing loss could be observed on the 

validation dataset during training. To monitor the 

training, the MSE is recorded at each five epochs, and 

the deviation between training and validation datasets is 

plotted. The value of the MSE indicates the degree of 

overfitting of the CNN. Fig. 5 plots the variance of MSE 

as the training epoch progresses. The training was 

terminated when the MSE on validation datasets was 

below 10-4, as this is seen to be sufficient to satisfy the 

experimental requirements for accurate predictions. 

  
Figure 5. Variance in MSE with epoch progressing 

Table 2. Hyperparameters employed for training CNNs 

Batch size Number of epochs Learning rate 

32 2,000 0.0003 

4. Result analysis and discussion 

4.1. Performance of trained CNN 

As discussed in Section 3.1, a single sine wave of 

optimal frequency was used to determine first arrival, 

and hence 	
 . The relative effectiveness of the signal 

type was assessed by comparing the predictions made 

by the CNN for the range of signals with that determined 

using the first arrival approach. An example of relative 

performance of the different input signals is given in 

Fig. 6 where the best-estimated �� and the �� calculated 

by the CNN-predicted 	
 using the four different input 

signal waveforms. Results suggest a general agreement 

between the CNN-predicted and best-estimated �� , 

despite small discrepancies observed at both lower 

(<3kHz) and higher (>12kHz) input frequencies 

independent of the input waveform. The square and 

chirp waves were however found to perform slightly 

better in these problematic ranges. A single CNN-

predicted ��  value was obtained as an average of 

determined values across a range of frequencies.  

To further assess the reliability and consistency of 

CNN-predicted ��, the coefficient of determination (r2) 

and root mean squared error (RMSE) are used to 

evaluate the regression. A comparison of the CNN-

predicted and best-estimated �� values is shown in Fig. 

7 for the four different input waveforms. A total of 270 

data points were collected for each of the four 

waveforms. All inferred r2 values of the four signal 

types are greater than 0.99 with the RMSEs smaller than 

3, indicating a strong correlation between CNN-

predicted �� and best-estimated ��. 

4.2. Continuous prediction of G0 

As with other methods for travel time interpretation, 

CNNs can monitor the �� of a soil sample in real time 

during the consolidation process by analysing the 

generated and received shear wave data. A comparison 

of the CNN-predicted �� and best-estimated �� values 

in three measured orientations is plotted in Fig. 8 at the 

end of each consolidation stage. Each point represents 

an average value of predictions on all signal data 

collected. In all cases the CNN-predicted and best-

estimated ��  values are in good agreement. The 

variation of very small strain-stiffness with stress, as 

determined using the CNN algorithm, is shown to agree 

with the power function, as suggested by previous 

researchers (e.g. Hardin, 1978). Differences in between 

the ��� and ��� are likely to be a result of experimental 

variability.



  

 

 
Figure 6. Comparison of CNN-predicted and best-estimated �� for four signal types at 150 kPa. (a): sin-wave signal, (b): square-

wave signal, (c): triangle-wave signal, and (d): chirp-wave signal 

 
Figure 7. Reliability analysis on CNN-predicted �� for four signal types. (a): sin-wave signal, (b): square-wave signal, (c): triangle-

wave signal, and (d): chirp-wave sign 

 

 
*Only signal data collected in 3 ~ 10 kHz are included 

Figure 8. Variation of elastic stiffnesses ���, ���, and ��� 

with stress 

 

A comparison of the predicted �� values at the end 

of the various consolidation stages using the time 

domain, frequency domain, cross-correlation, best-

estimated (manual first arrival) and CNN is made to 

assess the reliability of the various approaches in 

capturing the change of stiffness with stress. Fig. 9 (a), 

(b), and (c) show the variation in predicted shear 

modulus with stress for three measured orientations 

using the 5 methods. Similar to previous studies, good 

agreement can be found for the most approaches except 

for frequency domain method. As discussed by Viana da 

Fonseca et al. (2009), the frequency domain method is 

generally unreliable or require considerable user 

intervention to provide reasonable results and are 

therefore generally less successful when fully 

automated, such as in this study. 



Fig. 10 (a) and (b) measure the performance of 

different methods at each consolidation stage precisely 

using the RMSE and r2, respectively. The values of the 

RMSE and r2 are the average values in three measured 

orientations. Assuming the best-estimated �� value an 

accurate representation of the soil stiffness, it can be said 

that the CNN-predicted ��  value shows the greatest 

agreement of the available techniques as seen in the high 

r2 and lower RMSE values. Further research on repeat 

samples and new soils is needed to accurately assess the 

method’s potential to replace traditional interpretation 

methods. 

 
*Only signal data collected in 3 ~ 10 kHz are included 

Figure 9. Comparison between predictions of different interpretation methods, (a): ���, (b): ���, and (c): ��� 

 
*Only signal data collected in 3 ~ 10 kHz are included 

Figure 10. Comparison on RMSE and r2 of different interpretation methods, (a): RMSE, (b): r2 

 

5. Conclusion  

Traditional methods for determining the shear wave 

velocity using bender elements are usually either time-

consuming, unreliable or require considerable user 

intervention. While notable attempts have been made to 

overcome these limitations, considerable difficulty is still 

encountered in automating a reliable approach for 

determining the shear wave velocity from bender element 

tests. This paper presents a new automated method for 

interpreting input/output signals from bender elements 

using a convolutional neural network algorithm. With the 

proper training and validation, CNNs are able to detect 

the amplitude features behind the signal data and provide 

predictions for the shear wave velocity for given input-

output signal pairs. The trained CNNs are validated to 

meet the accuracy requirements for practical application 

and show better consistency in its prediction than any 

other travel time interpretation methods. Some 

conclusions are summarised as follows: 

a) CNNs can receive the input and output signals 

simultaneously for a given BE test and learn the 

patterns behind them to estimate travel time. 

b) The trained CNNs can efficiently predict the travel 

time for a BE test, and its predictions reasonably 

agree with the results of other methods. 



 

c) A higher consistency in travel time interpretation 

was obtained using CNNs when compared to other 

interpretation methods. 

d) The accuracy of CNN-predicted travel times is 

sensitive to the frequency of input signals, and the 

level of such effect varies in different measured 

orientations. 

e) More research is necessary to validate the 

performance of CNNs for repeat tests and other soil 

types. 
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