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ABSTRACT  

Extensive research has been carried out to establish empirical equations between two geotechnical properties and in spite 

of the increase in correlation studies, a construction of a multivariate distribution function of more than two parameters 

is still rare. The objective of this study is to investigate the possibility of constructing two multivariate distribution 

functions, each consisting of 5 geotechnical parameters based on a) triaxial and soil classification tests and b) oedometer 

and soil classification tests in stiff over-consolidated clay till from Copenhagen. For this purpose, laboratory 

measurements from twenty-six sites in Copenhagen are utilized and two multivariate databases are constructed. The 

correlations among the ratio of deviatoric and mean effective stresses (q/p´), over-consolidation ratio (OCR), secant 

modulus at reference stress 100 kPa (E50
ref), initial void ratio (eo) and liquid limit (LL) are investigated in multivariate 

model A, while multivariate model B demonstrates the correlations among oedometer modulus at 100 kPa reference stress 

(Eoed(ur)
ref), over-consolidation ratio (OCR), permeability change index (Ck), initial void ratio (eo) and liquid limit (LL). 

The Nataf transformation model is used for the construction of the multivariate distributions, which are then used to 

simulate the correlations between geotechnical properties by generating artificial samples. Finally, the artificial samples 

are compared with the original database for an initial validation of the model. The constructed multivariate models 

obtained as a result of this study can act as prior for Bayesian updating in multivariate distribution functions when 

additional geotechnical tests are carried out. 
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1. Introduction 

In recent years, great attention has been paid to the 

application of probabilistic methods in soil 

characterization, as the interpretation leading to design 

parameters from site investigation reports is a critical 

decision in geotechnical engineering and probabilistic 

methods allow geotechnical engineers to quantify 

uncertainties, which unavoidably arise in a geotechnical 

project. Soil characterization uncertainties are associated 

with inherent variability of soils and rocks, measurement 

and/or testing errors, transformation models and limited 

available data from geotechnical tests owing to budget 

constraints (Baecher and Christian 2005, Ching and 

Phoon 2012). Deterministic approaches neglect soil 

characterization uncertainties, which leads to 

overestimation of failure probabilities, increased design 

costs and deteriorate sustainable footprint Luo et al. 

(2018). Luo et al. (2018) highlighted the influence of 

accounting for the variation of the soil properties by 

investigating the effect of soil spatial variability on 

structural reliability assessment in deep excavation in 

soft silty clay deposits. Different levels of coefficient of 

variation were considered for undrained shear strength 

and secant modulus and their effect on bending moment 

and strut forces was evaluated through a FEM model. 

Simplistic probabilistic models, such as marginal 

probability distributions, are not sufficient to measure 

uncertainties introduced by the soil inherent variability, 

due to the complexity of soil behavior and/or incomplete 

soil databases (Phoon and Kulhawy 1999).  

On the other hand, advanced probabilistic models, 

such as the bivariate and the multivariate approaches, can 

provide valuable insights on the statistical dependence of 

soil properties, which can be a powerful tool for 

quantifying adequately geotechnical risks (Tang et al. 

2013, Wu 2013). Bivariate correlations express the 

relation between two soil properties, while multivariate 

correlations expand this probabilistic concept to more 

than two parameters. However, it is common to measure 

more than two soil parameters in close proximity during 

site investigation phase e.g., undrained shear strength 

from undrained triaxial tests and index properties, such 

as liquid (LL) or plastic (PL) limit. Multivariate 

probabilistic models are considered more representative, 

when data is available in a sufficient quantity, as the 

intrinsic and mechanical soil properties are correlated to 

a greater extent (Phoon and Ching 2015). Various 

multivariate probability distributions have been 

constructed based on regional and global databases 

(Ching and Phoon 2012b, Liu et al. 2016, Zang et al. 

2020). Ching and Phoon (2012b) constructed a 

multivariate distribution of five geotechnical properties 

related to soil strength (intact and remolded undrained 

shear strength), stress level (pre-consolidation and in-situ 

stress) and soil classification (Liquidity index) in clays 

based on a global database. The resulting distribution was 



 

compared with another independent database of 

structured clays and empirical equations, and good 

predictability of the parameters in the independent 

database was achieved with the constructed model. Liu et 

al. (2016) constructed a multivariate normal model based 

on a regional database from the Quaternary clays in 

Jiangsu province, China with their geological formations 

to be Marine, Yangtze River Delta, Floodplain of Long 

River, Floodplain of Abandoned Yellow River, Lagoon 

of Lixia River and Lagoon of Taihu Lake. The model 

contains five parameters (resilient modulus, tip 

resistance, sleeve friction, water content and dry density) 

and it aimed to accurately predict the resilient modulus 

based on different testing indices. Zhang et al. (2020) 

established a multivariate ground model in Shanghai soft 

clay conditions, consisting of 11 soil parameters (four 

index and seven mechanical parameters) obtained by 

vane shear tests and penetration resistance from the CPT.  

This paper aims to formulate multivariate models 

using a regional geotechnical database for Copenhagen’s 

Quaternary glacial deposits (Upper clay till), which is a 

soil type less studied from this point of view and for 

which fewer empirical correlations exist. The database 

contains index and mechanical properties of soil 

(compressibility, shear strength and stiffness) from 

laboratory tests performed as part of the ground 

investigation campaign of the Copenhagen metro (M3 

and M4 lines) and the Svanemøllen Skybrudstunnel. As 

the database was sparse and incomplete, it was 

considered more reliable to assess two different 

multivariate models based on a) triaxial and soil 

classification tests and b) oedometer and soil 

classification tests. The constructed multivariate ground 

models are intended to be used for reliability design of 

deep excavations in the future and therefore, the selection 

of the parameters was in line with that goal. The 

parameters included in these models are required for the 

validation of Hardening-small strain stiffness (HS-

small), which is the constitutive model selected to 

perform reliability analysis in the context mentioned 

(Schanz 1999). Specifically, two multivariate probability 

distributions showing the statistical dependence among 

five (deviatoric over mean effective stresses ratio at 10% 

axial strain ��
�´����	
% , over-consolidation ratio OCR, 

secant modulus at a reference stress of 100 kPa E50
ref, 

initial void ratio � and liquid limit LL) and five 

(unloading oedometer modulus at a reference stress of 

100 kPa Eoed(ur)
ref, over-consolidation ratio OCR, 

permeability index ��, initial void ratio � and liquid 

limit LL)  geotechnical parameters respectively were 

constructed based on this database. Finally, samples were 

generated from the constructed multivariate models and 

compared with the original database for validation. 

2. Description of regional database 

Extensive ground investigations were carried out as 

part of the construction of the Cityringen metro line (M3) 

and the extension to Sydhavn (M4) in Copenhagen. In 

general, data from 26 different testing sites were 

considered for the construction of the multivariate model 

A (triaxial and soil classification tests) and 15 testing 

sites for the construction of the multivariate model B 

(oedometer and soil classification). The ground 

conditions at these sites mainly consist of recent deposits 

(inhomogeneous fill layer), post and late glacial deposits 

locally, glacial deposits (sand till, clay till and meltwater 

sand and gravel) and Danian Limestone. Clay and sand 

tills are highly over-consolidated, which is reflected in 

the high variability in their strength and stiffness 

characteristics, while meltwater sand and gravel are 

characterized as dense to very dense deposits. Laboratory 

tests were carried out on samples taken from the testing 

sites so as to determine soil classification parameters 

(clay content CC, mean diameter d50 and uniformity 

coefficient Cu), index properties (liquid limit LL and 

plastic limit PL), strength (φ´, c´, ψ, cu) and stiffness 

properties (E50
ref) from triaxial tests and compressibility 

and stress level properties from oedometer tests 

(Eoed(ur)
ref, permeability Ck, pre-consolidation stress σ´c). 

The samples that underwent the aforementioned tests 

were used as well for the estimation of the void ratio (eo), 

bulk and dry density (ρb and ρd) and water content (w). 

The database used for establishing the multivariate 

models contains 33 sets of parameters for the multivariate 

distribution A (20 undrained and 13 drained triaxial tests) 

and 22 for the distribution B. Triaxial tests were carried 

out according to ISO/TS 17892-9 (2004) and oedometer 

tests according to BS 1377-5 (1990). All the specimens 

tested in triaxial apparatus were firstly saturated until a 

sufficient B-value was achieved, followed by a phase of 

anisotropic consolidation at the pre-consolidation stress, 

which was derived either by oedometer or vane test, an 

unloading phase to in-situ stress and finally a shearing 

phase.  

3. Construction of the multivariate models 

3.1. Methodology 

The construction of a multivariate distribution 

becomes less complicated when the model parameters 

follow the same marginal distributions, especially for the 

case of the normal distribution, where probability density 

function (PDF) can be easily estimated by a mathematical 

equation. However, most of the geotechnical properties 

do not follow normal distribution and not necessarily the 

same type of distribution. When the dependent random 

variables do not follow the same marginal distribution, a 

translation method should be used Li et al. (2008). The 

most common method for the construction of a 

multivariate distribution is based on Gaussian copula 

concept (Nelsen 2006, Straub 2014). When the 

dependent variables can be described by Gaussian 

copula, then the Nataf transformation model can be used. 

It should be mentioned that other transformation models 

do exist such as the Rosenblatt and the Hermite 

polynomials transformation. However, the Nataf model 

was used for the construction of the multivariate 

distribution in this study because the Rosenblatt 

transformation requires that the joint PDF of a random 

vector is known beforehand, which is impossible in most 

engineering problems and it is highly affected by the 

transformational order of random vector (Shuang et al. 

2008) and the application of the Hermite polynomial 



 

transformation technique requires large amount of data 

when it comes to dependent non-normally distributed 

variables. 

3.1.1. Nataf transformation model 

Consider a vector of random variables X= (X1, X2, ..., 

Xn) T with known marginal distributions and cumulative 

density functions (CDFs) FXi(xi), i=1, …., n. The Nataf 

transformation model can be used to transform the 

correlated variables Xi from their physical space to the 

standard normal space and let Yi denote the equivalent 

standard normal variable. The transformation can be 

achieved by Eq. (1). 

�� →  Y� � ��	��������� �1� 
Where Ф-1 corresponds to the inverse standard normal 

CDF. The transformed variables are assumed to be 

jointly normally distributed, which allows to define a 

multivariate distribution based on the marginal 

distributions of the given parameters and a symmetric 

correlation matrix (CXX) that can be estimated by using 

Pearson correlation coefficients from the database. The 

Pearson’s correlation coefficient (ρij) between a pair of 

variables can be defined as shown in Eq. (2), where ∈ 
denotes the expectation, μ the mean of each variable, σ 

the standard deviation and Cov (Xi, Xj) the covariance of 

the variables Xi and Xj. 
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The Pearson coefficient expresses the linear 

dependency between two random variables Xi and Xi+1 

and can vary within the range of [-1,1]. It is clear that if 

ρij=0 then there is no correlation between the two 

variables while ρij=±1 indicates that a perfect linear 

correlation exists between the two variables. Positive 

correlation coefficients indicate that an increase in one 

parameter leads to the increase of the other, while the 

opposite is observed when the correlation coefficient is 

negative.  

The correlation matrix of the transformed variables is 

not the same as the correlation matrix of the uncertain 

variables Xi. For the estimation of the correlation matrix 

of the transformed variables Cholesky decomposition is 

applied. The correlation matrix should be positive-

definite, which means that every eigenvalue should be 

positive, for establishing a valid multivariate distribution. 

However, reliability design methods in geotechnical 

engineering often require a large number of random 

variables. For this purpose, inverse Nataf transformation 

model is applied and dependent samples from the 

previously developed joint distribution are generated. 

3.2. Marginal statistics 

3.2.1.  Reference stiffness modulus E50
ref 

Initially, the secant stiffness modulus corresponding to 

50% of the ultimate deviatoric stress qf was estimated 

based on drained triaxial tests. However, the secant 

modulus at a reference stress of 100 kPa (E5
678� is of 

interest since it is required for the soil calibration of HS 

small strain constitutive model and provides a stress 

independent stiffness parameter. The equation that 

relates the E50 estimated by the triaxial tests and the one 

at a reference stress of 100 kPa is shown in Eq. (3). 

95
 � E5
678 , &´:;<´∙=>? @´A
&´BCD;<´∙=>? @´A/E �3� 

Where σ´3 is the minor principal stress that the triaxial 

test was carried out, c´ is the cohesion, φ´p is the peak 

angle of shearing resistance and m is the stress exponent. 

A power fitting was carried out between E50, and the 

fraction shown in the parenthesis of Eq. (3) so as to 

estimate the stress exponent for power law m. It can be 

seen in Eq. (3) that the effective strength parameters are 

required for the calibration of the model. Clay tills in 

Copenhagen are identified as transitional soils with 

properties between a typical cohesive and a typical 

cohesionless soil. In particular, both clay tills of low 

cohesion-high angle of shearing resistance (c´<10 kPa) 

and high cohesion-low angle of shearing resistance 

(c≈10-60 kPa) have been found at the testing sites. Even 

though the majority of the samples appear to belong to 

the first group an investigation was carried out by 

considering various observed pairs of c´-φ´. Finally, the 

median values of the effective strength parameters were 

selected and introduced in the estimation of m exponent. 

Fig. 1 illustrates the secant modulus E50 with respect to 

the normalized stress, where both axes are in logarithmic 

scale. The stress exponent m was considered to be 

constant in this study, and particularly a value of 0.9 was 

adopted. For the justification of the decision of a constant 

m value, different m values were considered and 

insignificant effect on the type of the fitted distribution 

of E50
ref was observed. After the stress exponent m was 

derived, the reference secant modulus was back 

calculated for each test by using Eq. (3). Hereafter, a 

statistical analysis was carried out as for the rest of the 

parameters.  

 
Figure 1. Secant modulus corresponding to 50% of qf 

versus normalized stress level. 

3.2.2. Reference oedometer modulus 97G�H6�678  

A similar process to the one described previously, has 

been followed for establishing the marginal information 

of the reference oedometer modulus. The oedometer 

modulus was estimated based on the first unloading-

reloading stage, since the application of interest is 

excavation problems (unloading). As unloading was 



 

carried out in stages, the oedometer modulus was 

calculated for each unloading stage individually 

(tangent), which in turn increases the sample population 

at the stress space and eliminates the bias that might be 

introduced by the limited available oedometer tests. By 

using the equation of HS small strain stiffness 

constitutive model for oedometer modulus, shown in Eq. 

(4), the power exponent m is firstly derived.  

97G �H6� � 97G�H6�678 , &´I;<´∙=>? @´A
&´BCD;<´∙=>? @´A/E �4� 

Where, σ´1 is the vertical stress at each unloading 

increment. The tangent unloading oedometer modulus 

with respect to the normalized axial stress is shown in 

Fig. 2. The axial stress used in the equation is the final 

axial stress at each stage. It is important to highlight that 

m was found to be the same as the one estimated from the 

reference secant modulus (m=0.9). This reinforces the 

decision of considering m constant in the constructed 

multivariate distributions. 

 
 

Figure 2. Tangent oedometer modulus Eoed estimated by 

the first unloading-reloading stage with respect to the 

normalized axial stress over the reference stress of 100 kPa. 

3.2.3. Permeability change index Ck 

The void ratio dependency of the permeability was 

taken into consideration in the multivariate model B. This 

can be achieved by specifying an appropriate value for 

the Ck parameter and the initial void ratio eo. The 

equation that expresses the relationship among these 

three parameters is shown in Eq. (5). The Ck index 

corresponds to the slope of the linear fit between Δe and 

log(k/ko) during primary loading. Six to eight points were 

used to estimate the Ck index for each test with the 

coefficient of determination R2 to range between 0.60 and 

0.95. After Ck was estimated, a statistical analysis was 

performed.  

log N �
�OP � Q7

"R �5� 
4. Results 

4.1. Marginal statistics 

The basic statistics of the multiple variables of the 

multivariate model A, including mean μ, coefficient of 

variation COV, maximum and minimum values are 

presented in Table 1. It can be seen that q/p´, eo and LL 

are the least variable parameters (COV is smaller than 

0.25) while OCR and E50
ref are the most variable ones 

(COV is bigger than 0.35).  Additionally, the fitted 

marginal distributions of the five parameters are also 

shown in Table 1. The fitted distributions with the 

histograms constructed by the regional database are 

presented later on. 

Table 1. Basic statistics and marginal distibutions of the 

multiple variables for the multivariate model A 

Parameters Mean  

μ 

COV Max Min Marginal 

distribution 

q/p´ [-] 1.63 0.11 2.19 1.37 Lognormal 

OCR [-] 9.68 0.57 31.09 0.99 Rayleigh 

E50
ref [MPa] 49.21 0.37 77.09 16.02 Weibull 

eo [-] 0.39 0.23 0.630 0.27 Lognormal 

LL [%] 24.65 0.16 35.7 19.10 Lognormal 

 

      Similarly, the basic statistics and the best fitted 

distributions of the five parameters of the multivariate 

ground model B are shown in Table 2. The least variable 

parameters in this case are Eoed(ur)
ref, eo and LL while OCR 

and Ck are the most variable ones. 

      It is worthy to highlight that initial void ratio and 

liquid limit measurements are highly consistent between 

the two populations. The fitted distributions of eo found 

to be different in the two constructed multivariate models 

which is mainly attributed to the smaller population of 

the multivariate model B. 

Table 2. Basic statistics and marginal distributions of the five 

parameters for the multivariate model B 

Parameters Mean  

μ 

COV Max Min Marginal 

distribution 

Eoed(ur)
ref  

[MPa] 
105.78 0.26 146.05 59.92 Weibull 

OCR [-] 13.67 0.86 41.17 4.5 Lognormal 

Ck [-] 0.015 0.51 0.03 0.007 Weibull 

eo [-] 0.43 0.17 0.63 0.31 Weibull 

LL [%] 24.93 0.11 30.9 20.7 Lognormal 

 

    Note that because two separate multivariate models are 

developed due to lack of all tests considered at a same 

point, it is important to evaluate the overlap of the 

databases use in each subset to assess representativeness. 

The liquid limit measurements presented in Table 1 and 

Table 2 seem to be consistent. However, soil 

classification parameters, such as LL and CC, from the 

samples that were tested on Triaxial and Oedometer 

apparatus are additionally compared with the soil 

classification database that comprises of 142 grain size 

distribution curves. Fig. 3 and Fig. 4 illustrate the 

representativeness of the triaxial and oedometer database 

correspondingly. It can be seen that the samples used for 

establishing the two multivariate distributions can be 

considered representative. It should be also mentioned 

that both databases include tests of lower clay content 

(CC< 17%), where LL measurements were not available, 



 

and they potentially capture the southwest part of the data 

cloud. Even though the population used for the 

establishment of the multivariate functions were 33 and 

22 respectively, the amount of datapoints shown in Fig. 

3 and Fig. 4 is lower because there are tests carried out in 

samples taken from the same borehole and similar depth 

and as a consequence there have been assigned the same 

values of LL and CC or no LL measurement is reported. 

 

 
Figure 3: Representativeness of triaxial database. 

 

 
Figure 4: Representativeness of oedometer database. 

4.2. Cross-correlation 

The next step is to assess the correlation between 

multiple soil parameters, since it is not realistic to assume 

that geotechnical properties are not correlated. The 

Pearson’s coefficients were estimated as it was described 

in Subsection 2.1.1 and the results are presented in Table 

3. According to Evans (1996) recommendation for 

classifying the correlations among the variables based on 

the magnitude of Pearson’s coefficients, E50
ref is very 

strong correlated with eo and strongly correlated with LL. 

Moderate correlation was found between LL and eo. The 

remaining correlations are characterized as weak (0.2 ≤ 

|ρ| < 0.4) or very weak (|ρ| < 0.2). An illustration of the 

correlations among the properties is presented in Fig. 5, 

where the diagonal plots display the histogram of the five 

variables with their fitted distributions.  

The very strong correlation observed between 

E50
ref and eo is in agreement with previous stiffness 

correlations Kulhawy and Mayne (1990). The strong 

correlation between E50
ref and LL can be explained by the 

void ratio dependency on LL and the correlation between 

E50
ref and eo. However, Kulhawy and Mayne (1990) 

reported an OCR dependency on the deformation 

properties of soils which has not been observed in the 

present case study as their correlation was found to be 

weak. The positive sign of the Pearson’s coefficient 

though indicates that stiffness increases with OCR which 

is in line with Kulhawy and Mayne (1990). 

Table 3: Cross correlation coefficients among the selected 

parameters  for multivariate model A. (i) Undrained and 

Drained tests were used for the estimation of ρij and (ii) Only 

Drained tests were used for the estimation of ρij 

Cxx q/p´ (i) OCR 
(i) E50

ref (ii) eo 
(i) LL (i) 

q/p´ 1 -0.163 0.368 -0.112 -0.041 

OCR -0.163 1 0.325 -0.290 -0.251 

E50
ref 0.368 0.325 1 -0.931 -0.692 

eo -0.112 -0.290 -0.931 1 0.534 

LL -0.041 -0.251 -0.692 0.534 1 

 

The q/p´ ratio and OCR were found to not correlate 

well (moderately or better) with any of the other 

parameters, which was not anticipated. However, the 

correlations were improved when the peak q/p´ ratio was 

considered. In particular, the pairs of q/p´-eo and q/p´-

OCR were found to be moderately correlated (ρij=-0.392 

and ρij=+0.383 respectively). A strong correlation was 

expected between q/p´ and LL, because of the existing 

empirical equations, that relate the φ´ or the Cu with the 

LL, the Ip and/or the CC (Ladd et al. 1977, Terzaghi 1996, 

Stark et al. 2005, Sørensen and Okkels 2013). However, 

this was not captured in the present database and the 

correlation was not improved when the peak q/p´ ratio 

was considered instead of q/p´ at εα=10%.   

Similarly, the Pearson’s coefficients among the five 

parameters for the multivariate model B are shown in 

Table 4. A visual representation of the correlation matrix 

is shown in Fig. 6, including the histograms with the 

marginal distributions of each parameter in the diagonal 

plots. The permeability index Ck is strongly correlated 

with the index properties (eo and LL) and eo is moderately 

correlated with LL which agrees with the observations 

from Tavenas et al. (1983), where the vertical 

permeability in clays found to correlate well with eo, LL 

and CC. However, poor correlations were found among 

Eoed(ur)
ref, OCR and the rest of the parameters. A higher 

correlation coefficient was expected between Eoed(ur)
ref 

and eo due to the void ratio dependency on deformation 

properties discussed previously, however, the negative 

sign of the coefficient indicates that the expected 

relationship Eoed(ur)
ref and eo is captured properly (e.g., as 

eo increases, Eoed(ur)
ref decreases). 

Table 4. Cross correlation coefficients among the selected 

parameters for the multivariate model B 

Cxx Eoed(ur)
ref OCR Ck eo LL 

Eoed(ur)
ref 1 0.011 -0.211 -0.147 -0.227 

OCR 0.011 1 0.366 0.049 0.280 

Ck -0.211 0.366 1 0.601 0.679 

eo -0.147 0.049 0.601 1 0.511 

LL -0.227 0.280 0.679 0.511 1 

 



 

  

Figure 5. Scatter plots between the physical random variables Xi and Xj for multivariate model A and normalized 

histograms with probability density function for the five selected parameters. Marginal distributions are also displayed. 

Figure 6. Scatter plots between the physical random variables Xi and Xj for multivariate model B and normalized 

histograms with probability density function for the five selected parameters. Marginal distributions are also displayed. 



 

4.3. Validation of the multivariate distributions 

The constructed multivariate distributions by 

applying the Nataf transformation model should be 

validated. The validation of the model in this study was 

carried out by generating artificial data points from the 

multivariate distributions and comparing them with the 

initial database. The comparison of 1000 simulated data 

with the original database is illustrated in Fig.7 for the 

multivariate model A and in Fig. 8 for the multivariate 

model B. 

 

 
Figure 7. Comparison between the original database and 1000 

simulated data based on multivariate model A. 

It is clear that bigger scatter is observed in the 

generated samples of multivariate distribution B 

compared to distribution A. This is mainly associated 

with the bigger coefficient of variation of the parameters, 

which is in turn related to the smaller population used for 

the analysis. The COVs of the geotechnical parameters 

have a clear impact on the resulting scatter, e.g. minor 

scatter is observed between E50
ref and eo (see Fig. 7) 

where COVs are relatively small and Pearson’s 

coefficient is the highest observed (ρij ≈ -0.93). A much 

wider scatter can be observed in the case of Eoed(ur)
ref and 

OCR, where OCR has a big COV. 

 

 
Figure 8. Comparison between the original database and 1000 

simulated database based on multivariate model B. 

5. Conclusion 

This study assembles two databases for Copenhagen 

upper clay till, whose data points were collected from site 

investigation reports of 25 sites in Copenhagen that were 

carried out as part of the construction of the last two 

metro lines (M3 & M4) and 1 construction site of the 

Svanemøllen Skybrudstunnel. The databases comprise of 

geotechnical properties that were derived from 

anisotropically consolidated drained and undrained 

triaxial tests, oedometer and soil classification tests. 

The concept of the multivariate distribution was 

applied for five parameters of each database so as to 

investigate and model the correlations among them. The 

multivariate model A includes over-consolidation ratio 

(OCR), secant modulus at reference stress of 100 kPa 

(E50
ref), the ratio of deviatoric and mean effective stresses 

(q/p´) εa=10%, initial void ratio (eo) and liquid limit (LL) 

and multivariate distribution function B comprises of 

Eoed(ur)
ref, eo, LL, OCR and Ck. To do so, the basic and 

marginal statistics of each parameter was firstly 

evaluated. The most variable parameters found to be Ck 

and OCR. The basic statistics of e0 and LL were found to 

be similar among the databases, which indicates 

representativeness of the obtained results. Furthermore, 

the results have been compared with a bigger database 

consisting of 142 soil classification tests and since the 

basic statistics derived for both distributions are close to 

these statistical properties, this indicates that the 

distributions obtained can be considered representative of 

the clay till behavior. 



 

By comparing the correlations between pairs in the 

multivariate distribution functions, very strong 

correlation found between E50
ref and eo, while strong 

correlations observed in the pairs of E50
ref – LL, Ck-eo and 

Ck-LL. The rest of the correlations were characterized as 

weak to very weak, except the correlation between eo and 

LL, which was found to be moderate. The obtained 

correlations were discussed with reference to existing 

relationships reported in the literature. It should be 

stressed out that the correlations observed between 

deformation and compressibility properties of clay till 

with index and classification properties are in line with 

reported correlations while the strength properties of clay 

till found to not follow the existing relationships. 

Finally, the multivariate distribution functions were 

constructed by applying the Nataf transformation model 

since the selected parameters are described by different 

marginal distributions. Models were validated by 

generating artificial samples, then they were compared 

with the original database and satisfactory results were 

obtained. The constructed multivariate distributions can 

act in the future as prior for Bayesian update. However, 

further validation of the multivariate distributions is 

intended to be carried out prior to any applications. 
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