
 

 

 

INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

 

 

 

 

 

 

 

 

 

 
This paper was downloaded from the Online Library of 

the International Society for Soil Mechanics and 

Geotechnical Engineering (ISSMGE). The library is 

available here: 
 

https://www.issmge.org/publications/online-library 

 

This is an open-access database that archives thousands 

of papers published under the Auspices of the ISSMGE and 

maintained by the Innovation and Development 

Committee of ISSMGE. 
 

 

 

 

The paper was published in the Proceedings of the 8th 
International Symposium on Deformation Characteristics of 
Geomaterials ( IS-PORTO 2023) and was edited by 
António Viana da Fonseca and Cristiana Ferreira. The 
symposium was held from the 3rd to the 6th of 
September 2023 in Porto, Portugal. 



 

Proceedings of the 8th International Symposium on 
DEFORMATION CHARACTERISTICS OF GEOMATERIALS 

Porto, 3rd - 6th September 2023 
 
 

 

 Calibration and limitations of a fixed-partly fixed resonant 

column apparatus 

Luke Rieman1#, Róisín Buckley1, and Simon Wheeler1 

1University of Glasgow, Jam School of Engineering, G12 8LT, Glasgow, United Kingdom 
#Corresponding author: l.rieman.1@research.gla.ac.uk 

 

ABSTRACT  

The small-strain shear modulus of soils and rocks is an important input parameter in geotechnical analyses. Its estimation 

using the resonant column apparatus relies on accurate knowledge of the rotational inertia of the apparatus’s active end. 

Due to the complex geometry of the active end, its inertia is typically found from a calibration exercise. In this study a 

range of aluminium calibration bars and steel masses were used to compare two different calibration exercises presented 

in the literature. The resulting values of active end inertia are shown to be highly method-dependent. The method of 

compensating for the drive connection stiffness by finding the apparatus resonant frequency is found to introduce errors 

at low stiffness. The combined use of calibration bars and masses reduces scatter but yields poor results for stiff bars. An 

alternative approach to mitigate both of these problems is suggested. Active end inertia is found to be constant using this 

alternative approach. While effects of base inertia and reaction mass inertia are found to be small for this apparatus, 

compliance of the drive system is shown to significantly reduce resonant frequencies at high stiffnesses which increases 

the apparent active end inertia. This reduction in resonant frequency is modelled and used to derive frequency correction 

factors, which reduce errors in shear modulus to within acceptable limits when using the constant value of active end 

inertia. This demonstrates the potential for increasing the limit of sample stiffness where sufficient calibration data are 

available.  
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1. Introduction 

For many geotechnical analyses involving dynamic 

or cyclic loading the strain amplitudes generated in the 

soil are relatively low and therefore the small-strain shear 

modulus, G0, and damping ratio, Ds, are key parameter 

inputs. Dynamic measurement techniques such as the 

resonant column approach or wave propagation via 

bender elements are often used to obtain the small strain 

stiffness in the laboratory. The resonant column test 

involves excitation of a cylindrical specimen in its 

fundamental mode of vibration to find the shear wave 

velocity, Vs, which can be used to calculate the small 

strain stiffness, G0, using elastic theory: 

�� � ���
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Modern configurations of the apparatus can also 

incorporate bender elements within the same set up 

allowing comparison between measurements made using 

the two methods. The resonant column can determine the 

dynamic properties of soils in the range of 0.001-0.1% 

(Hardin and Drnevich 1972; Richart, Hall, and Woods 

1970) while bender elements measurements involve 

strains of <0.0001%.  

Errors in resonant column test measurements 

typically result from a combination of several factors 

including e.g., sample disturbance, inhomogeneity of 

reformed samples, calibration errors and exceeding 

apparatus limitations.  

A new Hardin-type fixed-partly fixed resonant 

column apparatus (RCA) with bender elements has 

recently been commissioned at the University of 

Glasgow. This paper describes the calibration procedure 

followed and investigates the limitations of the apparatus. 

The aim was to identify and reduce errors through 

rigorous calibration and procedural improvements, and to 

identify and quantify the contribution of apparatus 

limitations to errors in testing results.  

2. Background 

Several different designs of RCA exist, commonly 

categorised based on their different boundary conditions. 

The Hardin-type device used in this study and shown in 

Fig. 1 (GDS Instruments UK) is referred to in ASTM 

D4015 as ‘device type 1’ (ASTM 2021). A cylindrical 

soil sample enclosed in a latex membrane is mounted 

within a pressurised cell equivalent to a standard triaxial 

cell, with effective stress states achieved analogously. 

The lower end of the sample is rigidly attached to the base 

of the apparatus, (sometimes referred to as the ‘passive 

end’), while the upper end is connected to a top cap. 

Porous disks are used at either end of the sample to allow 

drainage; these may be grooved or bladed to reduce 

slippage. The top cap is in turn connected to a drive plate 

which has four radial rotor arms with permanent magnets 

fixed at the ends. An accelerometer is mounted partway 

along one of the four arms, balanced by a counterweight 

on the opposing arm. This entire assembly consisting of 



 

the top cap, drive plate, accelerometer, counterweight, 

and magnets, plus any other attached components such as 

porous disks, screws and bolts, O-rings, etc. is referred to 

as the ‘active end’ and is assumed to behave as a single, 

rigid body. Each of the four magnet blocks sits within one 

of four drive coils, which are mounted to a large, steel 

reaction mass above the drive system. When a sinusoidal 

current is passed through these coils, a sinusoidal torque 

is generated in the permanent magnets which is 

transferred to the sample through the active end. The 

resulting torsional motion of the active end is detected by 

the accelerometer. The frequency of driving oscillations 

is varied until the first-mode resonant frequency, fr, is 

found. If the sample is assumed to be isotropic, 

homogeneous, and to behave elastically in the range of 

torsional strains being applied, then the system may be 

treated as a one degree of freedom (1DOF) torsional 

pendulum. Solutions for this system (Richart, Hall, and 

Woods 1970) allow the shear wave velocity to be 

extracted for a measured value of fr, which in turn is used 

to calculate G0 for the sample.  

The Hardin-type RCA shown above has the unique 

advantage of being able to test under anisotropic stress 

states. This is accomplished via an axial load ram whose 

piston passes through the top of the cell and connects to 

a load cell attached to the reaction mass, which measures 

the applied deviator force independently of cell pressure. 

The entire assembly consisting of the load cell, reaction 

mass, and active end system may be vertically actuated 

by the ram, allowing the system to accommodate samples 

of varying lengths. Samples may also be mounted and 

coupled at both ends with a split-mould still in place, 

minimising disturbance. Since the active end must be free 

to rotate, the connection between the load cell/reaction 

mass and the active end is accomplished via a slender, 

hollow aluminium shaft, which has high compressive 

stiffness but a relatively low torsional stiffness. The 

Hardin-type RCA is frequently described as having 

‘fixed - partly fixed’ boundary conditions because the 

bottom of the sample is effectively held stationary by the 

base, while the top is free to rotate in torsion but is 

constrained in flexion and extension by the drive 

connection. For these boundary conditions to hold, both 

the reaction mass and the base must be sufficiently 

massive to ensure that their motion during testing is 

negligible (Drnevich 1978a; ASTM 2021; Hardin and 

Music 1965). 

Calibration of the RCA requires the rotational inertia 

of the active end, Ja, to be found. Rotational inertia is 

solely a product of mass and geometry and may be 

calculated directly. However, due to the complexity of 

the active end it is usually more convenient to determine 

Ja from a calibration exercise. This typically involves the 

use of one or more aluminium bars in place of a soil 

sample and may also include the use of attached masses. 

While Ja is by definition a constant, various studies 

(Clayton et al. 2009; Senetakis and He 2017; Shinde and 

Kumar 2021; Li, He, and Senetakis 2018) have reported 

an apparent variation in Ja with frequency when 

determined using these calibration methods. 

An additional complication exists for Hardin-type 

devices, since the shaft which connects the load cell/ 

reaction mass to the active end has its own torsional 

stiffness, ka, which behaves as an effectively massless 

torsional spring in parallel with the stiffness of the 

sample/calibration bar, ks (B. O. Hardin and Music 1965). 

This gives an equivalent system stiffness, keq: 

�� � �� � �� (2) 

The calibration procedure for such devices must 

therefore also determine ka so that its effects may be 

accounted for during tests on real soil specimens. Note 

that for ‘fixed-free’ devices, keq is simply equal to ks. 
If damping is low and the rotational inertia of the 

calibration bar is negligible compared to Ja then the 

equivalent system stiffness, keq, for a 1DOF torsional 

pendulum system of resonant frequency fr is given by 

(Drnevich 1978a): 

�� � (2���)��� (3) 

Note that the inertia of real soil specimens generally 

may not be neglected in this way, and a more rigorous 

approach is required (ASTM 2021). 

3. Calibration  

3.1. ASTM D4015 A2.1 Method 

ASTM D4015 (ASTM 2021) outlines several 

methods for finding Ja. In all cases, the first step is to 

determine the apparatus resonant frequency, fa, which is 

related to the apparatus stiffness, ka, by: 

�� � (2���)���  (4) 

The standard recommends that this be accomplished by 

running a resonance test with the apparatus set up as it 

would be used during a test, but with no bar or sample 

present; fa is the natural resonant frequency of the system 

in this configuration. For the device used in this study, fa 

determined with this method was found to be 47.9 Hz. 

To find the rotational inertia of the active end, Ja, the 

procedure given in ASTM D4015 A2.1 was used. One or 

more metal calibration bars of varying torsional stiffness, 

ks, are fixed in place of a sample and the resonant  

Figure 1. a) Schematic of the Hardin-type resonant column 

apparatus. b) Hardin-type resonant column apparatus (GDS 

Instruments UK) at the University of Glasgow. 



 

frequency of the system, fr is determined. By 

combining Eqs. (2), (3) and (4), Ja is then given by 

�� � ��
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In this study a total of nine bars were tested. These 

were turned from solid billets of aluminium 6082, with 

lengths of either 100 mm or 140 mm, and nominal 

diameters ranging from 10 mm to 25 mm (see Fig. 2 and 

Table 1). Each bar was capped at both ends by a disc of 

50 mm diameter and 5 mm thickness, which was used to 

secure the bar to the top cap and base pedestal with 3×4 

mm Allen bolts. Aluminium was chosen because of its 

high shear modulus relative to its density, which allowed 

the rotational inertia of the calibration bars to be 

neglected (the rotational inertia of the thickest bar was 

found to be less than 0.5% the estimated active end 

inertia). Based on an assessment of reported values in the 

literature, the shear modulus, G0, of aluminium 6082 was 

taken to be 26.0 GPa. The torsional stiffness of each bar 

is given by: 

�� �
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Where L is the length of the central portion of the bar 

(not including the end caps used for mounting which are 

assumed to be perfectly rigid) and Ip is the polar moment 

of inertia of a bar of diameter d, given by: 

() � �*+
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Because the calculated stiffness is strongly dependent 

on the diameter, it is recommended to obtain as accurate 

a measurement as practicable. In this study, a digital 

caliper was used to record diameter to the nearest 

0.01mm at 20mm intervals along the length of the bar; 

these readings were then averaged. The average diameter 

of the bars was found to deviate from its nominal value 

by up to 2.4%, which would correspond to an error in 

calculated stiffness of 10.3%.  

3.2. Added Masses Method  

Equation (3) may be expressed in the form: 

��. �
�/0
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where Jam is the known rotational inertia of one or more 

masses rigidly attached to the active end during 

resonance testing. If a calibration bar is tested and the 

resonant frequency is found with several different 

attached masses, Jam may be plotted against 1/(2���)�. 

If a straight line is fitted to these points, then by 

inspection of Eq. (8), the apparatus rotational inertia Ja is 

given by the negative intercept of this line on the y axis, 

and the equivalent system stiffness keq is given by the 

slope of the line (Clayton et al. 2009). 

If the stiffness of the calibration bar, ks, is found from 

Eqs. (6) and (7) then the apparatus stiffness, ka, may be 

calculated from Eq. (2). If this process is repeated using 

several bars of varying stiffness, then each bar provides 

a measurement of both ka and Ja. For Hardin-type 

devices, where the active end is supported by the ram 

assembly, measurements may also be taken using 

attached masses but with no bar or sample present. 

This method vastly increases confidence in the value 

of ka, which is otherwise obtained via a single 

measurement of resonant frequency with no bars or 

masses attached. In the case of devices such as the 

Stokoe-type RCA, which have no springs attached, this 

calibration method instead has the advantage that the bar 

stiffness, ks, need not be known in order to obtain a 

measurement of Ja, since its value is not used in the 

determination of the intercept. This has the potential to 

reduce error compared to methods where the bar stiffness 

is used in calculations.  

The added masses method was conducted for each of 

the bars detailed in Table 1, using annular stainless steel 

masses of 5.0 mm thickness with masses of 154.8 g, 

227.8 g and 284.8 g, and rotational inertias of 0.000118 

kg·m2, 0.000241 kg·m2 and 0.000365 kg·m2
 (see Fig. 2). 

For each bar the resonant frequency was recorded with 

each of the three masses attached, as well as with no 

masses attached. Only one mass was added at a time to 

minimise any effects of reduced coupling of the 

calibration bar end with the top cap by having multiple 

interfaces for slippage, and to avoid exceeding the 

fundamental assumption that the active end inertia is 

much smaller than the base/ reaction mass inertia. 

3.3. Results and Discussion 

Results from both calibration exercises are given in Fig. 

3 and Table 2. The ASTM D4015 A2.1 method shows a 

weak increase in apparent Ja with frequency, dropping 

noticeably at frequencies approaching fa. The substantial 

increase in apparent Ja observed by (Senetakis and He 

2017) in the 130–170 Hz range (see Fig.3) was not 

repeated in this study; only modest increases at high 

Table 1. Dimensions of the central shaft of the calibration 

bars. Calculated stiffness neglects any end cap effects. 

Bar  Length 

(mm) 

Nominal 

diameter 

(mm) 

Measured 

diameter 

(mm) 

Calculated 

torsional 

stiffness 

(N·m/rad) 

A1 140 10.0 9.85 172 

A2 140 12.5 12.69 473 

A3 140 15.0 14.74 861 

A4 140 19.5 19.38 2574 

A5 140 22.5 22.69 4834 

A6 140 25.0 24.78 6873 

B1 100 10.0 9.76 231 

B2 100 12.5 12.70 664 

B3 100 15.0 14.78 1216 

     

Figure 2. Calibration bars and masses used in the study. 



 

bar/sample stiffnesses were observed. This was 

unexpected because the results for the more flexible 

aluminium calibration bars were broadly similar to those 

for similar aluminum bars in that study and the apparatus 

was of very similar design. One possible explanation for 

this is the use of real soil samples by those Authors as 

calibration bars, with stiffnesses interpreted from bender 

elements which can be prone to errors. The added masses 

method shown on Fig. 3 and Fig. 4 shows comparatively 

little variation in apparent Ja for the range 58.75-133.6 

Hz (bars A1-A4, B1-B3), with an average value in that 

range of 4.084x10-3 kg·m2. The values of Ja and ka 

obtained from the test with no bar present were 

noticeably elevated; ka was 481.6 N·m/rad, whilst the 

average for bars A1-A4 and B1-B3 was 383.2 N·m/rad 

and remained relatively consistent in this range. By 

comparison, the stiffness of the connection bar as 

calculated from its design specifications is 370.3 

N·m/rad, suggesting that the averaged ka obtained by the 

added masses method is much closer to the true value. 

The behaviour of the apparatus when no bar or sample is 

present appears to deviate significantly from its 

behaviour with even the most flexible bar fitted. This 

may be explained as a lack of constraint in flexion of the 

top cap by a calibration bar; the resulting natural mode of 

vibration is not purely torsional but may also contain 

some flexural component which acts to lower the 

resonant frequency.  

These results indicate that the method prescribed in 

ASTM D4015 of accounting for ka by determining fa may 

introduce large errors in estimates of Ja at resonant 

frequencies approaching fa. This effect was investigated 

by assuming a constant ka of 383 N·m/rad and Ja of 

0.004084 kg·m2, and back-calculating the output of Eq. 

(5) as a function of bar stiffness had the measured fa of 

47.9 Hz been used as in Section 3.1. This curve is plotted 

as a dashed line in Fig. 3 and explains why Ja appears to 

decrease as fr approaches fa, an effect also observed by 

(Senetakis and He 2017). 

Results in the range 100 – 170 Hz are broadly similar 

for both methods, with a modest jump in estimated Ja 

seen for bar A5. In the added masses method, this was 

accompanied by a small increase in estimated ka. For bar 

A6, the two methods diverge substantially. The ASTM 

D4015 A2.1 method shows no further increase in Ja while 

the added masses method shows a marked jump to 

0.006895 kg·m2, with an estimated ka of 4066 N·m/rad, 

around 10 times higher than its average for the other bars. 

When the Ja value from the ASTM D4015 A2.1 method 

is used to compute the shear modulus, G0, of bar A6, the 

output is within 1% of the known shear modulus of 

aluminium. By contrast, using the value of Ja from the 

added masses method results in a 54% over-estimation of 

G. This is clearly unacceptable and demonstrates that 

while the added masses method produces more consistent 

values of apparent Ja at lower stiffnesses than the ASTM 

D4015 A2.1 method, it should not be used to calibrate for 

high stiffness specimens. An explanation for the 

divergence between the two methods is given in Section 

4.2.1. 

Inspection of Fig. 4 illustrates how the error in the 

measured intercept increases substantially with the 

stiffness of the bar being tested, since the straight line 

being extrapolated from the data points becomes 

increasingly tangential to the y-axis. 

3.4. Alternative Method 

A third, alternative interpretation method was devised 

based on observations made in the previous subsection. 

Calculations of Ja using the measured resonant 

Table 2. Measurements of resonant frequency and torsional stiffness compared against their predicted values. A substantial over-

prediction in resonant frequency is accompanied by a rise in the estimated dynamic torsional stiffness of the system. 

Bar Calculated 

torsional stiffness 

(N·m/rad) 

Predicted 

resonant 

frequency (Hz) 

Measured 

resonant 

frequency (Hz) 

Measured system 

dynamic torsional 

stiffness (N·m/rad) 

Estimated drive 

connection stiffness 

(N·m/rad) 

None 0 48.8 47.9 481.6 481.6 

A1 172 58.7 58.75 555.4 383.8 

A2 473 72.9 71.9 864.2 391.7 

A3 861 87.9 89.4 1297.5 436.4 

A4 2574 135.5 133.6 2969.7 396.0 

A5 4834 179.9 169.75 5299.6 465.5 

A6 6873 212.2 200.5 10938.5 4065.7 

B1 231 61.8 62.85 638.4 407.0 

B2 664 80.6 79.1 969.6 305.6 

B3 1216 99.6 100.45 1578.1 361.7 

      

Figure 3. Apparatus rotational inertia versus resonant 

frequency determined using the ASTM D4015 A2.1 and added 

masses (Clayton et al., 2009) methods. 



 

frequencies with no attached masses were made using the 

following expression derived from Eqs. (2) and (3): 

�� � ��4� 

(����)� (9) 

This is analogous to the method in Section 3.1, except 

that the single measurement of fa (shown to be susceptible 

to error) is replaced with the revised, averaged value of 

ka of 383 N·m/rad from the added masses method.  

Results are presented in Fig. 5. This interpretation 

method gives the least variation in apparent Ja with 

resonant frequency of the three methods tested. 

Behaviour in the low- to medium-stiffness range is well-

characterised by the constant, averaged values of Ja and 

ka, while variation in apparent Ja at higher stiffnesses may 

cautiously be accounted for by considering limiting 

conditions of the apparatus, as discussed in the following 

section. 

4. Apparatus Limits 

(Drnevich 1978b) recommends that for Hardin-type 

devices, the stiffness of the specimen should not exceed 

a limiting stiffness, kL, of 3000 N·m/rad. This limit was 

based on devices available at the time. The corresponding 

limiting resonant frequency fn is given by 

�6 7 ��81 � �&/�� (10) 

For the apparatus used in this study the limiting 

resonant frequency for kL=3000 N·m/rad was calculated 

as 145 Hz, which coincides approximately with the point 

where the apparent Ja and ka start to deviate. However, 

the observations made in Section 3.3 suggest that a more 

robust, apparatus-specific value of kL could be obtained 

using the results of the calibration exercise.  

(Clayton et al. 2009) identified a number of factors 

which may impact the measured resonant frequency at 

high stiffnesses. The most significant of these was that of 

drive system compliance, while the base inertia was also 

found to have some small effect. Their apparatus was of 

a ‘fixed-free’ design, where the drive reacts against a 

support frame rather than a reaction mass, so effects of 

reaction mass inertia were not investigated. 

4.1. Effect of base and reaction mass inertia 

To investigate the impact of the finite base and reaction 

mass inertias, the system was modelled as two different 

two degree of freedom (2DOF) torsional pendulum 

systems (shown in Fig. 6). In one, the base was 

considered perfectly fixed while the reaction mass was 

modelled as a second body of finite inertia. In the other, 

Figure 5. Alternative interpretation method showing range 

used to estimate Ja. This method shows the least variation in 

rotational inertia across the range of stiffnesses tested. 

Figure 4. Method for finding Ja using bars and added masses (Clayton et al., 2009). 



 

the reaction mass was considered fixed while the base 

was modelled as a body of finite inertia. In both cases the 

active end was connected to the reaction mass by a 

massless spring of stiffness ka and to the base by a 

massless spring of stiffness ks (representing the drive 

connection and sample respectively, as defined 

previously). The reaction mass inertia and base inertia 

were estimated as 0.085 kg·m2 and 0.56 kg·m2 

respectively from their known mass and approximate 

geometry. The natural modes of vibration for these 

systems were found and, in both cases, the favoured 

mode was clearly identifiable by its similarity to the 

1DOF system mode. The change in frequency was 

compared to the 1DOF model. For the finite reaction 

mass model, the resonant frequency was observed to be 

most affected at low specimen stiffness, being 2.3% (1.2 

Hz) higher at zero specimen stiffness, diminishing 

rapidly to 1.1% for bar A1 and falling below 0.1% for 

bars A4 - A6. For the finite base mass model, the resonant 

frequency was most affected at higher specimen stiffness 

but for the present apparatus the resonant frequency for 

the stiffest bar, A6, was only 0.3% (around 0.7 Hz) higher 

than that predicted by the 1DOF model 

These results indicate that when testing soft materials 

in a Hardin-type device, the stiffness of the softest 

specimen to be tested should be no less than 

approximately 1/3rd the stiffness of the drive connection, 

in order to keep the error in resonant frequency below 

1%. For the range of stiff bars tested in this study, neither 

the base inertia nor reaction mass inertia was found to 

significantly impact resonant frequency. 

4.2. Effect of drive system compliance 

(Clayton et al. 2009) identified compliance of the 

drive system as a significant contributor to error in 

measured resonant frequency. The 1DOF model 

explicitly assumes that the entire active end behaves as a 

single, perfectly rigid body of infinite stiffness. However, 

since the rotational inertia of the active end must be small 

compared to that of the base (and reaction mass), 

components must be kept fairly lightweight, suggesting 

that flexion of the relatively thin drive rotor arms may be 

an issue. This issue is compounded because most of the 

mass of the active end is contained in the permanent 

magnets, which exist at the furthest point from the axis 

of rotation where their contribution to the rotational 

inertia is greatest. (Clayton et al. 2009) used finite 

element analysis to model the effects of the drive arm 

compliance for a bar of stiffness 9441 N·m/rad and 

observed a reduction in resonant frequency of around 10 

Hz compared to the value predicted by the 1DOF system. 

To investigate the effects of the drive system 

compliance in the present apparatus, the system was 

modelled as the 2DOF torsional pendulum shown in Fig. 

7b, where the inertia of the inner portion of the active end, 

Ja1, represents one body and the permanent magnets 

represent a second body, Ja2, connected by a torsional 

spring of stiffness kd representing the total stiffness of the 

drive system. Since most of the compliance is expected 

to be occurring in the four relatively thin drive rotor arms, 

which have very little mass themselves, this spring can 

be assumed to be massless. The first body representing 

the inner portion of the active end is connected to the 

parallel spring system formed by ka and ks with equivalent 

stiffness keq, which is fixed rigidly at its opposite end. 

(This condition assumes that the base inertia and reaction 

mass inertia are both sufficiently large that they may both 

be considered rigid bodies, which was validated in the 

previous subsection.) 

The total rotational inertia of the permanent magnets 

was estimated to be 0.003538 kg·m2 based on their 

known mass and the moment arm from their centre of 

mass to the axis of rotation. This represents 

approximately 87% of the total rotational inertia of the 

active end. Using the averaged values of Ja= 0.004084 

kg·m2 and ka=383 N·m/rad from Section 3, predicted 

resonant frequencies for several different values of kd 

were calculated and are plotted alongside the measured 

data in Fig 8.  

Based on these results, the drop in observed resonant 

frequency corresponds to a drive stiffness of around 

40,000 N·m/rad. At this value of kd the predicted resonant 

frequency for bar A6 from the 2DOF model is 6.3% (13.3 

Hz) lower than that predicted by the 1DOF model. This 

would correspond to an error of 13% in the calculated 

Figure 6. The effects of the a) reaction mass and b) base 

inertias were independently modelled as two degree-of-

freedom torsional pendula. 

Figure 7. Comparison of (a) the standard one degree of 

freedom torsional pendulum model for Hardin-type 

resonant columns and (b) the two degree of freedom 

system used to model the effect of drive system 

compliance. 



 

shear modulus. It is difficult, however, to isolate the 

effect of drive stiffness from other potential influences on 

resonant frequency at high strains, such as slippage at the 

bar–top cap interface, and end cap effects of the 

calibration bars, all of which were found by (Clayton et 

al. 2009) to have some influence. Uncertainty is high due 

to scatter in the small number of data points, (2), used to 

determine kd. Clearly more data at high stiffnesses are 

needed to accurately account for this effect.  

 

 Implications for the added masses method 
and for real soil specimens 

From Eq. (4), fr could be expected to reduce if the 

dynamic torsional stiffness, keq, was lowered by e.g., 

imperfect fixity of the calibration bar ends, failure to 

account for calibration bar end-cap stiffness, or stress-

distribution effects (Clayton et al. 2009). In this case, 

inputting values of ks which do not account for these 

effects would reduce the apparent ka seen in the added 

masses method. However, these effects cannot explain 

the observed increase in keq compared to its expected 

value, accompanied by an increase in apparent Ja. This 

effect of both dynamic torsional stiffness and active end 

inertia appearing to increase dramatically was also 

observed by (Clayton et al. 2009) for a very stiff bar. 

Additionally, dynamic torsional stiffness was not seen to 

drop for any of the bars in that study, even as measured 

frequency reduced significantly from that predicted. 

In the added masses method, masses are attached to 

the central portion of the active end. In the 2DOF model, 

this would correspond to Ja1 becoming Ja1 + Jam while Ja2 

remains constant. Accounting for Jam in the model 

showed that the reduction in resonant frequency as a 

result of drive stiffness diminishes as Ja1 + Jam increases 

relative to Ja2; for bar A6 this reduction was 5.4% with 

the heaviest added mass compared to 6.3% with no added 

mass. This dependency on Jam has the effect of increasing 

the gradient of the straight line fit in Fig. 4, leading to an 

over-estimation of dynamic torsional stiffness, keq, and 

active end inertia, Ja, as seen in this study and in (Clayton 

et al. 2009). This explains why the ASTM D4015 A2.1 

method and the added masses method diverge at high 

frequencies (the former uses no added masses, therefore 

this effect is not encountered). Since this effect occurs 

only when the assumption of active end rigidity fails, an 

apparent keq well in excess of its predicted value indicates 

significant drive flexion. If no further correction factors 

are to be used, then the frequency at which this effect first 

becomes significant may be considered a cut-off 

frequency for the apparatus. It may be possible to use a 

very stiff bar in combination with several added masses 

to observe the variation in the drive stiffness effect as the 

ratio of Ja1 + Jam to Ja2 is varied, and thus derive a value 

for the drive stiffness, kd. This would require that the 

effects of the base and reaction mass inertias either 

remain negligible or are properly accounted for. 

When frequency correction factors, (1.045 and 

1.063), derived from the 2DOF model using kd=40,000 

N·m/rad were applied to the measured resonant 

frequencies for bars A5 and A6 respectively, and the 

constant, averaged values of Ja= 0.004084 kg·m2 and 

ka=383 N·m/rad from Section 3 were used, the error in 

calculated shear modulus, G0, for those bars reduced 

from 12% to 3% for bar A5 and from 11% to 1% for bar 

A6 compared to results using the uncorrected 

frequencies. This indicates that where other effects are 

properly accounted for, frequency correction factors 

derived from accurate estimation of drive stiffness could 

extend the useful range of resonant column devices 

beyond existing stiffness limits. 

It is expected that testing with real soil samples with 

non-negligible rotational inertia (particularly larger 

diameter samples) would similarly influence the drive 

stiffness error, since the top of the sample is considered 

as being fixed to the top cap and rotates with the active 

end. Therefore, when switching between sample sizes or 

when testing samples of substantially different densities, 

any frequency correction factors used to extend the upper 

limit of sample stiffness should be modified to account 

for sample inertia. This should reduce errors when testing 

stiff soil samples, since previous calibration methods 

relying on an inconstant Ja derived from effectively 

massless calibration bars do not account for differences 

in the drive stiffness effect for soil samples having 

significant inertia. 

5. Conclusions 

This paper has described different approaches to 

calibrate a Hardin-type fixed-partly fixed resonant 

column apparatus. The following conclusions are drawn 

from the work: 

a) Calibration of the resonant column requires 

accurate determination of the rotational inertia of 

the active end, Ja, which is found using a calibration 

exercise involving either bars of known stiffness or 

bars of known stiffness and added masses of known 

rotational inertia; 

b) The ASTM D4015 A2.1 method and the added 

masses method were considered. The obtained 

value of Ja and its apparent variation with frequency 

was shown to be highly dependent on the 

calibration method. Both methods showed 

substantial variation in apparent Ja within the range 

Figure 8. Effect of drive system compliance. This assumes 

that the stiffness of the calibration bars can be found from 

simple geometry. 



 

of stiffnesses tested, although this variation was less 

than reported elsewhere in the literature. 

c) When using any calibration method where the bar 

stiffness is used in calculations, it is important to 

determine the diameter of the bar(s) to a high level 

of accuracy. 

d) For Hardin-type devices, the method of 

compensating for the drive connection stiffness by 

finding the apparatus resonant frequency, fa with no 

bar or sample was found to be prone to error. Errors 

in this value are most impactful when testing very 

soft materials, and in this case it is advisable to 

determine the drive connection stiffness using the 

added masses method with several different flexible 

bars and average the results. 

e) The added masses method reduces scatter in Ja for 

more flexible calibration bars but is susceptible to 

error at high stiffnesses. 

f) An alternative interpretation approach is suggested 

here which combines the two calibration methods 

tested. This approach gives the least variation in 

apparent active end inertia. Below the limiting 

stiffness of the apparatus, Ja may be assumed to be 

constant in calculations of Go with no further 

adjustments needed. 

g) An unexplained increase in apparent Ja, (and/ or 

apparent dynamic torsional stiffnesss, as found with 

the added masses method), with increasing 

calibration bar stiffness is a strong indication that 

the apparatus limits have been exceeded and may be 

used to derive a sensible limiting stiffness for the 

apparatus.  

h) The base inertia and reaction mass inertia are not 

found to significantly impact resonant frequency for 

the apparatus used in this study, except for very soft 

samples or for samples exceeding the range of 

stiffnesses tested. 

i) The compliance of the drive system contributes 

significantly to the reduction of resonant frequency 

for stiff samples. This reduction in resonant 

frequency may be modelled with some accuracy 

and used to derive frequency correction factors. 

When these frequency correction factors are used to 

modify the measured resonant frequencies, the 

active end rotational inertia can be treated as 

constant over the full range of calibration 

stiffnesses. Additional calibration in the high 

stiffness range should increase confidence in these 

correction factors and allow the upper limit of 

stiffness for the device to be further increased. 

j) Since the frequency reduction effect of the drive 

system compliance is likely to be dependent on 

sample inertia, calibration methods which do not 

account for the substantial difference in inertia 

between calibration bars and real soil specimens 

may introduce errors at high stiffnesses. The use of 

frequency correction factors, which may be readily 

adjusted to account for different specimen inertias, 

may reduce this error. 

k) Since the impact of drive system compliance was 

several times greater than that of the base inertia at 

high resonant frequencies, a second, stiffened drive 

plate could be used to reduce drive arm flexion 

when testing very stiff specimens. The additional 

weight penalty should be more than compensated 

for by the reduction in drive system compliance. 
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