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ABSTRACT:  This paper presents an automated method for calibrating several parameters in constitutive soil models using 
Bayesian inference. The probabilistic machine learning method combines triaxial test data with prior geotechnical 
knowledge to estimate constitutive model parameters and quantify their uncertainties using a Markov Chain Monte Carlo 
algorithm. The method has been tested and validated on two different constitutive models: the phenomenological non-linear 
Mohr-Coulomb model for sands and the critical state Modified Cam-Clay model for clays with Hvorslev surface. The known 
parameter values (from artificially generated data or previous projects) consistently reside within the 95% credible intervals, 
with the estimated means frequently approximating the known values. The approach can easily be extended to other consti-
tutive models and experimental data types as it does not require knowing gradients with respect to model parameters. 
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1 INTRODUCTION 

Constitutive models are used to model the complex be-
haviours of soils and simulate ground conditions for 
various applications, including in the geotechnical 
modelling of offshore site conditions. The calibration 
of constitutive models can be a repetitive and manual 
process which requires inputs from in-situ measure-
ments and laboratory data.  

Bayesian inference is a probabilistic method used 
in machine learning which can provide automatic esti-
mates and credible intervals for the parameters in such 
constitutive models. 

Various optimization methods (Machaček et al, 
2022) and machine learning methods (Zhang et al, 
2023) have previously been applied to the task of con-
stitutive model calibration. Our paper suggests a gra-
dient-free method which provides reliable results on 
sparse data and includes uncertainty quantification.  

 
2 METHODS 

In this paper we will consider two constitutive models: 
a phenomenological model for sands, and a critical 
state model for clays.  

The non-linear isotropic hypoelastic model coupled 
by a strain hardening/softening Mohr-Coulomb failure 
criterion for sands is inspired by Potts and Zdravkovic 
(1999) and referred to as the Non-linear Ørsted Mohr-
Coulomb Model (NØMM) in the remainder of this pa-
per. The NØMM model combines Potts and 
Zdravkovic (1999) strain dependent hardening-soften-
ing Mohr-Coulomb model with a Kondner and 
Zelasko (1963) type hyperbolic model generalized 

small strain stiffness model. The hardening and soften-
ing of the yield and potential surfaces are controlled by 
accumulated total deviatoric strain as shown in Figure 
1. 

 

 
Figure 1. Tri-linear isotropic hardening/softening rule for 

strength parameters, 𝑐𝑖, 𝜙𝑖 and dilatancy 𝜓𝑖  with accumu-

lated deviatoric total strain 𝐸𝑑,𝑝1𝑝
, 𝐸𝑑,𝑝2𝑝

 and 𝐸𝑑,𝑟𝑝
 at first 

yield, peak, and residual respectively. Modified from Potts 
and Zdravkovic (1999). 

 
For clays, we consider an elastoplastic strain hard-

ening/softening model with a Hvorslev surface named 
Modified Cam-Clay (MCC) (Tsiampousi et al, 2013), 
based on critical state theory.  

For the NØMM model, we focus on calibrating the 
plastic parameters, such as the friction angle at the first 
yielding, peak, and residual state, and the plastic devi-
atoric strain at the start, end of the peak and the start of 
the residual state. For the MCC model, we seek to cal-
ibrate empirical Hvorslev surface parameters (𝑚, 𝑛, 𝛼, 
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and 𝛽) and the Yield Stress Ratio (𝑅) for each test to 
prove the concept and for brevity of the presentation. 

2.1 Data preparation 

In the case of triaxial tests, the recorded laboratory 
data 𝑦 and corresponding simulation data 𝑦̂(𝜃) can be 
either deviatoric stresses, volumetric strains (in 
drained tests), excess pore water pressure (in un-
drained tests), or a linear combination of these. The re-
sults reported below are based on using deviatoric 
stresses only, but similar results have also been ob-
tained with volumetric strains and excess porewater 
pressure. To ensure comparable results across pressure 
conditions, all data in a given test were normalized by 
the maximum value in that test. 

2.2 Theory of Bayesian Inference 

Bayesian inference is based on Bayes’ theorem. The 
posterior distribution 𝑝(𝜃|𝑦) for parameter 𝜃 given 
data 𝑦 is updated using the prior probability 𝑝(𝜃) of 
observing parameter 𝜃 and the likelihood 𝑝(𝑦|𝜃) of 
observing data 𝑦 given the parameter 𝜃 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)    (1) 

 
In geotechnical applications, where many constitu-

tive model parameters 𝜃 need to be calibrated simulta-
neously, computing the posterior distribution 𝑝(𝜃|𝑦) 
directly using Equation 1 becomes intractable. Instead, 
a Markov Chain Monte Carlo (MCMC) algorithm is 
used to representatively sample the posterior distribu-
tion 𝑝(𝜃|𝑦).  

2.3 Markov Chain Monte Carlo algorithm 

A MCMC algorithm with a Metropolis-Hastings 
step was used to sample the posterior distribution 𝑝(𝜃|𝑦) and obtain probability distributions for the 
constitutive model parameters 𝜃. The algorithm is ini-
tiated with random values for the parameters 𝜃 within 
a set of user-defined boundaries. In each step of the 
algorithm, new parameter values for 𝜃 are proposed 
and either accepted or rejected in a Metropolis-Has-
tings step.  

In detail, a normal jumping distribution was used to 
propose the parameters 𝜃 to be assessed in each step. 
The jumping distribution has a mean equal to the pre-
vious parameter value, and a variance which is either 
user-defined or automatically defined. If the proposed 
parameter values lie outside the user-defined bounda-
ries, these values are discarded and new values gener-
ated. 

The prior distributions 𝑝(𝜃) for the various param-
eters are assumed to be independent and uniform for 

each parameter 𝜃 being estimated. The bounds of these 
prior distributions are set by the user, thereby offering 
the opportunity to encode prior knowledge about typi-
cal parameter ranges into the algorithm. When data is 
scarce, the prior distribution has greater impact on in-
ference, emphasising the importance of selecting rea-
sonable bounds. 

The likelihood distribution measures how likely 
observing 𝑦 in the laboratory is, given the model pa-
rameters 𝜃. To calculate the likelihood, we first evalu-
ate the simulated response of the constitutive model 𝑦̂(𝜃) assuming parameter values 𝜃. Then, the differ-
ence between the data recorded in the laboratory 𝑦 and 
the simulated response 𝑦̂(𝜃) is quantified using the 
root mean square error (RMSE) 

 𝐿𝑖(𝜃) = √ 1𝑀𝑖 ∑ (𝑦𝑖,𝑗 −  𝑦̂𝑖,𝑗(𝜃))2 𝑀𝑖𝑗=1   (2) 

 
where 𝑦𝑖,𝑗 is the laboratory data for step j and labora-

tory test 𝑖, 𝑦̂𝑖,𝑗(𝜃) is the simulated soil response with 

model parameters 𝜃 and same conditions as test 𝑖, and 𝑀𝑖 is the number of data points for the test 𝑖. 
The loss term 𝐿𝑖(𝜃) defined in Equation 2 is then 

employed in the likelihood distribution, which is a half 
normal distribution with mean 0 and variance 𝑣𝑖2  

 𝑝(𝑦|𝜃) =  ∏ 𝐻𝒩(𝐿𝑖(𝜃) | 𝜇 = 0, 𝑣𝑖2).𝑁𝑖=1  (3) 

 
This half normal distribution assigns higher proba-

bilities to low RMSE values 𝐿𝑖(𝜃), to encourage learn-
ing parameter values 𝜃 that produce a simulated re-
sponse 𝑦̂(𝜃) that is close to true laboratory data 𝑦.  

In the Metropolis-Hastings step, the posterior dis-
tribution is evaluated using Equations 1 to 3 and either 
accepted or rejected with a certain probability. 

The MCMC algorithm is updated in this manner for 
4000 steps, with the first half discarded as the burn-in 
period. Parameter values for the second half are aggre-
gated into histograms and thus represent posterior dis-
tributions for the parameters 𝜃. The accepted parame-
ter values in the second half of the chain are saved and 
used to compute percentiles, forming two-sided 
Bayesian credible intervals for 𝑦̂(𝜃) based on the mar-
ginal posterior distributions. As the Metropolis-Has-
tings step contains an inherent element of randomness, 
four Markov chains were run and averaged to obtain 
more accurate results.  

Convergence of the MCMC algorithm was as-
sessed using the R-hat measure derived by Gelman et 
al (2013). The R-hat measure compares the variance of 
the estimated parameters between and within the four 
Markov chains, checking whether the chains have 
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mixed well and are sampling from the same posterior 
distribution. No convergence issues were observed. 

 
3 RESULTS 

We first present results for calibrating parameters of 
the NØMM model, followed by results for the MCC 
model. For each model, we include results from simu-
lated data, as well as laboratory data from offshore 
sites in Europe and the United States (US). 

3.1 NØMM model 

We have used the Bayesian inference algorithm de-
scribed in Section 2 to obtain estimates for two plastic 
parameters of the phenomenological NØMM model: 
peak friction angle 𝜙𝑝 and the cumulative plastic de-

viatoric strain at the start of the peak state 𝐸𝑑,𝑝1𝑝
.  

As a preliminary test of the algorithm before apply-
ing it to true triaxial data, artificial data was generated 
by simulating drained triaxial compression of a soil 
sample at two confining pressures (𝑝0 = 100 kPa and 𝑝0 = 200 kPa) with set parameter values of 𝜙𝑝 = 38° 

and 𝐸𝑑,𝑝1𝑝 = 0.05. White Gaussian noise was added to 

the computed deviatoric stress to imitate variations 
seen in laboratory data, as seen in Figure 2. We 
adopted uniform prior distributions in the ranges [30°, 45°] for 𝜙𝑝 and [0.001, 0.20] for 𝐸𝑑,𝑝1𝑝

. Other 

NØMM model parameters are assumed to be known 
exactly. 

The posterior distributions obtained for 𝜙𝑝 and  𝐸𝑑,𝑝1𝑝
 are shown in Figure 3 and Table 1. Inferred and 

reference values for two parameters of the NØMM 
model. As only two parameters from the constitutive 
model are being inferred, it is also possible to obtain 
estimates of the posterior distributions using a grid 
search. The grid search solutions are shown with the 
red lines in Figure 3 and resemble the posterior distri-
butions obtained using the MCMC algorithm. Narrow 
Bayesian 95% credible intervals are observed in 
Figure 2. 

 
Figure 2. Simulated triaxial data used as input, with 95% 
credible intervals as determined by the algorithm.  

 
Figure 3. Posterior distributions estimated by the Bayesian 

inference algorithm for the 𝜙𝑝 and  𝐸𝑑,𝑝1𝑝
 parameters of the 

NØMM model.  

 
Table 1. Inferred and reference values for two parameters 
of the NØMM model. 

Parameter Reference 

value 

Mean 95% credible 

interval 𝝓𝒑 38.00 37.97 (37.38, 38.55) 𝑬𝒅,𝒑𝟏𝒑
 0.050 0.057 (0.009, 0.149) 

3.1.1 Application to US offshore project 

Next, we apply the NØMM model to three representa-
tive triaxial tests for a sand type from an offshore pro-
ject on the East coast of the United States. The material 
is a dense, fine to medium sand occasionally with 
gravel. The parameters to be calibrated are extended to 
include six plastic parameters: the friction angle at the 
first yielding state 𝜙𝑦, peak state 𝜙𝑝, and residual state 𝜙𝑟; and the plastic deviatoric strain at the start of the 

peak state 𝐸𝑑,𝑝1𝑝
, end of the peak state 𝐸𝑑,𝑝2𝑝

, and start 

of the residual state 𝐸𝑑,𝑝r𝑝
. The bounds selected for the 

uniform prior distributions of these six parameters are 
detailed in Table 2. Uniform prior distribution bounds 
for six plastic parameters of the NØMM model. 

 
Table 2. Uniform prior distribution bounds for six plastic 
parameters of the NØMM model.  

Parameter Uniform prior distribution bounds 𝝓𝒚 [20°, 60°] 𝝓𝒑 [20°, 60°] 𝝓𝒓 [20°, 60°] 𝑬𝒅,𝒑𝟏𝒑
 [0.0001, 0.02] 𝑬𝒅,𝒑𝟐𝒑
 [0.02, 0.12] 𝑬𝒅,𝒑𝒓𝒑
 [0.12, 0.25] 

 
The posterior distributions obtained using the 

Bayesian inference algorithm for these six plastic pa-
rameters are shown in Figure 4 and summarized in 
Table 3. The engineer-chosen values, which were 
picked independently of these results, all lie within the 
95% credible intervals. For the 𝜙𝑝, 𝜙𝑟, and 𝐸𝑑,𝑝2𝑝

 pa-

rameters, the means of the posterior distributions lie 
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close to the engineer-chosen values. Wider posterior 
distributions are observed for the 𝜙𝑦 and 𝐸𝑑,𝑝1𝑝

 param-

eters, which describe the start of the peak state. This 
suggests that precise values for these two parameters 
contribute less to determining the deviatoric stress re-
sponse to triaxial loading than parameters with sharply 
peaked distributions, such as 𝜙𝑝 and 𝜙𝑟, for the case 

where we focus on comparing the response for the 
whole range of strain values. 

 

 
Figure 4. Posterior distributions and engineer-chosen val-
ues for six plastic parameters of the NØMM model, based 
on two triaxial tests from a sand unit in an offshore US pro-
ject. 

 
Table 3. Inferred and engineer-chosen values and credible 
intervals for six plastic parameters of the NØMM model, 
based on triaxial tests from a sand unit in an offshore US 
project. 

Parameter Engineer-

chosen 

value 

Mean (In-

ferred) 

95% credible 

interval 𝝓𝒚 28 33.2 (21.4, 45.6) 𝝓𝒑 42 41.3 (34.5, 45.9) 𝝓𝒓 36 36.0 (29.7, 41.7) 𝑬𝒅,𝒑𝟏𝒑
 0.001 0.010 (0.001, 0.018) 𝑬𝒅,𝒑𝟐𝒑
 0.08 0.07 (0.02, 0.12) 𝑬𝒅,𝒑𝒓𝒑
 0.16 0.19 (0.13, 0.25) 

 
The three triaxial tests used for the Bayesian infer-

ence algorithm are displayed in Figure 5. The simula-
tion of mean parameters from the Bayesian inference 
algorithm, as well as the simulated response with the 
engineer-chosen values are also shown and resemble 
each other closely. 
 

 
Figure 5. Laboratory data, simulated response with the 
mean inferred parameters, and simulated response with en-
gineer-chosen parameters, and 95% credible intervals for 
sand in offshore US project. 

3.2 MCC model 

The Bayesian inference algorithm described in Section 
2 was applied to infer empirical parameters of the crit-
ical state MCC model for clays. 

The soil response to undrained triaxial compression 
with a confining pressure of 100 𝑘𝑃𝑎 and two differ-
ent initial states (yield stress ratio) 𝑅1 = 40 and 𝑅2 =30 and Hvorslev surface parameters (𝛽 = 0.4 and 𝑚 = 1.0) was simulated and used as input for the 
Bayesian inference algorithm. Uniform prior distribu-
tions were adopted with bounds shown in Table 4. 

 
Table 4. Uniform prior distribution bounds for four 
parameters of the MCC model on simulated response.  

Parameter Uniform prior distribu-

tion bounds 𝜷 (0.15, 0.70) 𝒎 (0.30, 1.50) 𝑹𝟏 (30, 50) 𝑹𝟐 (20, 40) 

 
The posterior distributions determined by the 

Bayesian inference algorithm are compared to the true 
values in Figure 6 and Table 5. Note that the yield 
stress ratio 𝑅 is calibrated individually for each of the 
two triaxial tests (𝑅1 for Test 1 and 𝑅2 for Test 2), 
while the 𝛼 and 𝑛 parameters are calibrated using both 
triaxial tests. 

The distributions for 𝛽, 𝑅1, and 𝑅2 are peaked 
around the reference values, whereas the distribution 
for 𝑚 is much wider. This suggests that the algorithm 
is not able to access the true 𝑚 value with precision, as 
this parameter has less importance in determining the 
soil deviatoric stress response to loading under triaxial 
conditions. 
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Figure 6. Posterior distributions and reference values for 𝛽, 𝑚, 𝑅1, 𝑎𝑛𝑑 𝑅2 MCC model parameters. 

 
Table 5. Inferred and reference values and credible inter-
vals for Hvorslev surface and initial state parameters for 
MCC model on simulated data. 

Parameter Reference 

value 

Mean (In-

ferred) 

95% credible 

interval 𝜷 0.40 0.40 (0.31, 0.49) 𝒎 1.00 1.01 (0.45, 1.46) 𝑹𝟏 40.0 40.5 (38.1, 43.0) 𝑹𝟐 30.0 30.0 (28.4, 31.8) 

 
The two triaxial tests used for the Bayesian infer-

ence algorithm are shown in Figure 7 with 95% credi-
ble intervals. The credible intervals are narrow, reflect-
ing narrow posterior distributions and low levels of 
noise in the data. 

 

 
Figure 7. Reference data and simulated response with the 
mean inferred parameters, reference parameters, and 95% 
credible interval for soil response for the MCC model. 

3.2.1 Application to North Sea offshore project 

Two triaxial tests from a clay unit located in the North 
Sea were chosen as representative samples from an 
offshore project. The clay is overconsolidated, low to 
medium plasticity clay. The parameters 𝛼 and 𝑛, 
which describe the shape of the Hvorslev surface, and 
the yield stress ratio 𝑅 were inferred using the Bayes-
ian Inference algorithm. The prior distributions were 
assumed to be uniform within the bounds detailed in 
Table 6.  

Table 6. Uniform prior distribution bounds for four 
parameters of the MCC model on triaxial response from 
North Sea clay.  

Parameter Uniform prior distribu-

tion bounds 𝜶 (0.05, 0.50) 𝜷 (0.05, 0.70) 𝑹𝟏 (1.1, 5.0) 𝑹𝟐 (1.1, 5.0) 

 
The posterior distributions shown in Figure 8 and 

summarized in Table 7 reflect that not all parameters 
are equally easy to estimate, as the distributions for 𝛼 
and 𝑛 are much wider than the distributions for yield 
stress ratios 𝑅1 and 𝑅2. The engineer-chosen values for 
all four parameters lie within the 95% Bayesian credi-
ble intervals of the posterior distributions, but the 
means of the posterior distributions are not as close to 
the engineer-chosen values compared to results pre-
sented in the above section.  

 

 
Figure 8. Posterior distributions and engineer-chosen val-
ues for 𝛼, 𝑛, 𝑅1, 𝑎𝑛𝑑 𝑅2 MCC model parameters, for two tri-

axial tests from North Sea project. 

 
Table 7. Inferred and engineer-chosen values for Hvorslev 
surface and initial state parameters for MCC model on tri-
axial data from North Sea project. 

Parameter Engineer-

chosen 

value 

Mean 95% credible 

interval 𝜶 0.25 0.34 (0.09, 0.49) 𝒏 0.40 0.36 (0.08, 0.67) 𝑹𝟏 2.8 3.2 (2.7, 3.7) 𝑹𝟐 3.7 4.2 (3.6, 4.7) 

 
The 95% credible intervals and triaxial test data 

used as input are shown in Figure 9. In this case, the 
simulated response assuming the mean parameters 
from the Bayesian inference algorithm lie closer to the 
laboratory data than the engineer-chosen values. It 
should be noted that the engineer-chosen values reflect 
the results from a calibration strategy that is based on 
the ground model characteristics and not merely as an 
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exercise to find the best matches to the triaxial test re-
sults. 

 

 
Figure 9. Laboratory data, simulated response with the 
mean inferred parameters, and simulated response with en-
gineer-chosen parameters, and 95% credible intervals for 
clay in North Sea project.  

 
4 CONCLUSION 

A Bayesian inference algorithm which can reliably es-
timate constitutive model parameters on sparse labor-
atory data has been developed. The algorithm uses 
Markov Chain Monte Carlo simulations to infer poste-
rior distributions and quantify uncertainties in param-
eter estimates.  

The Bayesian inference algorithm has been tested 
and validated on two constitutive models: the phenom-
enological non-linear Mohr-Coulomb model for sands 
and the critical state Modified Cam-Clay model for 
clays with Hvorslev surface.  

The work presented in this paper opens opportuni-
ties for further research in the automatic calibration of 
additional model parameters, including elastic param-
eters, and various constitutive models. Future work 
could explore the impact of modifying the boundaries 
of assumed uniform prior distributions or testing alter-
native prior distributions on the results. Different like-
lihood functions could also be investigated to tailor re-
sults to specific requirements.  

The implementation of this algorithm is recom-
mended in cases where many parameters need to be 
calibrated at once, and the algorithm can be used to 
suggest initial estimates, including uncertainties, to 
guide engineers in their calibration of constitutive 
models. The algorithm is easy to generalize for new 
constitutive models as it does not require knowing gra-
dients with respect to model parameters. 
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