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ABSTRACT: P-wave and S-wave velocities are used as input for calculating key parameters for offshore foundation design, 

such as small strain shear modulus, and as input for enhancement of seismic reflection data. P and S suspension 

logging (PSSL) is a common borehole geophysical logging technique for deriving these velocities in soil and rock. The 

PSSL tool generates acoustic waves in the borehole and records them, as a trace pair, at two receivers with different spacings 

from the source. P- and S-wave velocities are derived from the difference in arrival times of the acoustic waves at both 

receivers. Typically, a competent human user picks the arrival times, i.e. manual picking, which is a time-consuming 

exercise. This paper presents a machine learning algorithm, known as P and S Interpretation Network (PSINET), that 

automates the picking process. The algorithm output consists of picked arrival times for both P- and S-wave data, from 

which the acoustic velocities are derived. PSINET is a deep neural network, trained with a dataset of more than 100,000 

manually picked and reviewed PSSL trace pairs. The use of PSINET has been successfully piloted on a public domain 

dataset (blind data). Results of this campaign show that PSINET predicts correct outputs for 86% of the P-wave data and 

44% of the S-wave data. Review by a competent user is still required. PSINET reduces deliverables turnaround time and 

decreases the influence of interpreter bias. Further training of PSINET is planned to cover a wider range of ground conditions. 
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1 INTRODUCTION 

Compressional and shear wave velocities, commonly 

referred to as P-wave velocity (𝑣𝑝) and S-wave 

velocity (𝑣𝑠), are used as input for calculating key 

parameters for offshore foundation design, such as the 

small strain modulus, Young’s modulus and Poisson’s 

ratio (Masters et al., 2019). Furthermore, these 

velocities can be applied for other applications such as 

enhancing offshore seismic reflection data by updating 

the velocity model. 

One method for deriving P- and S-wave velocities 

is P and S suspension logging (PSSL), a common 

borehole geophysical logging method in accordance 

with ISO 19901-8:2023 (2023). Driven by the growth 

of the offshore wind industry, PSSL data volumes have 

risen rapidly over the past years. The increase of 

available manually processed data opened the way for 

training a deep neural network for PSSL data picking.  

This paper presents a deep convolutional neural 

network algorithm, known as P and S Interpretation 

Network (PSINET), for automated PSSL data 

processing. PSINET is a patented technology. In 

Section 2, a concise overview of PSSL data acquisition 

and manual processing is provided as necessary for 

understanding the automated processing algorithm. 

Section 3 describes the architecture of PSINET as well 

as the training and testing thereof, using Fugro’s 

catalogue of available P-, S1-, and S2-wave arrival 

times picked and reviewed by competent users. 

Section 4 presents the results of automated processing 

using PSINET compared with manually processed 

results on a large dataset from the public domain 

(Fugro, 2024a, 2024b). Section 5 discusses the 

performance of PSINET and other algorithms for 

processing of acoustic data. 

2 P AND S SUSPENSION LOGGING 

2.1 Data Acquisition 

The PSSL tool (Figure 1) consists of an acoustic dipole 

source and two receivers with different spacings 

relative to the source. The source and receivers are 

acoustically isolated to prevent transmission of direct 

tool arrivals. The dipole source generates acoustic 

waves in the borehole, including a refracted P-wave 

and a flexural wave. The dipole source is fired in two 

opposite directions to generate flexural waves with 

opposite polarity. The acoustic waves are detected at 

the tool’s receivers, where the “near” receiver is closer 

to the source than the “far” receiver. The receivers are 

spaced at a fixed distance from each other, usually 

1.0 m. 
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Figure 1: Schematic drawing of the PSSL tool with annotated source, receivers, and acoustic isolator sections. 

 

During acquisition, “acquisition cycles” are performed 

at each test depth (“station”) in the borehole. One 

acquisition cycle generates three recorded trace pairs 

with one trace pair (or “shot”) for each of the three data 

types (or “modes”): P-wave mode relating to the 

refracted P-wave, and S1-wave and S2-wave modes 

corresponding to the two flexural waves of opposite 

polarity.  

The signal quality of the recorded data may be 

affected by factors such as ground, borehole, and 

environmental conditions. Thus, it is recommended 

practice to perform multiple acquisition cycles per 

station, typically five to ten, to optimize data quality 

(Burgers et al., 2025).  

2.2 Manual Data Processing 

P- and S-wave velocities can be derived from the 

difference in arrival times of the acoustic signals at the 

near and far receivers in conjunction with the known 

receiver spacing. A user determines the arrival times 

by manual picking, i.e. the manual processing of PSSL 

data referred to in this paper. This manual process can 

be time-consuming and requires training and 

experience for competency and consistency.  

For quality checks, multiple shots (usually three) 

are processed for each mode per station. On a single 

station, this process yields multiple shot velocities for 

the P-wave, S1-wave, and S2-wave modes. These are 

averaged into a single station velocity per mode. 

Where applicable, the average of the S1- and S2-wave 

velocities is considered the S-wave velocity.  

Typically, the three processed shots per mode are 

those assessed by the user as the best quality data with 

the least noise impact; the other shots on the station are 

left unprocessed. Each mode may be processed using 

different acquisition cycles. Generally, S-wave data 

are more difficult to process than P-wave data. Thus, 

S-wave data are deemed of insufficient quality for 

velocity derivation more often than P-wave data. 

Even for competent users, it can be challenging to 

pick the exact same velocity on two different shots on 

a station. Percentage-based repeatability limits are 

imposed to ensure the derived velocities for each wave 

type (P-wave and S-wave) are repeatable, where 

consideration is given to higher relative variance in 

lower derived velocities. Thus, a staggered approach 

as presented in Table 1 is used, where 𝑣𝑚𝑎𝑥 is the 

maximum picked velocity for the wave type at the 

station. In this paper, these velocity repeatability limits 

are used to assess PSINET’s predictions as described 

in Section 3.4. 

 
Table 1. Velocity repeatability limits (Burgers et al., 2025) 

Maximum Wave  

Velocity [m/s] 

Repeatability 

Limit 𝑣𝑚𝑎𝑥  < 500 10% 

500 ≤  𝑣𝑚𝑎𝑥 < 1500 5% 𝑣𝑚𝑎𝑥 ≥ 1500 3% 

 

Furthermore, each picked mode per station is 

assigned a confidence class according to multiple 

criteria assessing trace interpretability (Burgers et al., 

2025). The four confidence classes include C1 (High), 

C2 (Medium), C3 (Low), and C4 (Insufficient). 

Confidence class is used in this study as a measure of 

the complexity of the data given to PSINET for testing. 

3 P AND S INTERPRETATION NETWORK 

3.1 Architecture 

Recent accomplishments have been made by adapting 

the popular medical segmentation network U-Net 

(Ronneberger et al., 2015) into a neural network for 

phase picking and earthquake detection (PhaseNet), 

thereby achieving much higher picking accuracy than 

previously existing methods (Zhu and Beroza, 2018). 

Building upon these recent developments, this study 

adapts the U-Net architecture for PSSL picking. 

PSINET is a deep convolutional neural network 

which is designed to produce a segmentation from 

PSSL recordings. The segmented output is equal to 1 

for the time interval between the estimated near and far 

receiver arrivals, and equal to 0 before the arrival on 

the near receiver and after the arrival on the far 

receiver. The timestamp where the segmentation flips 

from 0 to 1 corresponds with the picked arrival on the 

near receiver and where the segmentation flips back 

from 1 to 0 corresponds with the picked arrival on the 

far receiver. This is illustrated in Figure 2.  

Two different versions of PSINET were developed. 

For P-waves, the near and far recordings are used as a 

dual-channel input; for S-Waves, PSINET uses the 

near and far recordings from the S1 and S2 modes 

together as a quad-channel input. The output is the 

same single-channel segmentation in both versions, 

i.e. it generates one segmentation for the P-wave input 
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and one segmentation for the combined S1- and 

S2-wave input. 

 

 
Figure 2: From top to bottom, all on the same time axis: 

Near receiver recording, far receiver recording, and 

segmentation defined from manual picks. Both recordings 

consist of a S1 and S2 mode. 

 

3.2 Training Data 

Training of the network proved the most successful 

while using the Generalized Intersection over Union 

(GIoU) loss function. The GIoU is a generalized 

version of the Intersection over Union (IoU) loss, also 

known as the Jaccard index, which is defined as the 

intersection size divided by the union size and 

quantifies similarity (Rezatofighi et al., 2019). This 

loss function has the benefit that it is stricter on the size 

(length) of the segmentation than on its actual location 

compared to other common loss functions such as the 

mean absolute error (MSE). For the PSSL data 

segmentation presented here (Figure 2), the size of the 

segmented part corresponds directly with the desired 

result: the arrival time difference between the receivers 

used to derive the acoustic velocity. 

A substantial dataset was compiled for the training 

of PSINET, including data from over 20 different 

projects which were mainly conducted in the North 

Sea. Most data come from projects where the ground 

conditions consist of sands, transitional soils and clays. 

In terms of derived velocity data, 50% of available P-

wave data are between 1674 m/s and 1818 m/s and 

50% of available S-wave data are between 260 m/s and 

399 m/s. In total, the dataset included roughly 45,000 

P-wave, 40,000 S1-wave, and 40,000 S2-wave picked 

shots, all processed by competent users.  

A Kernel Density Estimation (KDE), which is a 

smooth, continuous estimate of the probability density 

function of a random variable, is presented for the 

training data and the testing data (Section 3.3) for  

P-waves in Figure 3 and for S-waves in Figure 4. The 

KDE is computed by summing up kernel functions 

centred at each data point using Scott‘s Rule for 

Gaussian kernel size estimation (Scott, 2015). The 

main portion of the distribution is presented, excluding 

outliers, to emphasize the primary characteristics of 

the data. Both figures are presented on the same 

density scale to ensure comparability.  

 

 
Figure 3: KDE’s for P-wave data in the training and the 

testing datasets. 

 

 
Figure 4: KDE’s for S-wave data in the training and the 

testing datasets. 

 

During the training of PSINET, the training dataset 

was randomly split into 80% for training and 20% for 

validation. Actual performance was tested on data 

from an unseen project with a variety of soils. 

On-the-fly data augmentations were applied during 

training to further improve the network’s robustness. 

Augmentation types were chosen based on their ability 

to mimic real features in the data. The following types 

of augmentation were utilised: 
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 Mirroring the acoustic data over the time axis 

(reversing signal polarity) 

 Baseline shifts mimicking constant noise 

 Random muting of parts of the input signal 

 Addition of Gaussian noise – to replicate 

electronic noise, for example 

 Time shifts - these make the network more 

robust to earlier and later arrivals. 

3.3 Testing Data 

A testing dataset was compiled with PSSL data from 

two geotechnical campaigns carried out by Fugro for 

the Netherlands Enterprise Agency (RVO) in 2023: 

IJmuiden Ver Wind Farm Sites V-VI (IJVWFS V-VI) 

and Nederwiek Wind Farm Site I (NWWFS I). There 

are no data present in the training dataset from these 

locations. All stations where P- or S-wave velocities 

were presented in the report were used in the testing 

dataset. All shot records at these stations, picked or 

unpicked, were included. 

Figure 3 and Figure 4 present KDE‘s of the picked 

shots in the testing dataset. While not clearly visible 

for S-waves, Figure 3 shows a narrower spread in 

P-wave velocities in the testing dataset compared with 

the training dataset, due to the testing dataset having 

less soil variability. 

In total, the testing dataset consists of 5487 P-wave 

and 3894 S-wave picked shots, with on average per 

station: 11 shots present, three P-wave shots picked, 

and four S-wave shots picked. In the ideal case, where 

all modes are picked three times for each station, there 

should be six S-wave picked shots per station. The 

higher difficulty of processing S-wave data is 

confirmed by the lower number of picked S-wave 

stations than expected and the confidence levels 

assigned to the picked stations. For P-wave, the 

average confidence class is C1 (high) on both sites; for 

S-wave, the confidence class averages C3 (low) for 

IJVWFS V-VI and C2 (medium) for NWWFS I. 

3.4 Performance Metrics 

For each of the manually picked shots, it is possible to 

perform a direct comparison with PSINET’s output by 

computing a relative error defined as: 

 𝐸 = |𝑣𝑚𝑎𝑛𝑢𝑎𝑙 − 𝑣𝑝𝑟𝑒𝑑|𝑣𝑚𝑎𝑛𝑢𝑎𝑙 ∗ 100   (1) 

 

where 𝐸 is the relative error between the manually 

picked velocity 𝑣𝑚𝑎𝑛𝑢𝑎𝑙 and the PSINET-predicted 

velocity 𝑣𝑝𝑟𝑒𝑑. While the relative error tells us 

something about the network’s performance, it is not a 

good indicator of practical usability. 

By combining the staggered velocity repeatability 

scheme introduced in Section 2.2 with the relative 

error, a more practical metric can be introduced, 

namely the Pick Success Ratio (PSR). PSR is defined 

as the ratio of the total manual picks in the dataset 

where PSINET produces a correct velocity prediction. 

Here, the correct velocity is defined as a velocity 

inside the velocity repeatability margin of the 

manually picked shot velocity. The applicable velocity 

repeatability limit is determined as per Table 1, where 

now 𝑣𝑚𝑎𝑛𝑢𝑎𝑙 is considered instead of 𝑣𝑚𝑎𝑥. 

PSINET provides a pick for every shot in the test 

data, i.e. also for the shots that have not been manually 

picked. Therefore, an alternative comparison approach 

can be used that also includes those unpicked shots in 

the testing dataset. For each of the shots in a station, 

manually picked or unpicked, PSINET’s output is 

compared with the average velocity of the manually 

picked shots. If no picks were made for a particular 

mode on a station, it is not considered. A station is 

assessed as correct, when PSINET can produce at least 

three picks within the velocity repeatability limit of the 

average manual velocity. The total ratio of correctly 

processed stations by PSINET divided by the total 

amount of manually picked stations is defined as the 

Station Success Ratio (SSR).  

Finally, it is also possible to apply PSINET on each 

shot and compare the predicted velocity directly with 

the manually picked average velocity for each station. 

This metric, the Total Success Ratio (TSR), is defined 

as the ratio between the amount of PSINET picks 

within the velocity repeatability limit divided by the 

total amount of shots in the dataset. However, this 

metric is regarded as overly pessimistic as shots that 

would be considered unsuitable for velocity derivation 

by a human user, e.g. data with obstructive levels of 

noise, are included in the analysis. Therefore, the TSR 

was not used to assess PSINET’s performance. 

4 RESULTS 

Table 2 presents the average relative error (𝐸𝑎𝑣𝑔), the 

PSR, and the SSR for the P-wave version of PSINET. 

These metrics are presented for the S-wave version in 

Table 3. For P-waves, the network performs well with 

an overall SSR of 85.7%. The S-wave model correctly 

processes the data with an overall SSR of 44.2%. The 

lower performance of the S-wave model was 

anticipated, given the higher complexity of the S-wave 

data compared to the P-wave data. The SSR is mostly 

higher than the PSR, except for the S-wave data of 

IJVWFS V-VI. In this case, additional manual picks 

were placed on some stations with low complexity 

data, thus positively skewing the PSR result. 
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Table 2. PSINET performance metrics for P-waves 

Site  Eavg PSR SSR 

IJVWFS V-VI 2.1% 82.5% 87.9% 

NWWFS I 2.7% 76.0% 83.7% 

Overall 2.4% 79.2% 85.7% 

 
Table 3. PSINET performance metrics for S-waves 

Site  Eavg PSR SSR 

IJVWFS V-VI 20.5% 38.0% 33.6% 

NWWFS I 21.1% 34.1% 59.2% 

Overall 20.8% 36.0% 44.2% 

Figure 5 and Figure 6 below show examples of 

P-wave and S-wave data correctly labelled by 

PSINET, respectively. In the S-wave example, there is 

a time shift in the picking approach of PSINET versus 

the manually placed picks. It is important to note here 

that, while the picked arrival times on Figure 6 may 

differ, the automatic derived velocity is still within 

limits; PSINET is merely using a different picking 

strategy compared to the manual picking. 

5 DISCUSSION 

In the seismic industry, various algorithms have been 

developed to help with the manual picking of seismic 

arrivals, events, or phases. Traditional algorithms to 

automatically pick seismic arrivals include the 

short-term average long-term average algorithm 

(STA/LTA), phase arrival identification-kurtosis 

(PAI-K), and cross correlation pickers (Zhou et al., 

2019). While most of these methods could be applied 

to PSSL data, few have been successfully 

implemented. Many of the traditional algorithms, such 

as the STA/LTA method, are not practically robust and 

introduce large biases from the desired picks (Lin and 

Lin, 2016). Although Lin and Lin achieved good 

results with a semi-empirical implementation of 

PAI-K, their method was not implemented in this 

study. The expected outcome of this study was that 

using a machine learning (ML) algorithm would 

improve output accuracy and would provide the most 

robust solution to various ground types. 

The first ML algorithms that were widely used in 

the seismic industry are the traditional artificial neural 

networks (ANN), however with the arrival of 

increased computing power and deep convolutional 

neural networks (CNN), they were outperformed 

(Zhou et al., 2019). Besides CNN architectures, 

Recurrent Neural Networks (RNN) and Long Short-

Term Memory (LSTM) networks are also prospective 

methods for PSSL processing, partially because of 

their suitability to sequential data. In this study, one 

specific CNN architecture (U-Net) was adapted for 

PSSL processing and no other architectures were 

further investigated. 

Various techniques specific for downhole acoustic 

arrival picking exist, such as threshold-based detection 

and semblance processing (e.g. Lang et al., 1987). 

These algorithms, widely used for the processing of 

data from monopole and dipole sonic wireline tools, 

are not promising for PSSL data. PSSL data can be 

noisy, making threshold-based detection unreliable. 

Semblance algorithms are not suitable, since the 

desired acoustic arrival in PSSL data is typically 

accompanied by other undesired arrivals. 

6 CONCLUSION 

Results of the first test of PSINET on a large dataset 

show that PSINET predicts correct outputs for 86% of 

the P-wave data and 44% of the S-wave data. The 

results are promising and significant time savings in 

processing can be achieved. By requiring less manual 

input, PSINET also paves the way to reducing 

interpreter bias. 

In the current workflow, PSINET can be used as the 

initial processing step for PSSL data, where it is used 

to automatically processes an unprocessed dataset 

after data acquisition. Thus, the initial manual 

processing by a competent user is not required. It takes 

the algorithm less than one minute to process 100 

stations of P-, S1-, and S2-wave data on a standard 

business laptop.  

After applying the model, a competent user reviews 

the automatic picks and adjusts them where required. 

Based on the performance of the currently available 

versions, the use of PSINET to perform the initial 

automated picking reduces total processing time by 

approximately 20-40%, as compared to the completely 

manual approach, depending on the difficulty of the 

dataset. 

For future work, the performance of PSINET can 

be improved by adding more data to the training 

dataset. Moreover, it would be beneficial to include a 

larger variety of soils in the training data; the current 

training dataset is only sparsely populated with higher 

velocity soils. Furthermore, pairing the training and 

testing datasets with additional soil information from 

integrated datasets would benefit further analysis and 

dataset normalization over soil types. Well paired data 

is not always available, with the exception of natural 

gamma data.  

In addition to further development of the soil 

models, research is planned to train a separate model 

with data acquired in rock formations as it may be 

difficult to create a well-balanced dataset of both soil 

and rock data due to the differing volumes available. 
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Figure 5 - Example of P-wave recording with manual and PSINET picking (𝑣𝑚𝑎𝑛𝑢𝑎𝑙 = 1736 𝑚/𝑠, 𝐸 = 0.7). 

 

 
Figure 6 - Example of S-wave recording with manual and PSINET picking (𝑣𝑚𝑎𝑛𝑢𝑎𝑙 = 323 𝑚/𝑠, 𝐸 = 1.7). 
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