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ABSTRACT:  Monopiles are the most commonly used foundation type for offshore wind turbines (OWT). Ensuring a 
reliable design for monopiles is crucial for sustainable development of offshore wind energy but presents significant chal-
lenges due to inherent soil spatial variability. This paper introduces an integrated procedure for the reliability-based design 
of monopiles, encompassing soil spatial variability modeling, failure probability estimation, and design variable determina-
tion. Initially, modeling of soil vertical spatial variability is achieved using the cone penetration test data collected from the 
vicinity of the target monopile location. Following the creation of a numerical model for the monopile, active learning 
metamodeling is employed to estimate the failure probability concerning excessive inclination under ultimate loadings. Due 
to the high efficiency of the improved active learning algorithm, reliability-based design is performed to determine the 
minimum embedding depth that satisfies the required reliability index. The results reveal that the failure probability can be 
efficiently estimated using the procedure. The final determined design variable presents the minimum steel consumption 
while satisfying safety criteria. The introduced procedure proves to be a powerful tool for the reliability-based design of 
OWT monopiles. Future work aims to incorporate optimization algorithms into this procedure to simultaneously optimize 
multiple design variables, achieving a safe and cost-saving design. 
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1 INTRODUCTION 

The foundation of offshore wind turbines (OWT) is 
one of the essential components to be considered at the 
design phase. Monopiles are the most used foundation 
type for OWT, which require a reliable design to with-
stand uncertainties such as soil spatial variability. Con-
ventional deterministic calculations overlook these un-
certainties.  

Probabilistic approaches are generally employed to 
account for the uncertainties and estimate the failure 
probability (Pf) or reliability index () for a certain 
failure mode (e.g., excessive pile rotation) from a set 
of random variables (RV) as input. Results from these 
RV inputs do not consider explicitly the spatial varia-
tion of soil properties.  

The random field (RF) approach is the commonly 
used method for representation of spatial variability of 
soils (Fenton and Griffiths, 2008, Vanmarcke, 2010, 
Guo et al., 2021). In order to model any problem com-
bining the random field realizations as input, random 
finite element methods (RFEM) have been imple-
mented in various geotechnical applications (Griffiths 
and Fenton, 2009, Al-Bittar et al., 2018, Wang et al., 
2024). After obtaining the results from RFEM, a relia-
bility assessment is performed using Pf or  estimated 

through reliability methods (e.g., first- and second-or-
der reliability method FORM and SORM, or crude 
Monte Carlo Simulations (MCS)). However, FORM 
and SORM lose accuracy when dealing with highly 
nonlinear performance functions, and MCS requires a 
large number of simulations, which may become pro-
hibitive when dealing with complex numerical models 
and/or low failure probabilities (Siacara et al., 2024). 

Active learning reliability method combining 
kriging and crude MCS (AK-MCS) has been proposed 
to overcome the disadvantage of excessive number of 
iterations of mechanical model calculations (Enchard 
et al., 2011). This method adaptively constructs a sur-
rogate (metamodel) of the original model with a 
smaller number of iterations and reaches an accurate 
estimate with minimum error for reliability assessment 
(Moustapha et al., 2022).  

This paper presents a reliability-based design of 
OWT monopile using active learning metamodeling. 
Soil uncertainty was quantified through analyzing 
real-site investigation data. RFs of undrained shear 
strength (su) of soil have been generated as input using 
Karhunen-Loève expansion. The undrained defor-
mation modulus of soil (Eu) has also been taken as a 
dependent input of su. A mechanical three-dimensional 
model has been constructed using Plaxis 3D to obtain 
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initial results for active learning metamodeling. The 
mechanical model runs have been fully automated by 
Python code which integrates the quantity of interest 
(monopile rotation in this study) for further evaluation 
through the developed MATLAB script coupled with 
UQLab toolbox. Due to the high efficiency of the im-
proved active learning algorithm, reliability-based de-
sign is performed to determine the minimum embed-
ding depth that satisfies the required reliability index.  

2 METHODOLOGY 

2.1 Spatial Variability of Soils with Random 
Fields 

Soil properties are generally spatially varied due to 
the geological processes. This is one of the main 
sources of uncertainty in soil properties which affects 
response of geotechnical systems (Phoon and 
Kulhawy, 1999). RF theory considers the spatial vari-
ation of a soil property as an infinite number of RVs 
over a continuous to express the spatial variability of 
soil. For practical usage of RF, however, the continu-
ous function should be truncated in order that it con-
tains a finite number of RVs which is called random 
field discretization. The main goal of RF discretization 
is to define the best approximation requiring a minimal 
number of random variables (Sudret and Der Kiu-
reghian, 2000). 

There are various discretization methods in the lit-
erature, and Karhunen Loève expansion (KLE) is one 
of the most commonly used ones. It is optimal among 
the series expansion methods in terms of the global 
mean square error with respect to the number of ran-
dom variables in the discretization (Ghanem and 
Spanos, 1991). The KLE of a Gaussian random field 
H(x, θ) after discretization, with a mean (x) and 
standard deviation , can be written as follows 
(Moustapha et al., 2024): 𝐻̂(𝒙, 𝜃) ≈ 𝜇(𝒙) + 𝜎 ∑ √𝜆𝑖𝜉𝑖(𝜃)𝜑𝑖(𝒙)𝑀

𝑖=1 (1) 

 
where i and (x) are eigenfunctions and eigenval-

ues of the covariance function C(x,x'), which is the au-
tocorrelation function (x,x') multiplied by the stand-
ard deviations (x) and (x'). {ξi(θ), i = 1, . . .} in Eq.1 
are independent standard normal random variables, 
and M is the number of terms in the expansion having 
the largest eigenvalues after the truncation of the infi-
nite RF. M is determined by taking 0.99 energy ratio 
as the threshold in this study obeying the suggested 

range in the literature (0.95-0.99). The squared expo-
nential autocorrelation function is used in the present 
study (Moustapha et al., 2024b).  

2.2 Reliability Analysis and Active Learning 
Metamodeling  

Reliability analyses usually contain an assessment 
of Pf for a probabilistic model with uncertainty quan-
tification in input parameters (such as soil properties). 
A limit-state function g(X) is generally defined for un-
certainty propagation which takes positive values in 
the safe domain (Ds) and negative values in the failure 
domain (Df). The values of Pf are then calculated as 
follows (Malchers and Beck, 2018, Siacara et al, 
2024): 𝑃𝑓 = 𝑃[𝑔(X) ≤ 0] = ∫ 𝑓𝑿(𝒙)𝑑𝒙 

𝐷𝑓 (2) 

 
where fX(x) in Eq.2 is the joint probability density 

function (PDF) of X. 
One of the methods for estimation of small Pf  

called subset simulation (SS) is employed in this study. 
SS is based on solving the sequence of conditional re-
liability analyses and combining them with Markov 
chain Monte Carlo simulation. There are two user-de-
fined parameters for SS: the initial probability (P0) and 
the number of samples in each subset, for which 0.2 
and 200000 values are used in this study in combina-
tion with surrogate modeling, respectively. These val-
ues confirm that the SS analysis was performed with 
so-called “overkill settings” which are favorable for 
failure probability estimation with higher accuracy 
(Moustapha et al., 2022). 

In order to reduce the computational cost for simu-
lation-based Pf estimation techniques, active learning 
metamodeling (surrogate modeling) is usually used. 
The method is based on starting with an initial small 
set of samples for model estimations (experimental de-
sign), which is sequentially enriched by learning func-
tions. The goal is to approximate the limit-state surface 
as close as possible (i.e., using the least number of 
model evaluations) to achieve the best possible accu-
racy for the estimated failure probability (Moustapha 
et al., 2022). In this study, the adaptive (or active learn-
ing) polynomial chaos kriging (A-PCK) technique was 
employed to create a surrogate model (Siacara et al., 
2024). 

2.3 Analysis Procedure in the Study  

The procedure proposed in this work starts with mod-
eling vertical soil spatial variability using cone pene-
tration test data (CPT) from the vicinity of the target 
monopile location. 1D RFs of soil shear strength (su) 



Reliability-Based Design of Offshore Wind Turbine Monopiles Using CPT Data and Active Learning Metamodeling 

Proceedings of the 5th ISFOG 2025 3 

and stiffness (Eu) have been generated using the KLE 
method with the UQLab Matlab toolbox (Marelli and 
Sudret, 2014). An analysis framework has been devel-
oped using Plaxis 3D to create and get the response of 
the monopile mechanical model automatically through 
Python code. A surrogate model by A-PCK with SS 
(denoted as A-PCK/SS hereafter) has been then cre-
ated using a Matlab script coupled with UQLab and 
Plaxis 3D-Python. The final surrogate model after the 
enrichment has been obtained for further reliability as-
sessments. The procedure has been validated using a 
deterministic and a probabilistic model compared with 
a reference study. After the validation, a case study 
with real CPT data- generated RFs used as inputs in 
the mechanical model to obtain a final surrogate 
model. RBD of monopile embedded length has been 
performed to find the minimum length that satisfies the 
target reliability. A flowchart illustrating the procedure 
is given in Figure 1. 

 
Figure 1. Flowchart of the proposed analysis procedure 

3 MODELING OF OWT MONOPILE  

The mechanical model (Figure 2) of a monopile has 
been created using Plaxis 3D software (Brinkgreve et 
al., 2024). The model was validated in both determin-
istic and probabilistic frameworks by comparing with 
published results. 

3.1 Validation of the Model with Deterministic 
Input 

An open-ended steel monopile of 3-4 m diameters 
and 18-24 m embedded lengths (Lem) was considered 
from chapters 2 (Model 1) and 3 (Model 2) in a refer-
ence study, respectively (El Haj, 2019). The wall 
thickness of the monopile was equal to 5 cm. The 
monopile was extended by 1 m above the seabed for 
both models to prevent the soil from going over the 
monopile. The self-weight of OWT was taken as 
V=2000 kN vertical force applied on the monopile 
head. The horizontal static forces applied for Models 1 
and 2 are H=550 kN and 1600 kN, respectively. The 
point of application from the mudline is h=38.6 m for 
each model resulting in a bending moment at the pile 
head M=H×(h-1)=20680 kN.m and 60160 kN.m, re-
spectively. The dynamic effect of the forces is out of 
the scope of this study. A single layer of soil with con-
stant su=50 kPa was used for Model 1. For Model 2, a 
single layer of soil with increasing su by depth was 
used with an initial value of 2 kPa and a rate of 1.68 
kPa/m. The soil stiffness was dependent with 
Eu=200×su and Eu=500×su correlations for Model 1 
and 2, respectively. Table 1 summarizes the validation 
results of the deterministic models compared for the 
monopile head rotations at the mudline () from the 
reference case. 
Table 1. Validation of the deterministic model (Pile rotation 

at the mudline) 

 This study EI Haj, 2019 

Model 1 0.22° 0.23° 

Model 2 0.54° 0.55° 

3.2 Probabilistic Model 

The same model from Chapter 2 of the reference 
case has been employed for further validation in a 
probabilistic framework. The serviceability limit state 
(SLS) has been considered with monopile rotation 
limit at the mudline of SLS=0.25°. The deterministic 
parameters from Model 1 were taken as the mean val-
ues of the inputs, and the coefficient of variation was 
taken as COVsu=25%. The model has been divided 
into small layers of soils to represent the spatial varia-
tion of soil with RF inputs. The correlation length of su 
was taken 2 m same to the reference case, and the layer 
thickness of the model was adjusted accordingly (Fig-
ure 2). The other settings of the model have been kept 
the same with Model 1. 
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Figure 2. Mechanical model in Plaxis 3D 

A-PCK/SS explained in section 2.3 was applied, 
and the resulting Pf values against SLS were compared 
with the results from the reference case. The initial de-
sign of experiments (DoE) for the training of the sur-
rogate was taken 15, the same as the reference case. 
The stopping error was taken =10%. Table 2  shows 
that there is a reasonable agreement in the last Pf val-
ues obtained, and the introduced method showed an ef-
ficient estimation of failure probabilities with a smaller 
number of enrichments. 
Table 2. Validation results of the probabilistic model 

 This study EI Haj, 2019 

Pf 2.1×10-3 3.4×10-3 

COVPf, % 1.76 2.42 

Initial DoE 15 15 

Number of added 
samples 

33 44 

4 CASE STUDY  

The similar geometry and loading conditions of 
Model 2 have been employed for further studies on 
RBD of OWT monopile using the proposed procedure. 
su values were taken from a CPT database of an off-
shore wind farm in the UK (Marine Data Exchange, 
2024). The statistics (i.e., trend, standard deviation 
etc.) and the vertical scale of fluctuation of su were es-
timated using linear fitting and variogram analysis, 
which allow following generation of site-specific RFs 
using the KLE. The spatial variability was considered 
only in the vertical direction due to the large scale of 
horizontal fluctuations in marine soils (Wang et al., 
2024) and the difficulty of estimating lateral variabil-
ity from sparsly located CPTs. Also, a 1D random field 
was chosen for computational efficiency. 

4.1 Generation of Soil Parameter RFs 

A lognormal random field of undrained shear 
strength with linearly increasing mean along depth has 
been used in this study. su dependent stiffness with 𝐸𝑢 = 500 × 𝑠𝑢 was employed for considering spatial 
variation of 𝐸𝑢. All the parameters and settings in the 
RF generation by the KLE method are summarized in 
Table 3. It is noted that the correlation length is ob-
tained by transforming from the scale of fluctuation. 

Figure 3 shows the measured 𝑠𝑢 profile, along with 
the fitted trend and 10 generated RF realizations using 
the settings of Table 3. 
Table 3. RF Generation parameters 

Parameters Values 

Initial shear strength, su0 (kPa) 38.8 

Increase rate of su (kPa/m) 5.8 

Standard deviation of su (kPa) 13.5 

Discretization scheme KLE 

Autocorrelation function Gaussian 

Number of terms in the expansion 16 

Vertical correlation length, av (m) 1.41 

RF Mesh size (m) 0.7 

 
Figure 3. Sample random field realizations generated from 

the CPT sounding selected and trend of su by the depth 

4.2 Deterministic Model and Reliability Anal-
ysis Results 

Figure 4 shows the deterministic model used for the 
calculation of the monopile rotation at the mudline. 
One realization of su RFs is mapped to the model for 
illustration. The monopile is assessed in a Serviceabil-
ity Limit State (SLS) by considering excessive rotation 
of pile at mudline as failure mode. The corresponding 
performance function is thus: 𝐺 = 𝜃𝑆𝐿𝑆𝜃 − 1 = 0.25°𝜃 − 1 (1) 



Reliability-Based Design of Offshore Wind Turbine Monopiles Using CPT Data and Active Learning Metamodeling 

Proceedings of the 5th ISFOG 2025 5 

 
Figure 4. Sample RF realization of su in Model 2 

The active learning metamodeling approach A-
PCK/SS (Siacara et al., 2024) is then used to quantify 
the uncertainty propagation and provide Pf estimate. 
The number of initial DoE is set as 25, and the stop-
ping error limit is 10%. 

Figure 5 shows the active learning process of the 
A-PCK/SS. The convergence of Pf estimate is 
achieved after over 10 added samples and the process 
is stopped at the 20th iteration with satisfied Pf estimate 
error. The total number of model evaluations is thus 
45, showing high efficiency of the method. The finally 
estimated Pf of the studied monopile with an embed-
ded length of 24m is 1.6 × 10−4. 
 

 
Figure 5. Analysis results of A-PCK/SS algorithm for 

Lem=24m 

4.3 Reliability-Based Design of Monopile Em-
bedded Length  

The Pf of the monopile with the initial embedded 
length (𝐿𝑒𝑚) is lower than the required maximum Pf 
indicated in the 2nd generation of Eurocode, which cor-
responds to a reliability index of 2 for SLS. Therefore, 
it is expected to reduce the 𝐿𝑒𝑚 to find the minimum 
embedded depth that satisfies the target reliability in-
dex (𝛽𝑇𝑎𝑟𝑔𝑒𝑡 = 2). This can be acheived by tuning the 𝐿𝑒𝑚 and perfoming the reliability analsyes with the A-
PCK/SS as shown in Figure 6 which indicates that the 
minimum 𝐿𝑒𝑚  could be 18.5m showing a reduction 
from the initial embedment length. 

Table 4 provides a summary of the analysis results 
for the monopile with a 𝐿𝑒𝑚  of 18.5m. The Pf is 7.44 × 10−3, corresponding to a reliability index of 

2.4 being slightly larger than the target value. The av-
erage of the pile rotation under the uncertain soil prop-
erties is 0.229𝑜  and the 95% interval is [ 0.213𝑜 , 0.245𝑜]. Such information, along with the distribution 
of rotation angle (Figure 7), are complementary results 
to the conventional deterministic analysis, and provide 
useful insights into the monopile design/ evaluation for 
decision making. 

 
Figure 6. RBD results of Lem by A-PCK/SS algorithm 

 
Table 4. Results summary of Lem=18.5m 

Probabilistic analysis results 

Failure Probability:  7.44 × 10−3  
Reliability Index: 2.4 
Mean 𝜃 0.229𝑜  
95% confidence interval of 𝜃 0.213𝑜 - 0.245𝑜 

 
Deterministic analysis results 𝜃 with fitted trend 0.228𝑜  

 
Figure 7. PDF of  for Lem=18.5m model 

5 CONCLUSIONS 

This paper presents a reliability-based design pro-
cedure for offshore wind turbine monopiles against 
pile rotation under ultimate load conditions. The pro-
cedure models vertical soil variability using CPT data 
near the monopile site, represented as a 1D random 
field with a linearly increasing mean. It is integrated 
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with a numerical monopile model and an active learn-
ing PCK framework for efficient reliability analysis. 
The final step determines the minimum embedment 
length to achieve a target reliability index, optimizing 
the design while considering site-specific uncertain-
ties. 

A case study using CPT data from an offshore wind 
farm demonstrates the procedure. Results show that 
the active learning approach enhances efficiency, 
while reliability-based design reduces the required 
monopile embedment length. The framework also pro-
vides failure probabilities and confidence intervals for 
informed decision-making. 

The current work focused on optimizing the mono-
pile length for a single case. The proposed procedure 
will further be tested on numerous cases containing 
varying RF soil parameters to validate the applicability 
of the procedure on different RF dimensions. 

Future improvements include incorporating moni-
toring data to update soil property uncertainties and 
expanding the design scope to include additional vari-
ables and objectives. 
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