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ABSTRACT:  The use of Bayesian statistics is making its way into routine geotechnics because of increasing availability 
of regional databases of geotechnical parameter values and increasingly efficient computing. Bayesian statistics can support 
development of reliable probability density functions (PDF) of geotechnical parameters. These PDFs allow estimation of 
statistical uncertainties of parameter values, including the mean (BE), median, confidence interval (BEL, BEH) and the 
prediction interval (LE, HE) which are key inputs for design of offshore wind foundations. This paper describes the use of 
Bayesian statistics for optimising laboratory test quantities by leveraging existing data. The presented optimisation approach 
also covers dynamic updating of the (posterior) probability density function for key parameters (in this case undrained shear 
strength in triaxial testing for clays) and monitoring of laboratory test quantities as site-specific data become available. 
Achieved optimisation is compared with the conventional approach of Frequentist statistics.  
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1 INTRODUCTION 

Sustainable development and climate resilience are 
currently key factors propelling countries to set targets 
toward carbon neutrality. As an example, the Dutch 
government has set out a roadmap with the required 
installed capacity from offshore wind farms to reach 
their energy supply targets. Figure 1 shows the number 
of turbines needed and the offshore area to be charac-
terised to meet required installed capacity.  

 
Figure 1. Sustainable development goals, Netherlands 

(source: RVO, 2021)  

The geotechnical industry is striving to keep up 
with the current schedule demands. The scale of 
activities and the rapid change of pace, as illustrated in 

Figure 1, are evident. Note that the geotechnical 
industry typically operates some years ahead of 
installed capacity.  

Innovation opportunities for schedule shortening 
are  available for site characterization programmes for 
design of offshore structures, particularly on the topic 
of a good understanding of the probability density 
functions (PDF) of key geotechnical parameters. 
Figure 2 illustrates how these PDFs allow estimation 
of statistical uncertainties of parameter values, 
including the mean (BE), median, confidence interval 
(BEL, BEH, lower curve) and the prediction interval 
(LE, HE, upper curve).  

 

 
Figure 2. PDF with statistical profiles (normal distribution)  
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Defining these PDFs requires data, to answer the 
question of ‘how much data is enough’. The ideal 
solution is to sample the population, however given the 
constraints of cost and schedule (and the added 
requirement of maintaining the same quality), 
Bayesian data analysis can support development of 
reliable PDFs. 

Bayesian statistics is an accepted method as per 
ISO (2015). It is also certifiable, see for example 
DNV (2021). Bayesian statistics holds potential to 
leverage existing data. While the use of Bayesian 
statistics is not novel, it is making its way into routine 
geotechnics, e.g. Baecher (2017), Baecher and 
Christian (2005), Bozorgzadeh (2019), Bozorgzadeh 
(2020), Bozorgzadeh (2019). Important drivers are 
increasing availability of regional databases of 
geotechnical parameter values and increasingly 
efficient computing.  

This paper presents the use of Bayesian statistics 
for optimising laboratory test quantities for capturing 
the PDFs for key geotechnical parameters. An 
example is given for optimising the quantity of derived 
values (defined as per ISO 2014) of  undrained shear 
strength in triaxial testing for clays.  

2 BACKGROUND 

Bayes theorem, first published by Thomas Bayes 
(Bayes, 1763), is the foundation of Bayesian statistics.  
Bayesian statistics is enabled by using Markov chain 
Monte Carlo (MCMC), which is a class of algorithms 
that is used to draw samples from a probability 
distribution through multiple iterations. The following 
references provide detailed reading on Bayesian data 
analysis (Kruschke, 2015; Gelman et al., 2013).  

The approach of Bayesian data analysis to deter-
mine a geotechnical parameter value distribution, in-
cludes the following broad steps: 
a. Engineering judgement and assessment by the ge-

otechnical engineer to estimate or identify a prior 
understanding of the geotechnical parameter 
value;  

b. Performing laboratory tests to obtain a site-spe-
cific derived value dataset; 

c. Bayesian data analysis to obtain the posterior dis-
tribution and statistical profiles (Figure 2). 

 
Successful implementation and accuracy of results 

from Bayesian statistics requires relevant prior data 
(Step a). Broadly encapsulated by ‘engineering judg-
ment and assessment’, this step should include several 
important checks and procedures: assessment of 
ground unit similarity or a correlation analysis be-
tween prior information and site-specific information 

(e.g. geological setting, similarity of ground units with 
respect to mechanical and engineering properties), ex-
plicit definition of the parameter (e.g. reference 
method chosen for obtaining derived values, soil sam-
pling type, transformations applied on the parameter 
values, etc) and assessments on the quality of the data. 

It is also critical for any new (site-specific) data that 
are included in Bayesian data analysis to be of high 
quality and obtained consistently (e.g. 𝑠𝑢 obtained 
from same reference method, sampling method etc). It 
is noted here that uncertainty in source data is 
(currently) not explicitly considered in Bayesian 
statistics. This can become challenging for 
interpretation of outcome, particularly if only a few 
new site-specific data points are available, as Bayesian 
statistics imposes a significant reliance on new data. 

Statistical robustness depends on having sufficient 
sample size. The minimum number of samples (i.e. test 
count) needed can vary depending on the site, the 
specific statistical approach and the desired level of 
confidence. A low test count would probably imply 
reverting to an approximate verification approach of a 
global/ regional correlation, with no optimisation by 
statistical analysis.  

Steps b and c from the Bayesian workflow can be 
performed with dynamic Bayesian updating, i.e. 
updating the PDF curves (Step c) as and when site-
specific data become available (Step b). This would 
help identifying or optimising the number of 
laboratory tests required to capture the PDF, as further 
discussed in Section 3.   

The approach to statistics typically used by ge-
otechnical engineers (e.g. estimating PDFs using de-
rived values) is termed Frequentist statistics. The fun-
damental difference between the two approaches of 
Bayesian statistics and Frequentist statistics is in how 
they interpret and handle probability and uncertainty, 
particularly:  
• Use of prior information: Bayesian methods ex-

plicitly incorporate prior information into any 
analysis, while Frequentist methods do not; 

• Probability interpretation: Frequentist statistics in-
terprets probability as the long-term frequency of 
events, e.g. using a dataset of laboratory test re-
sults to estimate the average undrained shear 
strength. Bayesian statistics incorporates a degree 
of confidence which can change with new evi-
dence or data; 

• Approach to statistical parameters: Frequentist 
methods consider statistical parameters, such as 
the mean or standard deviation of a dataset to be 
fixed and unknown quantities which are estimated 
using data. Bayesian statistics considers statistical 
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parameters to be random variables with their own 
probability distributions. 

 
Both Bayesian and Frequentist statistical ap-

proaches have their strengths and limitations and 
should be used in different contexts depending on the 
design/ assessment situation(s), parameter value and 
the available prior information. With a uniform prior 
(or no informed prior), the Bayesian posterior distribu-
tion can resemble the Frequentist estimation.   

3 EXAMPLE CASE STUDY 

3.1 Source Data and Data Quality 

The example case study considers optimisation of 
laboratory test quantities for undrained shear strength, 𝑠𝑢, particularly within a context of characterising clay 
soils similar to using an 𝑁𝑘𝑡-type approach, where 𝑁𝑘𝑡 = 𝑞𝑛/𝑠𝑢 (e.g. Mayne and Peuchen 2022). A 
regression analysis is carried out between normalised 
undrained shear strength, 𝑠𝑢/𝜎′𝑣, and normalised net 
cone resistance, 𝑞𝑛/𝜎′𝑣, both normalised by insitu 
vertical effective stress, 𝜎′𝑣, with the aim of assessing 
if the laboratory test results used to obtain the 𝑠𝑢-𝑞𝑛 
relationship can be optimised. Normalised values of 𝑠𝑢 
and 𝑞𝑛 were used to account for depth dependency 
which was observed to provide better results (i.e lower 
uncertainties) in place of the typical 𝑁𝑘𝑡 approach.  

Table 1 presents information on the data sources 
used for this case study. The site name abbreviations 
are Hollandse Kust Noord (HKN), Hollandse Kust 
West (HKW) and IJmuiden Ver (IJV) Sites Alpha and 
Beta wind farm zones.  The test count refers to paired 
values of 𝑠𝑢 and 𝑞𝑛 associated with test specimen 
depth (or corresponding value of 𝜎′𝑣) from multiple 
investigation locations and various depths below 
seafloor.  

The data sources listed in Table 1 include 
consistently obtained derived values. The reference 
method for 𝑠𝑢 is a laboratory single-stage undrained 
triaxial compression test on an undisturbed clay spec-
imen obtained by means of thin-walled push sampling, 
anisotropically consolidated to estimated in situ verti-
cal and radial effective stress conditions, monoton-
ically sheared, and 𝑠𝑢 calculated by maximum value of 
principal stress ratio within an axial strain range of 0 
to 15 %. The reference method for 𝑞𝑛 is according to 
ISO (2014). 
The reference reports of Table 1 include detailed 
procedures implemented for data quality review, 
pairing (between CPT and laboratory data) and other 
relevant information required for Step a from the 
workflow presented in Section 2. These detailed 

procedures are key to validating the suitability of 
source data.  
 

 Table 1. Source data for example case study. 

Site 

name 

Report refer-

ence 

Plate refer-

ence 

Test 

count 

HKN Fugro (2019) Plate B.6-1 7 

HKW Fugro (2020) Plate E7-4 33 

IJV Fugro (2023) Plate C.2-66 38 

 
The three sites show predominantly sandy soils 

with some clay layers. A correlation assessment 
(Step a from the Bayesian workflow) was carried out 
on the datasets presented in Table 1 on establishing 
similarity of ground units particularly the clay layers. 
Based on the results of the assessment, geological 
setting and understanding of the site, the datasets 
presented in Table 1 can be considered to have similar 
engineering and geotechnical properties for a 
significant range of (over)consolidation settings 
indicated by 𝑞𝑛/𝜎′𝑣 ranging from about 5 to 45. 

3.2 Optimisation Approach 

The example case study (or regression analysis) 
focusses on the IJV site (with 38 datapoints). This 
regression analysis was performed in multiple ways 
and a comparison of the statistical profiles (and the 
PDF curve) was carried out. 

Table 2 presents the approaches used for the 
regression analysis.  

 
Table 2. Overview of data analyses. 

Approach Description  Test 

count  

FDA-complete Frequentist data analysis 38 

BDA-partial Bayesian data analysis with  
no informed prior and partial 

IJV dataset 

15 
(/38) 

BDA-com-
plete 

Bayesian data analysis with no 
informed prior and complete 

IJV dataset 

38 

BDA-opti-
mised 

Bayesian data analysis with 
informed prior (HKW + 

HKN) and partial IJV dataset 

15 
(/38) 

 
Approaches BDA-partial and BDA-optimised make 

use of a partial dataset, i.e. by using 15 IJV test results 
out of the existing 38 test results available. The 15 test 
results were randomly selected. The choice in the num-
ber (or count) of tests results used, i.e. 15 test results 
(as opposed to a higher or lower number) was also ran-
dom and intended for illustration of the optimisation 
approach. The optimization approach presented in this 
paper does not include dynamic Bayesian updating as 
described in Section 2.  
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The regression models were analysed by visual in-
spection and by use of root mean square error (RMSE) 
values. RMSE is typically used in statistics to assess 
how well a model’s predictions match the actual data. 
A low RMSE value indicates a better fit.  

3.3 Frequentist Data Analysis (FDA-complete)  

Figure 3 presents results from Frequentist analysis, 
FDA-complete. It shows a best-fit linear regression on 
38 test results from IJV, shown by black circles. For 
reference, the figure also includes the HKN and HKW 
data points shown by grey circles. The blue dashed 
lines are LE and HE profiles. The red solid line is the 
BE and the red dashed lines represent BEL and BEH. 

 

 
Figure 3. Results of FDA-complete analysis  

 
Equation 3 presents the selected linear regression 

relationship, where 𝑚 and 𝑐 are statistical parameters 
refering to the slope and intercept respectively.  
  𝑠𝑢𝜎′𝑣 = 𝑚 𝑞𝑛𝜎′𝑣 + 𝑐 (3) 

 
A linear representation (versus non-linear) was 

observed to be the best-fit regression relationship,  
with RMSE = 0.165.  

3.4 Bayesian Data Analysis  

3.4.1 Regression models 

The selected models for Bayesian regression are ac-
cording to Kahlsrom and Borgorgzadeh (2022). De-
tails are as follows.  

Equation 4 shows a generic empirical correlation, 
considering a dataset with 𝑁 observations. Equation 5 
presents the same empirical correlation on log-scale 
for each observation 𝑖, where 𝑙𝑛(c) is the intercept, 𝑚 

is the slope, 𝜇𝑖 is the mean of 𝑙𝑛(𝑠𝑢 𝜎 ′⁄ v) and 𝜀i is the 

error normally distributed with zero mean and standard 
deviation 𝑆𝐷. 

 𝑠𝑢𝜎′𝑣 = 𝑐 ( 𝑞𝑛𝜎′𝑣)𝑚
 (4) 

 𝑙𝑛 ( 𝑠𝑢𝜎′𝑣𝑖) = 𝑙𝑛(𝑐) + 𝑚. 𝑙𝑛 ( 𝑞𝑛𝜎′𝑣𝑖) + 𝜀𝑖 = 𝜇𝑖 + 𝜀𝑖  𝑖 = 1, 2, 3, . . , 𝑁 (5) 
 

Equation 5 translates that 𝑙𝑛(𝑠𝑢 𝜎 ′⁄ v) ~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝑆𝐷) for which the statistical parameters 
in Bayesian data analysis are 𝑙𝑛(c), m and 𝑆𝐷.  

In the case of no informed prior (BDA-partial and 
BDA-complete approaches), the statistical parameters 
do not have any prior information and are inferred 
from sufficiently dispersed distributions: 
• 𝑙𝑛(c) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  10) 
• 𝑚 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  10) 

• 𝑆𝐷 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,  5) 
 
In the case of an informed prior (BDA-optimised 

approach), the statistical parameters still follow a multi 
variate normal distribution (𝑀𝑉𝑁) but also consider 
the statistical parameters from the prior dataset (HKN 
and HKW data). This is written mathematically as be-
low: (ln(𝑐)𝑚 ) ~ 𝑀𝑉𝑁 ((𝜇ln(𝑐)𝜇𝑚 ) , ( 𝑉𝑎𝑟(ln 𝑐) 𝐶𝑜𝑣(ln 𝑐 , 𝑚)𝐶𝑜𝑣(𝑚, ln 𝑐) 𝑉𝑎𝑟(𝑚) )) 𝑆𝐷 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑆𝐷 , 𝑆𝐷𝑆𝐷) 

 
The parameters 𝑉𝑎𝑟 and 𝐶𝑜𝑣 stand for variance and 
covariance of statistical parameters, respectively, in-
ferred from the prior dataset. 

Computation for posterior distributions is accord-
ing to the MCMC method for all regression models.  

 

Table 3. Posterior statistical parameters and root mean square errors of predictions. 

Approach 𝐥𝐧(𝒄) 𝒎 𝑺𝑫 RMSE 

Mean  𝜇ln(𝑐) Variance  𝑉𝑎𝑟(ln 𝑐) 
Mean 𝜇𝑚 

Variance 𝑉𝑎𝑟(𝑚) 
Mean 𝜇ln 𝑆𝐷 

Variance 𝑉𝑎𝑟(ln 𝑆𝐷) Complete 
IJV dataset 

Blind test 
dataset  

FDA-complete - - - - - - 0.165 - 

BDA-partial -1.25 0.25 0.36 0.03 -1.41 0.05 0.040 0.045 

BDA-complete -1.72 0.04 0.51 0.005 -1.69 0.01 0.033 - 

BDA-optimised -1.96 0.023 0.63 0.003 -1.49 0.01 0.036 0.035 
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3.4.2 Results 

Figures 4 to 6 and Table 3 present results. For 
comparison, Table 3 includes RMSE values from 
FDA-complete analysis. Note that the slope and 
intercept from FDA-complete are not directly 
comparable with those from BDA analyses, because of 
linear versus logarithmic regression. 

   
Figure 4. Results of BDA-partial analysis  

 

  
Figure 5. Results of BDA-complete analysis 

 

  
Figure 6. Results of BDA-optimised analysis 

 
The ‘Blind test dataset’ RMSE value is only 

applicable to BDA-partial and BDA-optimised 
approaches as they used a partial dataset (15 out of 38 
laboratory test results). The RMSE values refer to the 

error of the regression models (i.e. approaches BDA-

partial and BDA-optimised) in predicting the 
remaining 23 test results. 

The results indicate better predictions (lower 
RMSE values, lower uncertainty ranges) obtained by 
use of Bayesian analysis as compared to Frequentist 
analysis. The added value of prior data can be 
observed in the difference in predictions from BDA-

optimised analysis compared to BDA-partial analysis. 
Results from BDA-complete analysis presented the 
best predictions.  

4 DISCUSSION AND CONCLUSION 

It can be challenging to balance the quantity of data 
required for statistical robustness (regardless of 
approach) and optimization for schedule.  

The use of Bayesian statistics for optimising 
laboratory test quantities by leveraging existing data is  
promising and offers significant potential. The 
presented case study indicated a possibility of using 
less than half of the undrained shear strength test 
results available for analysis. This finding on 
optimisation is supported by results from multiple 
Bayesian data analyses and the conventional approach 
of Frequentist data analysis.  

Some key concluding points on implementing 
Bayesian data analysis are summarised below: 
• Availability and selection of high-quality prior 

data is key for successful implementation and ac-
curacy of results from Bayesian statistics. Correla-
tion analysis on establishing similarity (refer to 
Section 2) between prior data and site-specific 
data is critical to avoid misinterpretation of results 
and/ or overconfidence in conclusions. 

• Statistical uncertainty assessment (refer Figure 2) 
is built-in to the Bayesian approach and is thereby 
better characterised. It is important to note here 
that a statistical approach does not compensate for 
data (quantity), however good prior knowledge 
can and Bayesian statistics offers a sound, data-
driven approach to incorporate it. 

• Many open-source softwares and libraries are 
available for Bayesian statistics (e.g. Python, R). 
Nevertheless, a high level of statistical and com-
putational expertise is required to understand and 
implement the statistical model, which can be as-
sociated with significant algorithmic complexity. 
Additionally, the underlying assumptions must be 
carefully considered to ensure robust and credible 
outcomes. 

• Further refinements can enhance results from the 
Bayesian approach. Examples are use of alterna-
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tive priors, use of hierarchical models (e.g. ac-
counting for spatial variation in datasets), account-
ing for source data uncertainty and use of multiple 
validation methods (e.g. Watanabe-Akaike Infor-
mation Criterion, Leave-One-Out Cross-Valida-
tion etc.).  
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