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ABSTRACT: Monopiles are widely used as foundations for offshore wind turbine support structures. The PISA project 
introduced a 1D model, known as the ‘PISA design model’, to predict the monotonic response of laterally loaded monopiles. 
Offshore wind turbine sites typically comprise distinct soil layers with different geotechnical properties. For layered soil 
configurations, the PISA design model employs soil reaction curves derived from 3D finite element analyses of homogene-
ous soils, assuming independent behaviour for each layer. However, this approach does not account for interactions between 
soil layers, which can significantly impact monopile lateral behaviour. In the current work, an extended version of the PISA 
design model—referred to as the ‘data-driven 1D design model’—has been developed. This model uses machine learning 
techniques to define the soil reaction curves, allowing for direct calibration across various soil types and layering configu-
rations. This paper presents a calibration procedure for layered clay sites, considering variations in clay strength, stiffness, 
and layer thickness. Four machine learning models—sparse Gaussian process regression, artificial neural network regres-
sion, support vector regression and eXtreme Gradient Boosting—are assessed to determine the most effective approach. 
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1 INTRODUCTION 

Monopile foundations are commonly used to sup-
port offshore wind turbine (OWT) structures. Current 
design methods for OWT monopile foundations typi-
cally employ simplified models. The p-y method, com-
monly used for laterally loaded piles, models the pile 
as a beam and represents the lateral soil response using 
non-linear p-y curves. 

The PISA (Pile Soil Analysis) project introduced 
an alternative one-dimensional (1D) model referred as 
the ‘PISA design model’ to predict the monotonic be-
haviour of laterally loaded monopiles (Byrne et al., 
2020; Burd et al., 2020a). This model enables rapid 
calculations by using ‘soil reaction curves’ which are 
derived from detailed model calibration by three-di-
mensional (3D) finite element analysis (FEA).  

OWT monopiles are typically embedded in layered 
soils. The nature of the soil layering can significantly 
influence the performance of the foundation (e.g. Yang 
and Jeremic 2005). Although the PISA design model 
is calibrated for homogeneous soil profiles, it has also 
been applied to layered soils using an approach termed 

as the ‘Independent Layer Method’ (ILM), in which 
soil reaction curves determined from 3D FEA of 
homogeneous soils are employed within a layered soil 
configuration (Burd et al., 2020b). While ILM has 
been shown to be an effective approach, it does not 
account for interactions between adjacent soil layers. 
These interactions can have a significant influence on 
the behavior of the monopile.  

In the current work, an alternative version of the 
PISA design model, called the ‘data-driven 1D design 
model’, has been developed (Kamas 2024). This 
model utilises machine learning (ML) techniques to 
establish soil reaction curves, enabling direct 
calibration (via 3D FEA) across different soil types 
and layering configurations. The data-driven 1D 
design model therefore explicitly incorporates the 
interactions between adjacent soil layers via the 
calibration analyses. This paper outlines a calibration 
procedure specifically for layered clay sites, 
accounting for variations in clay strength, stiffness, 
and thickness of each layer. Four ML regression 
models—sparse Gaussian process regression, artificial 
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neural network regression, support vector regression 
and eXtreme Gradient Boosting—are evaluated to 
identify the most effective method. 

2 DATA-DRIVEN APPROACH 

The data-driven 1D design model builds on the 1D fi-
nite element framework of the PISA design model but 
uses a different parametrisation for the soil reaction 
curves. The data-driven 1D design model employs soil 
reaction curves that are defined using 8-parameter 
Piecewise Cubic Hermite Interpolating Polynomial 
(PCHIP) functions. These functions closely replicate 
the numerical soil reaction curves (see Fig. 1). The nu-
merical soil reaction curves employed for clay sites in 
the data-driven 1D design model adopt the dimension-
less forms presented in Table 1. Knot point force/mo-
ment data define the soil reaction curves. ML tech-
niques are employed to predict these knot point data 
for unseen scenarios. Key parameters such as soil stiff-
ness, strength, pile aspect ratio and soil layering serve 
as training features for the model. 

Table 1. Dimensionless forms of parameters adopted in the 

data-driven 1D design model for clay sites (Kamas, 2024). 

Here, 𝐷 is the pile diameter, and 𝑠𝑢 is the undrained shear 

strength corresponding to triaxial compression tests. 

Variables with a bar (e.g. 𝑝̅, 𝑣̅) represent the normalised 

form of the corresponding soil reaction components. 

Normalised variable Clay framework 

Distributed lateral load, 𝑝̅ 𝑝 (𝑠𝑢𝐷)⁄  

Lateral displacement, 𝑣̅ 𝑣 𝐷⁄  

Distributed moment, 𝑚̅ 𝑚 (𝑠𝑢𝐷2)⁄  

Pile cross-section rotation, 𝜓̅ 𝜓 

Base horizontal force, 𝐻̅𝐵 𝐻𝐵 (𝑠𝑢𝐷2)⁄  

Base moment, 𝑀̅𝐵 𝑀𝐵 (𝑠𝑢𝐷3)⁄  

 

 
Figure 1. An example of a PCHIP spline soil reaction curve 

for use in the data-driven 1D design model demonstrates an 

excellent match with numerical soil reaction curves derived 

from 3D finite element analysis. 

3 GENERATION OF TRAINING DATA 

3.1 Layered configurations 

The layered configurations considered in the current 
work are shown in Fig. 2. The term ‘matrix’ in Fig. 2 
refers to the main soil type, while ‘layer’ describes any 
embedded or base layers. In Case A, the model fea-
tures two layers, while Case B introduces a relatively 
thin embedded layer within a homogeneous matrix. 
Both configurations allow for variability in soil 
strength and stiffness properties within the matrix and 
layers. The normalised thickness of each soil layer 
penetrated by the pile (𝑧𝐿), relative to the pile’s em-
bedment length (𝐿), can vary between 0 and 1. 
 

 
Figure 2. Layered soil configurations considered: (a) case 

A, two layers; (b) case B, single embedded layer. 

 

Ground models for these layered clay soil profiles 
are constructed using data from the reference 
homogeneous soil models shown in Fig. 3, which 
depicts the profiles of small-strain shear modulus (𝐺0) 
and undrained shear strength (𝑠𝑢). The properties of 
each clay layer are based on the PISA representative 
offshore glacial clay till site model described by Byrne 
et al. (2020), with a submerged unit weight of 𝛾′ =11.38 kN m3⁄ . The reference homogeneous models 
are determined using an approach in which 
homogeneous soil is considered to have been 
previously consolidated solely by the weight of an ice 
sheet with a thickness of 𝑑𝑖𝑐𝑒, using one-dimensional 
compression theory. Soil properties such as 𝑠𝑢 and 𝐺0, 
as shown in Fig. 3, are determined following the 
method outlined by Kamas et al. (2023). The clay soil 
profiles used in this study correspond 𝑑𝑖𝑐𝑒 ranging 
from 25m to 150m. 
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Figure 3. Profiles of 𝑠𝑢 and 𝐺0 used in the reference 

homogeneous soil models for the layered soil profile 

configurations shown in Fig. 2. 

3.2 Pile geometry calibration space 

The pile geometries defining the calibration space for 
the data-driven 1D design model are detailed in Table 
2. These calibration piles feature geometries typical of 
offshore configurations, with 𝐿/𝐷 between 2 and 5 and 𝐷 between 8m and 12m. The pile wall thickness is 𝑡 =𝐷/110; it is selected to prevent unrealistically high 
bending stresses developing in the pile wall. 
 
Table 2. Pile geometry calibration space. 𝐿 is the embedded 

length; 𝐷 is the pile diameter; ℎ is the load eccentricity 

(height of load application above seabed level). 

Pile 𝑳(𝒎) 𝑫(𝒎) 𝒉(𝒎) 

LC1 16 8 40 
LC2 16 8 120 
LC3 24 12 60 
LC4 24 12 180 
LC5 40 8 40 
LC6 40 8 120 
LC7 60 12 60 
LC8 60 12 180 

3.3 Finite element analyses procedure 

3D FEA was performed using PLAXIS 3D software 
(Brinkgreve et al., 2018) employing the NGI-ADP (to-
tal stress) constitutive model (Grimstad et al., 2012). 
The NGI-ADP model parameter values were deter-
mined on the basis of the representative offshore gla-
cial clay till site in Byrne et al. (2020) with modifica-
tions to account for the strength and stiffness profiles 
in Fig. 3 (see Kamas et al. 2023).  

Fig. 4 illustrates a typical finite element mesh em-
ployed in the calibration analyses. The mesh incorpo-
rates a plane of symmetry to halve the problem do-
main. The pile is modelled using plate elements, as-
suming linear elastic material, having a Young’s mod-
ulus of 𝐸 = 200𝐺𝑃𝑎 and a Poisson’s ratio of 𝜈 =

0.30. The pile is treated as ‘wished in place’, meaning 
installation effects are disregarded. Interface elements 
are included around the pile to represent pile-soil in-
teraction, based on the approach detailed in Kamas et 
al. (2023). 

 
Figure 4. FE mesh, for pile LC5 embedded in three-layered 

soil profile Case B-IV (see Table 3). 

3.4 Calibration finite element analyses 

The calibration analyses must account for variations in 
soil properties and layer thickness across the selected 
pile calibration space for the Case A and Case B lay-
ered configurations in Fig. 2. A total of 152 FEA cali-
bration analyses were conducted. The soil reaction 
curves extracted from the analyses were used to de-
velop the data-driven 1D design model for the layered 
clay profiles of Fig. 2 and Table 3. 

 
Table 3. Normalised thicknesses of soil layers penetrated by 

the pile, adopted for the calibration of layered soil profile 

FEA models (see Fig. 2). 

Case A 𝒛𝑳𝟏/𝑳 Case B 𝒛𝑳𝟏/𝑳 𝒛𝑳𝟐/𝑳 

I 0.2 I 0.2 0.25 

II 0.5 II 0.6 0.25 

III 0.8 III 0.2 0.6 

  IV 0.3 0.4 
  V 0.2 0.1 

  VI 0.6 0.1 

 
For each profile, FEA was conducted for all pile 

configurations listed in Table 2. To account for varia-
tions in soil properties in the data-driven 1D design 
model, two calibration cases were applied to each pro-
file.  In the first case, the strength and stiffness of the 
soil ‘matrix’ were set to correspond to 𝑑𝑖𝑐𝑒 = 25𝑚, 
while the soil ‘layer’ was assigned properties corre-
sponding to 𝑑𝑖𝑐𝑒 = 75𝑚 , or vice versa. In the second 
case, the soil ‘matrix’ was assigned properties corre-
sponding to 𝑑𝑖𝑐𝑒 = 75𝑚 , with the soil ‘layers’ corre-
sponding to 𝑑𝑖𝑐𝑒 = 150𝑚, or vice versa. Additionally, 
FEA was performed for calibration piles embedded in 
homogeneous soil profiles. 
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4 TRAINING INPUTS 

Identifying the most influential inputs is key to train 
accurate ML models. To minimize the input set, di-
mensionless synthetic features (e.g., 𝐿/𝐷, 𝑡/𝐷, 𝐺0/𝑠𝑢, 𝑧𝐿1/𝐿) were introduced. A heatmap-based correlation 
matrix and pair plots were employed to investigate re-
lationships among key features. Spearman correlations 
and feature importance from an Extreme Gradient 
Boosting (XGB) model were computed and plotted. 
This combined approach ensures that the most impact-
ful features are selected to train the ML models. 

The inputs used by the ML models are as follows. 
The ratio (𝑧/𝐿) captures the depth variation of the knot 
points for 𝑝̅ and 𝑚̅, but is excluded for 𝐻̅𝐵 and 𝑀̅𝐵, which provide point predictions. The 
(𝐿/𝐷) value indicates pile slenderness, while (𝐺𝑜/𝑠𝑢) 
distinguishes soil reactions for the same (𝑧/𝐿) and 
(𝐿/𝐷). The (𝑠𝑢/𝜎′𝑣) ratio, where 𝜎′𝑣 denotes the local 
vertical effective stress, differentiates clay profiles of 
varying strength. Layering effects are captured by 
(𝑧𝐿𝑖/𝐿), where 𝑧𝐿𝑖 denotes the thickness of each soil 
layer penetrated by the pile. The number of (𝑧𝐿𝑖/𝐿) in-
puts corresponds to the number of layers in the pile’s 
embedded length. For example, in Case B (Fig. 2), two 
inputs (𝑧𝐿1/𝐿, 𝑧𝐿2/𝐿) are applied. 

5 REGRESSION METHODS 

5.1 Machine learning models 

Sparse Gaussian Process Regression (SGPR) 
(Snelson and Ghahramani, 2006) is an optimised 
version of Gaussian Process Regression (GPR), 
designed for large datasets. GPR models functions 
probabilistically, using a Gaussian distribution 
updated via Bayes’ rule based on observed data. It 
provides both predictions and a built-in measure of 
uncertainty by quantifying the variance. The model is 
fully defined by a mean and covariance (kernel) 
function. SGPR reduces computational cost by using a 
subset of representative data points, called ‘inducing 
points’, while maintaining predictive accuracy. 

Artificial Neural Network Regression (ANNR) 
predicts continuous values by adjusting weights 
between neurons based on input and target data. The 
model’s architecture includes hidden layers, neurons, 
and their connections, while parameters like weights 
and biases are optimised to capture complex patterns 
(Goodfellow et al., 2016). 

Support Vector Regression (SVR) (Smola and 
Schölkopf, 2004), estimates continuous values by 
finding the optimal hyperplane within a margin, called 
the ‘epsilon-tube’. It minimizes errors while keeping 
most data within this margin. SVR handles both linear 

and non-linear problems using kernel functions to 
capture complex patterns. 

Extreme Gradient Boosting (XGB), (Chen and 
Guestrin, 2016), uses a regression algorithm built upon 
decision tree concepts. Building on the original 
Gradient Boosting Machines (Friedman, 2001), XGB 
improves generalisation with L1/L2 regularisation, 
enhances gradient updates using second-order 
derivatives, and accelerates computation through 
parallelised tree construction. 

5.2 Training procedure 

A separate ML model is trained for each of the eight 
knot points for each soil reaction component (𝑝̅, 𝑚̅, 𝐻̅𝐵, 𝑀̅𝐵).  For 𝑝̅ and 𝑚̅, 6,080 data points are used to 
train each knot point, while 152 data points are used 
for 𝐻̅𝐵 and 𝑀̅𝐵. The dataset for each knot point is 
randomly split, with 80% used for training and the 
remaining 20% reserved for testing. Prior to training, 
the input features for each ML model are standardised 
by subtracting the mean and dividing by the standard 
deviation, both calculated from the training data. The 
procedures used to train the ML models for each knot 
point parameter, as described in Section 5.1, are 
outlined below: 

Sparse Gaussian Process Regression: Due to the 
large dataset, training a standard GPR model resulted 
in prolonged computation times, exceeding 8 hours for 
the full set of 𝑝̅ and 𝑚̅ knot points. To mitigate this, an 
SGPR model was employed. The Variational Free 
Energy (VFE) method (Titsias, 2009) was 
implemented using the Gpflow Python library 
(Matthews et al., 2017). A zero mean function and the 
Matérn kernel (𝜈 =  5/2) were employed. Based on 
preliminary experiments, the model utilised 600 
inducing variables, selected using the K-means 
algorithm (Hartigan and Wong, 1979). The 
hyperparameters were optimised by maximising the 
log marginal likelihood. For the knot points assocated 
with the base soil reaction curves (𝐻̅𝐵, 𝑀̅𝐵), which 
involved significantly fewer data points (152 points 
per GPR model), standard GPR was applied. 

Artificial Neural Network Regression: A 
feedforward neural network was employed for 
regression, implemented using the Keras library 
(Chollet, 2021). The rectified linear unit (ReLU) 
activation function was used. During model training, 
20% of the training data (equivalent to 16% of the total 
dataset) is set aside as a validation set. In this study, 
the model is trained using the Mean Squared Error 
(MSE) as the loss function, employing the Adam 
optimiser. Preliminary experiments indicated that two 
hidden layers provided good prediction performance. 
The structure of the ANNR models and their 
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hyperparameters were optimised using a randomised 
search. The hyperparameters analysed included: (i) the 
number of neurons in each hidden layer, with options 
of 100 to 500; (ii) batch sizes of 16 to 512; (iii) dropout 
rates of 0.1 to 0.2; (iv) epoch counts of 25 to 300; and 
(v) learning rates of 0.01, 0.001, 0.002 and 0.005. 

Support Vector Regression: SVR model was 
implemented using the Scikit-learn Python library 
(Pedregosa et al., 2011). A randomised search was 
conducted to determine the optimal set of 
hyperparameters for the model. The C (regularisation 
parameter) was varied between 10 and 1000. The RBF 
kernel was used, and the epsilon-tube value was 
explored in the range of 0.01 to 0.1. 

Extreme Gradient Boosting: XGB model was im-
plemented using the XGB library in Python (Chen and 
Guestrin, 2016). A randomised search was used to 
identify the optimal hyperparameters. The search eval-
uated various settings, including: (i) ‘max_depth’: 
ranging from 3 to 15, (ii) ‘colsample_bytree’: ranging 
from 0.5 to 0.9, (iii) ‘learning_rate’: ranging from 0.1 
to 0.3, (iv) ‘subsample’: ranging from 0.5 to 1.0, (v) 
‘n_estimators’: ranging from 100 to 1000, (vi) ‘alpha’: 
ranging from 0.1 to 1, (vii) ‘gamma’: ranging from 0 
to 1, (viii) ‘reg_lambda’: ranging from 1 to 3, (viiii) 
‘reg_alpha’: ranging from 0.1 to 1.0. 

5.3 Assessment of the machine learning models  

To evaluate the performance of the regression 
methods, two commonly used metrics in regression 
analysis were employed: the coefficient of 
determination (R²) and mean squared error (MSE). 
Table 4 presents a comparison of the average R² scores 
for all knot points associated with the distributed 
lateral load, 𝑝̅, and the distributed moment, 𝑚̅, on both 
the training and test datasets. R² values typically range 
from 0 to 1, with higher values indicating a stronger 
correlation between the predicted and observed data. It 
can be seen that all the ML regression models 
examined provide satisfactory R² scores. However, the 
ANN, XGM and SGPR models clearly outperform the 
SVR model, yielding higher R² scores. 
 
Table 4. Average R2 regression performance metrics for the 

analysed ML regression models as applied to the knot point 

data for the distributed lateral load 𝑝̅ and the distributed 

moment 𝑚̅. 

R² scores SGPR ANNR XGB SVR 𝑝̅ train data 0.932 0.920 0.943 0.798 𝑝̅ test data 0.915 0.908 0.892 0.783 𝑚̅ train data 0.907 0.903 0.927 0.840 𝑚̅ test data 0.905 0.894 0.897 0.828 

Average 0.915 0.906 0.915 0.812 

6 DESIGN APPLICATION 

Two design cases (DLC1 and DLC2) were explored to 
demonstrate the predictive capability of the data-
driven 1D design model, utilising the SGPR, ANNR 
and XGB models presented in Section 5 (that all have 
average R2 scores above 0.9). Both cases consider a 
pile with 𝐷 = 9𝑚, 𝐿 = 30𝑚, and ℎ = 90𝑚; the 𝐿/𝐷 
and ℎ/𝐷 ratios were both previously unseen by the ML 
models. The 𝐺0 and 𝑠𝑢 profiles of the two design cases 
are presented in Fig. 5. DLC1 has a two-layer soil pro-
file with unseen 𝐺𝑜/𝑠𝑢, 𝑠𝑢/𝜎′𝑣, and 𝑧𝐿1/𝐿, while 
DLC2 involves a three-layer profile with unseen 𝐺𝑜/𝑠𝑢, 𝑠𝑢/𝜎′𝑣, 𝑧𝐿1/𝐿, and 𝑧𝐿2/𝐿. 

  

 
Figure 5. Profiles of 𝑠𝑢 and 𝐺0 used in the DLC1 and DLC2 

design cases. 

Table 5 presents horizontal force values at a 
ground-level displacement of 𝑣𝐺 = 𝐷/10000, 
indicating the pile’s response at small displacements 
range. Fig. 6 shows the pile’s load-displacement re-
sponse for ultimate reference ground-level displace-
ments (𝑣𝐺 = 𝐷/10), calculated using the data-driven 
1D design model, alongside validation data from 3D 
FEA simulations. The data-driven 1D design models 
using the SGPR, ANNR, and XGB ML models show 
good agreement with the 3D calculations. Differences 
among these three ML models are minimal, as re-
flected in their average R² scores presented in Table 4.  

  
 

Figure 6. Comparison of monopile ultimate response 

between the validation 3D FEA and the data-driven 1D 

design models (using the ML regression models discussed 

in Section 5) for design cases DLC1 and DLC2. 
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Table 5. Values of the horizontal force at a ground level 

displacement of 𝑣𝐺 = 𝐷/10000 determined by the 

validation 3D FEA and the data-driven 1D design models 

for design cases DLC1 and DLC2 (rounded to 1kN). 

Case 
𝐻: kN 

3D FEA SGPR ANNR XGB 
DLC1 408 399 393 397 
DLC2 422 413 412 411 

7 CONCLUSIONS 

A data-driven 1D design model was developed to pre-
dict the response of monopiles subjected to monotonic 
lateral loading in layered clay soil profiles. The results 
show that the ANNR, SGPR, and XGB ML models are 
highly effective in training on soil reaction curve data 
derived directly from layered soil analyses, outper-
forming the SVR model. In contrast, the GPR model 
used by Kamas et al. (2023) is inefficient for large da-
tasets due to its high computational demands.  

Calibrating the data-driven 1D design model with 
data from layered soil analyses enhances its accuracy 
by explicitly accounting for interactions between adja-
cent soil layers. These models can rapidly predict the 
pile’s lateral response under monotonic loading, sig-
nificantly streamlining the design process. 
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