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ABSTRACT:  Machine learning (ML) based modelling methods enable geotechnical engineers to leverage state-of-the-art 
tools to create predictive models to be applied in various complex geotechnical engineering problems. This paper investigates 
the ML techniques and algorithms that can be adopted to develop suitable ML models with actual pile installation and cone 
penetration test (CPT) data to predict blowcounts and hammer energy. For this study, ML models from scikit-learn (sklearn) 
libraries in Python such as Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Linear Regression 
(LR), and Polynomial Regression (PR) have been considered based on their ability to tackle regression problems. It is nec-
essary to calculate the soil resistance during driving (SRD) using the CPT dataset to have a better ML model since offshore 
piles comes in many sizes. Then, SRD and actual pile installation datasets from sites around offshore Southeast Asia were 
resampled to a regular grid of 0.25m intervals to facilitate data handling prior establishing a ML model. Outcome from the 
ML models were interpreted in form of R-Square and Root Mean Square Error (RMSE). Two ML models were generated, 
a model to predict the blowcounts and a model to predict the hammer energy used based on the actual pile installation and 
CPTU datasets provided. Based on the five ML algorithms, RF gave the highest R-Square value for predicted blowcounts 
ML model with a value of 0.801 followed by DT, PR, LR and SVM. As for the hammer energy ML model, RF again showed 
better results with R-Square value of 0.911 followed by PR, DT, LR and SVM. Soil variability at each location around 
Offshore Southeast Asia dictates the result of obtaining a good ML model. Based on this assessment, Random Forest ML 
model has consistently appeared to be the best ML model to predict the blowcounts and energy required to install offshore 
piles to its design depth thus minimizing potential issues such as pile refusal. 
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1 BACKGROUND 

Machine learning is an application of artificial intel-
ligence (AI) that provides systems the ability to auto-
matically learn and improve from experience without 
being explicitly programmed. Machine learning fo-
cuses on the development of computer programs that 
can access data and use it learn for themselves. 

The process of learning begins with observa-
tions or data, such as examples, direct experience, or 
instruction, to look for patterns in data and make bet-
ter decisions in the future based on the examples that 
we provide. The primary aim is to allow the comput-
ers learn automatically without human intervention 
or assistance and adjust actions accordingly.  

Supervised machine learning algorithms apply 
what has been learned in the past to new data using 
labelled examples to predict future events. Starting 

from the analysis of a known training dataset, the 
learning algorithm produces an inferred function to 
make predictions about the output values. The system 
can provide targets for any new input after sufficient 
training. The learning algorithm can also compare its 
output with the correct, intended output and find er-
rors to modify the model accordingly.  

Recent advances in offshore foundations instal-
lation and operation monitoring, data transfer and 
storage and computational resources have led to an 
acceleration of the use of data-driven methods in ge-
otechnical applications (Stuyts, 2020). While ge-
otechnical engineers have already started to adopt 
these methods, there are still several challenges to 
overcome to allow routine use of machine learning. 
Buckley et al. investigate the application of a Bayes-
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ian Optimization framework to enhance the predic-
tion of Soil Resistance during Driving (SRD). This 
improved prediction model is subsequently utilized 
to forecast pile driveability, providing a more accu-
rate and reliable method for assessing pile installation 
performance. This paper focuses on the application 
of machine learning in predicting pile driveability 
performance using cone penetration testing (CPTU) 
data. 

2 MACHINE LEARNING MODELS 

Five (5) models were considered to train and test the 
given dataset. These models can be found in scikit-
learn, an open-source machine learning library for 
Python.  

2.1 Linear regression (LR) 

Linear regression is a statistical method used for pre-
dictive modelling. It establishes a linear relationship 
between one or more independent variables and a de-
pendent variable. By fitting a line to the observed 
data points, it enables the prediction of the dependent 
variable based on the values of the independent vari-
ables. The model aims to minimize the difference be-
tween the observed and predicted values, making it a 
valuable tool for making forecasts, understanding re-
lationships between variables, and identifying pat-
terns in data. 

2.2 Polynomial regression degree 2 (PR) 

Polynomial regression of degree 2 is a predictive 
model that extends linear regression by allowing for 
a curved relationship between the independent and 
dependent variables. Instead of fitting a straight line, 
it fits a quadratic curve to the data. This model cap-
tures more complex patterns in the data and can pro-
vide a better fit than linear regression when the rela-
tionship between the variables is non-linear. By in-
cluding squared terms of the independent variable(s), 
it allows for both upward and downward curves in the 
prediction. Polynomial regression of degree 2 is a 
simple yet powerful tool for capturing quadratic rela-
tionships in data and making predictions based on 
them. 

2.3 Random forest (RF) 

Random forest is a powerful predictive modeling 
technique that belongs to the ensemble learning fam-
ily. It operates by constructing a multitude of deci-
sion trees during training and outputs the mode of the 
classes (classification) or the mean prediction (re-
gression) of individual trees. Each tree in the forest is 

grown using a subset of the training data and a ran-
dom subset of features. This randomness helps to 
decorrelate the trees, making the model robust to 
overfitting and highly accurate in making predic-
tions. Random forest can handle large datasets with 
high dimensionality and is resistant to outliers and 
noise. It is widely used across various domains for 
tasks like classification, regression, and feature selec-
tion, owing to its simplicity, flexibility, and excellent 
predictive performance. 

2.4 Support vector machine (SVM) 

SVM is a powerful predictive modeling algorithm 
used for both classification and regression tasks. It 
works by finding the optimal hyperplane that best 
separates the data points into different classes or pre-
dicts continuous values. The "support vectors" are the 
data points closest to the hyperplane, which deter-
mine its position and orientation. SVM aims to max-
imize the margin between classes, making it robust to 
outliers and capable of handling high-dimensional 
data effectively. It can also utilize the kernel trick to 
transform the input space into a higher-dimensional 
space, enabling it to capture non-linear relationships 
between variables. SVM is widely used in various 
fields due to its versatility, effectiveness, and ability 
to generalize well to unseen data. 

2.5 Decision tree (DT) 

A decision tree predictive model is a versatile algo-
rithm used for both classification and regression 
tasks. It works by recursively splitting the dataset into 
subsets based on the most significant attribute at each 
node, forming a tree-like structure of decisions. Each 
internal node represents a feature or attribute, each 
branch represents a decision rule, and each leaf node 
represents the outcome or prediction. Decision trees 
are easy to interpret and visualize, making them use-
ful for understanding the relationship between varia-
bles in the data. However, they are prone to overfit-
ting, especially with complex trees, which can be mit-
igated by techniques like pruning. Decision trees are 
widely used in various fields due to their simplicity, 
interpretability, and ability to handle both numerical 
and categorical data. 

3 MACHINE LEARNING MODEL 
DEVELOPMENT PROCESS 

The machine learning (ML) model development 
process is a structured approach to building, training, 
and deploying models that can learn from data and 
make predictions or decisions. Figure 1 depicted the 
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system architecture for machine learning model 
development process. 
Figure 1. System architecture for machine learning model 

development process 

The process of learning begins with observations or 
data, such as examples, direct experience, or instruc-
tion, in order to look for patterns in data and make 
better decisions in the future based on the examples 
that we provide. The primary aim is to allow the com-
puters learn automatically without human interven-
tion or assistance and adjust actions accordingly. 

Supervised machine learning algorithms apply what 
has been learned in the past to new data using labelled 
examples to predict future events. Starting from the 
analysis of a known training dataset, the learning al-
gorithm produces an inferred function to make pre-
dictions about the output values. The system can pro-
vide targets for any new input after sufficient train-
ing. The learning algorithm can also compare its out-
put with the correct, intended output and find errors 
to modify the model accordingly. For this project, 
FIVE (5) models were used to train and test the given 
dataset as described further in section 4.3. 
 
The overall machine learning development process 
was illustrated in Figure 2. Data normalization is a 
common technique employed in data preprocessing 
for machine learning. Its objective is to standardize 
the numeric values across columns in a dataset to a 
common scale, preserving differences in value ranges 
and information content. This transformation adjusts 
the mean of the data to zero and the standard devia-
tion to one.  

Data splitting, specifically the train-test split, is 
a methodology used to assess the efficacy of a ma-
chine learning algorithm. It is applicable to both clas-
sification and regression tasks and is compatible with 
various supervised learning algorithms. This proce-
dure entails partitioning a dataset into two subsets: 
the training dataset, utilized for model fitting, and the 
test dataset, employed for validating model perfor-
mance. A random split ratio of 80% to 20% is 
adopted for training and test data, respectively 
(Toleva, 2021 and Yun Xu et al, 2018). 

Model training involves feeding a machine 
learning algorithm, also known as the learning algo-
rithm, with training data to facilitate learning. The re-
sulting model artifact, referred to as the ML model, 
captures patterns present in the training data that map 
input attributes to the target variable, also known as 
the target attribute. These patterns are utilized to 
make predictions on unseen data instances. 

Model testing and validation are essential pro-
cesses in machine learning aimed at assessing a mod-
el's ability to generalize beyond the training data. To 
achieve this, it is imperative to evaluate the model's 
performance on unseen data. Therefore, model vali-
dation involves estimating the generalization quality 
using data not utilized during training. Evaluation 
metrics such as R-Square, MAPE, RMSE, and MAE 
are commonly employed to gauge model perfor-
mance, as detailed in Table 1. 

 
Figure 2. Machine learning development process 

 
 

Table 1.  Performance measurement metrics. 

Metric Description Range 

R-

Square 

 

 

 

 

 

 

 

The coefficient of deter-
mination quantifies the 
proportion of variability 
in one variable that is ac-
counted for by another 
variable. A high R-Square   
signifies a robust positive 
linear correlation, mean-
ing that as one variable 
increases, the other varia-
ble also tends to in-
crease—a pattern indica-
tive of a well-performing 
model. 

> 0 to 100% 

RMSE Represents the standard 
deviation of the residuals, 
which measure the devia-
tions between observed 
and predicted values. 
RMSE provides insight 
into the dispersion of 
these residuals, indicating 
how widely they are dis-
tributed. 

Depends on 
the range of 

actual values. 
The lower the 

value, the 
better. 

The RMSE 
and MAE 
range has 

been widely 
discussed by 
Chicco et. al 

MAE Quantifies the average 
size of errors in a 
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prediction set, regardless 
of their direction. 

2021 and 
Vujovic et. al. 

2021. 

4 RESULTS AND ANALYSES 

This section provides a comprehensive overview of 
the results and analyses derived from the predictive 
models developed. The analysis is structured into 
three major steps: 1) Data Understanding, 2) Data 

Cleansing, Training & Output, 3) Predictive 

Model Development, and 4) Testing Dataset and 

Model Evaluation. 

4.1 Data Understanding 

Data understanding is a crucial step that guides all 
subsequent processes in machine learning, from pre-
processing to model evaluation, ensuring that the in-
sights derived are reliable and meaningful. plays a vi-
tal role in machine learning for several reasons, as it 
forms the foundation of model development and suc-
cessful outcomes. By understanding the nature of 
your data, including its distribution, outliers, and re-
lationships among features, you can choose the most 
suitable machine learning algorithms. For example, 
linear models may work well for data with linear re-
lationships, while non-linear models like decision 
trees or neural networks might be better for more 
complex data structures.  

A typical CPTU dataset includes four 
parameters: testing penetration depth (z) [m], tip 
resistance (qc) [MPa], sleeve friction (fs) [MPa], and 
pore pressure (u2) [MPa]. For pile driving data, the 
main parameters considered are pile penetration [m], 
pile diameter [m], blowcounts [Blows/0.25m], and 
hammer energy [kJ]. 

For data preparation, both feature extraction and 
feature engineering were performed. Feature extrac-
tion involves converting raw data into a set of fea-
tures usable by machine learning algorithms, while 
feature engineering is the process of creating new 
features or modifying existing ones to enhance the 
performance of these models. During the feature en-
gineering process, a new parameter called SRD was 
introduced. Using a predefined calculation, the qc 
[MPa] values were combined with fs [MPa] and pile 
diameter [m] to generate the SRD [MN] parameter. 

4.1.1 Determination of SRD based on CPTU 
data 

SRD is expressed using the following equation: 
 
SRD = fs . aouter + fs . ainner + qc . atip  (1) 

 
Where fs is the sleeve friction, qc is the end bearing 
and a = area 

4.2 Data Cleansing, Training and Output 

The data cleansing process was the initial step in pre-
paring the dataset for training the predictive models. 
This ensured that the data used was accurate, con-
sistent, and suitable for modelling. The following 
steps consists of data collection, handling missing 
data, outlier detection and treatment, normalisation 
and standardisation, feature selection and data split-
ting.  

4.2.1 Data collection 

The dataset utilized in was sourced from pile instal-
lation databases and soil investigation from sites 
around offshore Southeast Asia that monitored vari-
ous variables such as pile driving blowcounts, ham-
mer energy and CPTU data.  

4.2.2 Handling missing data 

Handling missing data is a common challenge in ma-
chine learning, and there are several techniques to ad-
dress this issue, depending on the type and amount of 
missing data. For this study, a few methods were per-
formed which is deletion, imputation and K-Nearest 
Neighbour (K-NN). Few sets of experiments were 
conducted using these methods and the results were 
compared. Among the methods tested, deletion 
seems to be the best method for handling inconsist-
encies and missing data for CPTU and actual data. 
We found that using K-NN imputation data, the re-
sults dropped due to large scale injection of synthetic 
data. The lack of realism and accuracy is perhaps the 
biggest limitation of synthetic data. Hence, deletion 
of the missing data and using only actual data pro-
vided was the best method to perform the model pre-
diction 

4.2.3 Normalisation and standardisation 

To ensure that all input features contributed equally 
to the model training process, normalization (scaling 
features to a range) and standardization (scaling fea-
tures to have a mean of zero and a standard deviation 
of one) were applied where necessary. CPTU data 
were resampled to a regular grid of 0.25m intervals 
to facilitate data handling. This step was crucial for 
algorithms sensitive to feature scales, such as Support 
Vector Machine (SVM) 

4.2.4 Data splitting 

The cleansed dataset was split into training and vali-
dation subsets. 80% of the data was allocated for 
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training, and 20% was reserved for validation. This 
split ensured that the models could be evaluated on 
unseen data to assess their generalization capabilities. 

4.3 Training the predictive models 

With the data cleansed and prepared, the next step in-
volved training the predictive models. Separate mod-
els were developed for predicting blowcounts and 
hammer energy using the same set of input features. 
The training process consists of the following: 

• Random Forest (RF) 
• Decision Tree (DT) 
• Support Vector Machine (SVM) 
• Linear Regression (LR) 
• Polynomial Regression (PR) 
The training process consisted of the following 

sub-steps: 
• Model Initialization: Each algorithm was in-

itialized with default parameters. Where nec-
essary, hyperparameters were tuned to opti-
mize performance. For example, the number 
of trees in the Random Forest or the kernel 
type in SVM. 

• Model Training: The models were trained us-
ing the training subset of the data. This in-
volved fitting the models to the input features 
to learn the underlying patterns that predict 
the outputs (blowcounts and hammer en-
ergy). 

• Model Tuning and Optimization: Hyperpa-
rameter tuning was conducted using tech-
niques such as Grid Search or Random 
Search in combination with cross-validation 
to find the optimal set of parameters for each 
model.  
For Random Forest, parameters like the num-
ber of trees (n-estimators), maximum depth 
(max_depth), and minimum samples per leaf 
(min_samples_leaf) were optimized.  
For SVM, parameters such as the kernel type 
(kernel), regularization parameter (C), and 
gamma (gamma) were fine-tuned to improve 
model performance. 

• Model Validation: Cross-validation was per-
formed to ensure that the models did not 
overfit to the training data and could gener-
alize well to new, unseen data. Typically, a 
k-fold cross-validation approach was 
adopted. 

• Separate Model Training for blowcounts and 
hammer energy: Although the training pro-
cess was identical for both outputs, models 
were trained separately to account for any 

differences in data distribution and feature 
importance specific to each prediction task. 

4.4 Prediction output 

After training, the models were used to generate pre-
dictions for both blowcounts and hammer energy. 
This step involved evaluating the models' perfor-
mance on the testing dataset and comparing the pre-
dicted values against the actual values. The predic-
tion outputs and evaluation metrics were documented 
as follows: 

• Generating predictions: For each trained 
model, predictions were made on the testing 
dataset. Separate predictions were generated 
for blowcounts and hammer energy. 

• Comparison of predicted and actual values: 
The predicted values from each model were 
compared against the actual values in the 
testing dataset to assess accuracy and relia-
bility. 

• Performance measurement metrics calcula-
tion 

These metrics were calculated for both blow-
counts and hammer energy predictions to evaluate 
model performance comprehensively as shown in Ta-
ble 2 and 3. Figure 3 shows the predicition of blow-
counts and hammer energy from test and train data 
for RF model. 

 
Table 2. Blowcounts prediction performance measurement 

metrics. 

ML Model R-Square RMSE 

RF 0.801 7.811 

DT 0.690 9.743 

SVM 0.188 15.776 

LR 0.270 14.956 

PR 0.355 14.068 

 

Table 3.  Hammer energy prediction performance meas-

urement metrics. 

ML Model R-Square RMSE 

RF 0.911 25.233 

DT 0.878 29.534 

SVM 0.584 54.581 

LR 0.800 37.838 

PR 0.818 36.047 
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Figure 3. Prediction of blowcounts and hammer energy 

from test and train data for RF model 

4.4 Testing dataset  

The predictive models were evaluated based on their 
performance measurement metrics during the train-
ing phase. For blowcounts and hammer energy, the 
Random Forest (RF) model was chosen to generate 
predictions on the testing datasets using the CPTU 
data from site A. By applying the machine learning 
model to the site A datasets, predictions for blow-
counts and hammer energy were generated. Figure 4 
illustrates these predictions for site A.  

 
Figure 4. Prediction of blowcounts and hammer energy for 

site A 

5 DISCUSSIONS 

From the results, Random Forest (RF) and Decision 
Tree (DT) outperform other models like Support 
Vector Machine (SVM), Linear Regression (LR), and 
Polynomial Regression (PR) in terms of RMSE and 
R-Square values due to their inherent characteristics 
and capabilities. Random Forest is an ensemble 
method that combines multiple decision trees, 
reducing overfitting and improving generalization. 
By averaging predictions from many trees, RF 
achieves lower RMSE and higher R² compared to 
individual models like DT, SVM, or LR. Both RF and 
DT can automatically assess the importance of 
features, focusing on the most relevant ones for 
prediction. This leads to more accurate models with 
lower errors (RMSE) and better explanatory power 
(R²). Moreover, RF and DT are less sensitive to 
outliers compared to linear models (LR, PR) and 
SVM, which can be heavily influenced by extreme 
values. This robustness contributes to better 
performance metrics. Unlike SVM, which relies on 
kernel functions and hyperparameters, or linear 

models that assume a specific relationship between 
variables, RF and DT adapt flexibly to the data 
structure, resulting in superior performance 

6 CONCLUSIONS 

In summary, the Random Forest model outperformed 
other machine learning models with strong validation 
results. The R-Square values are 0.801 for the blow-
counts prediction model and 0.911 for the hammer 
energy prediction model. The Root Mean Square Er-
ror (RMSE) for blowcounts and hammer energy pre-
dictions are 7.811 and 25.233, respectively. 

The prediction performance measurement met-
rics can potentially be improved by training with 
more datasets of this trend. 

The application of machine learning has shown 
potential in assessing and predicting pile driveability 
performance, which helps optimize pile installation 
activities and minimize potential issues such as pile 
refusal. 
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