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ABSTRACT: This paper aims to analyse the uplift capacity of circular plate anchors in sand through the use of Polynomial 
Chaos Expansion (PCE) metamodels. In general, a metamodel is a numerical method that surrogates the behavior of an 
original model to predict some selected output of interest. The PCE technique builds an approximation function to emulate 
the original model response, and different numerical features have been employed in this study. The metamodels for circular 
plate anchor capacity are developed by integrating databases from multiple sources, including centrifuge experiments and 
finite element analyses. The data covers anchor capacity in both loose to dense sand at embedments ranging from 1 to 12 
times the anchor width, thus encompassing shallow to deep failure mechanisms of the plate. These datasets are then used to 
train the PCEs to capture the effect of three influencing parameters on anchor capacity. Overall, the developed PCE 
metamodels is able to predict the anchor capacity with good accuracies. The study also focuses on how the PCE performance 
can be continuously enhanced by integrating new, strategically selected finite element simulations into the metamodel. The 
proposed approach aims to demonstrate how the results of existing experimental and/or numerical studies can be used to 
develop reliable estimator tools, which can in turn be employed for a first order estimates of circular plate anchor capacities. 
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1 INTRODUCTION 

There has been a recent global emphasis on 
harnessing energy from offshore sources such as 
wind and wave. Such offshore energy platforms need 
to be moored securely to the seabed using ‘anchors’. 
Plate anchors are considered a promising solution 
due to their high capacity to weight ratio as they rely 
on the bearing resistance of the soil. Therefore, there 
is considerable interest in accurate prediction of their 
capacity in nearshore sandy deposits, where offshore 
renewable energy platforms are likely to be founded. 

Plate anchor capacity can be predicted using Limit 
Equilibrium Methods (LEM) (Giampa et al. 2017), 
limit analysis theorems (upper bound and lower 
bound limit analyses) (Merifield et al. 2006) and 
through finite element (FE) analysis (Roy et al. 
2021b). The performance of these analytical and 
numerical methods is typically validated through 
physical experiments (e.g. Rasulo et al. 2017, Hao et 
al. 2019, Roy et al. 2021a). FE models could provide 
accurate predictions accounting for different soil 
conditions, but complexities arise if sophisticated soil 
models need to be accurately calibrated and 
implemented. For this reason, analytical solutions are 
preferred by end-user for a preliminary design of the 
foundation. However, due to their approximations, 

such analytical solutions do not well capture the 
transition in anchor response from a ‘shallow’ to 
a ‘localised’ failure mechanism as corroborated from 
experimental findings (Hao et al. 2019).  

In light of these uncertainties, this study employs 
the Polynomial Chaos Expansion (PCE) 
metamodelling technique (Sudret, 2008) to predict 
plate anchor capacity in sand. A metamodel is a 
model of a model; it is a mathematical model 
developed to emulate the response of a (physical or 
numerical) model. PCE is a regression-based 
metamodel that builds an approximation function to 
reproduce selected outcomes by randomly varying 
the input variables of the problem. The metamodel is 
calibrated using a database that contains pairs of 
input and output values from the original model. The 
PCE has been successfully applied to investigate the 
behavior of piles driven in sand (Mentani et al. 2023) 
and plate anchors in heterogeneous clay (Mentani et 
al. 2025).  

In this study, the PCE is used to analyse the uplift 
capacity of circular plate anchors in sand, with the 
model trained using integrated databases from 
multiple sources. The aim of the study is to 
demonstrate how the PCE can preserve the essential 
information of the original models used in the 
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calibration process, while also illustrating how 
incorporating new data can effectively enhance its 
performance. 

2 THE APPROACH 

2.1 The database 

The present study investigates the ultimate capacity 
for a circular plate anchor of diameter D, installed 
with an embedment ratio H/D, in homogeneous sand 
having uniform  relative density (RD). Plate anchor 
capacity in sand is normally reported as anchor factor 
Nγ (= qu/σ′vo, where qu is peak anchor capacity and σ′vo 
is the effective overburden stress). The three selected 
input (i.e. D, H/D, and RD) have strong influence on 
Nγ, therefore any dataset chosen for developing a 
PCE metamodel of the plate anchor capacity should 
have a wide parametric variation of these variables. 

The considered database was integrated from 
multiple sources, including data from centrifuge 
experiments (Giampa et al. 2017, Rasulo et al. 2017, 
Hao et al. 2019, Roy et al. 2021a) and from FE 
simulations (Roy et al. 2021a, Kurniadi at al. 2025). 
It includes 128 data, which encompasses plate 
diameters between 0.4m and 5m, relative density 
ranging from 30% to 90%, and embedment ratio 
between 1.05 and 15. The database contains slightly 
more data points for shallow embedment ratios, 
where anchors are most likely to be located. Figure 1 
presents the probability density function (PDF) of the 
problem input (D, H/D, and RD) and output (N) for 
the considered database. The distribution of both 
experimental and FE data are represented by the blue 
and red bars, respectively. 

The centrifuge testing data on circular plates were 
compiled from 40 reported experiments conducted in 
UWA silica sand by Hao et al. (2019) and Roy et al. 
(2021a) involving either steel or aluminium plates. 

For the 21 tests reported by Hao et al. (2019), the H/D 
ranged between 2 and 12 at acceleration levels of 20g 
in dense sand (RD ~ 90%), whereas for the 19 tests in 
Roy et al. (2021a), the H/D varied between 1.8 and 6 
at acceleration levels between 20-100g in loose (RD = 
41% to 51%) and dense sand (RD = 69% to 76%). The 
elevated stress levels in the centrifuge allowed 
investigating anchor capacity for diameters ranging 
from 0.4m to 2m. The testing data from Rasulo et al. 
(2017) and Giampa et al. (2017) involved 21 
medium-scale tests having embedment ratios varying 
from 1.8 to 4, D between 0.15m and 0.40 m in sand 
having RD ranging from 32 to 59%. 

The FE database consists of 67 validated Nγ 
obtained from FE simulations in Roy et al. (2021a) 
and Kurniadi et al. (2025). These simulations were 
conducted using FE software package Abaqus using 
axisymmetric analyses. A bounding surface plasticity 
model named modified SANISAND (Roy et al. 
2021b), capable of handling density and stress 
dependent behaviour in sand, was employed in these 
analyses. The analyses were conducted in sand 
considering D = 0.4 to 5m, H/D = 1.05 to 15, and RD 
= 30% to 85%.  

2.2 Polynomial Chaos Expansion 
metamodelling 

A metamodel is a mathematical function that 
approximates the correlation between the input and 
output variables of a given model. Metamodelling 
then refers to the methodology implemented for 
building the approximation function.  

In this study, the Polynomial Chaos Expansion 
(PCE) metamodelling technique has been used. It 
approximates the original model function, y = f(x), 
through a spectral series representation, where the 
orthogonal polynomials, k(x), which are expressed 
into the n input variables of the problem (x = {x1, …, 

 

 
Figure 1 – Distributions and best-fit PDF of the problem input and output: (a) sand relative density; (b) embedment ratio; 

(c) plate diameter; and (d) anchor factor. 
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xn}T), are weighted by coefficients, k, as: 
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where g(x) is the PCE function that generates the 
approximated model response vector, y*; and K 
represents the number of terms in the equation. 

The generation of the PCE requires the 
identification of the type of polynomials; the 
definition of a truncation rule to set the size of the 
equation; and the adoption of a regression method for 
computing the coefficients. 

2.2.1 PCE mathematical features 

The selection of the family of polynomials is linked 
to the distribution type of the sampled input (Figure 
2). The PCE works in the Hilbert space for what the 
type of polynomial basis associated to standard 
distribution is known, as detailed by Sudret (2008). 

Two different methods were considered to set the 
size of the equation: the standard and the hyperbolic 
truncation scheme. The first considers all the 
multivariate polynomials which total degree is 
smaller or equal to p, therefore the total number of 
terms is givens by: 
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This value is limited by the size, N, of the 

available training database for allowing the 
computation of the coefficients. A rule of thumb of 
N = 2÷3K could be considered for the problem to be 
well-posed. 

The multivariate polynomials have generally 
smaller coefficients compared to the univariate basis 
and the hyperbolic scheme could be used with the aim 
of removing some terms in the expansion. 
Specifically, it uses a hyperbolic function to 
gradually remove the coefficients of polynomials 
with higher-order interactions. A power function 
governed by the parameter h varied within the range 
[0, 1] is used to truncate the terms, as detailed by 
Blatman and Sudret (2010). This approach ensures 
the expansion remains computationally feasible and 
it was demonstrated that sufficient accuracy can be 
reached for h ≥ 0.4, while for h = 1 the equation 
reduces to the standard truncation scheme.  

The computation of the unknown coefficients was 
carried out following two methods. First, a least 
square minimisation (LSM) was implemented as: 
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where the coefficients minimise the quadratic error 
between the original model evaluations, y(i), and the 
PCE functional approximation.  

As alternative method, the least angle regression 
(LAR) approach was also implemented. The method 
aims at considering only the polynomials that have 
the largest influence on the PCE performance, by 
discarding the non-significant terms. The method is 
based on an iterative procedure. A PCE of zero-order 
is first generated and the accuracy score Q2 is 
computed as: 
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The PCE equation is then enriched by increasing 

the order of the polynomials, eventually retaining 
those terms which significantly increase Q2, based on 
a cut-off value, cut. The operation continues until c = 
min(K, N-1) coefficients have been entered in the 
equation. This procedure allows to exploit larger 
degrees of multivariate polynomials, if required, 
without recurring to a priori removal of the terms 
with only the hyperbolic scheme implemented. A 
detailed description of the procedure can be found in 
Blatman and Sudret (2010). 

2.2.2 PCE accuracy measure 

The metamodel performance was assessed through 
the accuracy score Q2 using the Leave-One-Out 
(LOO) cross validation method. In this method, the 
PCE is firstly generated with a training sample of size 
N-1. The ith discarded input combination, x(i), is then 
used to generate the PCE prediction which is 
compared to the original model evaluation, y(i). The 
procedure is iterated over the sample of size N for 
computing Q2. 

3 TRAINING METAMODELS 

3.1 PCE types 

The case study of the plate anchor described in 
Section 2 consists of n = 3 input variables and N as 
problem output. The training database for the PCE 
development consisted of N = 128 input/output pairs.  

The statistics of the three input variables were 
analysed to determine the PDF that best-fits each 
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distribution, as shown in Figure 1 with black curves. 
This allowed the association of each input variable 
with the relevant polynomial family.  

The relative density was rather homogeneous over 
its range and a uniform distribution was adopted to fit 
the data (Figure 1a), with Legendre polynomial basis 
used for this variable. The same choice was made for 
the polynomials associated with the plate diameter D, 
which was described by a log-uniform PDF 
(Figure 1c). An inverse Gaussian distribution was 
used to fit the statistics of the embedment ratio 
(Figure 1b), with parameters  and  representing the 
mean and shape parameter of the PDF, whose general 
form is: 
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As detailed in Figure 1b, values of  = 0.508 and 

 = 8.326 were calibrated to fit the distribution, and 
the polynomials of the Hermite family were 
associated to this variable. 

The other mathematical features of the PCE have 
been opportunely implemented and combined for 
considering different metamodelling strategies. Four 
PCE types were employed in the study, as reported in 
Table 1, combining the two truncation schemes and 
regression methods. When the hyperbolic scheme 
was implemented, the parameter h was iteratively 
adjusted from 0.2 to 0.9 in steps of 0.1, while the cut-
off for the LAR was set to cut = 1*10-4. 

 
Table 1. PCE types. 

PCE name Truncation 

scheme 

Regression 

method 

PCE1 standard LSM 

PCE2 hyperbolic LSM 

PCE3 standard LAR 

PCE4 hyperbolic LAR 

3.2 Results  

Figure 2 shows the accuracy scores of the four 
developed PCEs, calculated using the LOO cross-
validation method, and plotted as function of the total 
degree, p, of the polynomials implemented in Eq. 1.  

The performance of PCE1 rapidly increases up to 
p = 3, with a reached peak of Q2 = 0.961, before 
sharply declining for higher degrees. This was 
expected as the LSM regression method with the 
standard truncation and limited training size did not 
support reliable solutions for larger p.  

PCE3 also using LSM, but with the hyperbolic 
truncation scheme, showed a similar trend. The latter 

allowed for the exploitation of high-order 
polùynomials, however an accuracy drop was 
observed when p > 9, with a best performance 
computed as Q2 = 0.962, at p = 5 and h = 0.7. 

PCE3 and PCE4 featured the LAR approach for the 
computation of the coefficicents which supported  
higher order polynomials, as highlighted in 
Figure 2b. The accuracy of PCE3 stabilised after 
peaking at Q2 = 0.954 for p = 3. Conversely, PCE4 
constantly improved its accuracy when high-order 
polynomials were implemented, reaching the highest 
accuracy Q2 = 0.961 with p = 21 and h = 0.4.  

The Nγ predicted by the best-performing 
metamodels were compared to the  database 
observations (Figure 3a, 3b, 3c, and 3d). The four 
PCE showed similar and good performances as 
evidenced by the high and rather unvaried Q2. On a 
side, the measures reflect the statistics of the database 
used to calibrate the metamodels, with relatively high 
coefficient of variation and variance of the output 
(i.e. COV(N) = 0.749, and Var(N) = 73.05) if 
compared to the reduced number of data, noting the 
second term enters in the accuracy measure of Eq. 4.  

 The dashed lines in Figure 3 represents bounds of 
20% of the prediction errors, while the red dots 
highlight the estimations with errors larger than 50%. 
The highest residuals were observed at low anchor 
capacity (i.e. N < 10), and mainly for anchors with 
small embedment ratio (H/D < 2). PCE3 –which was 
the worst-performing metamodel – experienced the 
larger number of bad predictions, with nine cases 
computing errors > 50%, but this reduced to two 
cases for PCE4 (six for PCE1, and seven for PCE2). 
However, the average of all the prediction errors was 
consistently about 1% for the four PCEs, with a 
maximum deviation of 23.3% calculated for PCE3 
reducing to 17.6% for PCE4. 

 

 
Figure 2 – Accuracy of the PCE metamodels as function of 

the maximum degree of the polynomials. 
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Figure 3 – PCE metamodels predictions Vs measurements of the original and enhanced databases for: (a) PCE1; (b) PCE2; 

(c) PCE3; (d) PCE4; (e) PCE1
*;(f) PCE2

*;(g) PCE3
*;(h) PCE4

* 

 

4 IMPROVING PCE PERFORMANCES 

The accuracies computed for each PCE showed that 
the developed metamodels can be used as quick tools 
to estimate plate anchor capacity. However, some high 
residuals were observed with errors larger than 50%. 
A reasonable strategy for improving the PCE accuracy 
could be to separate the available data into different 
clusters (e.g. shallow and deep anchors). However, due 
to the limited amount of available data, this approach 
did not result in a clear improvement in computed 
accuracies.  

Nevertheless, as demonstrated in the following, 
integrating new, strategically selected data into the 
training database proved beneficial in enhancing PCE 
accuracy. The new training data involved four 
additional FE simulations using the FE model 
validated by Roy et al. (2021b), as summarised in 
Table 2. The input variables were opportunely selected 
to both fill the gap of the database (D = 1.5m, and  
 
Table 2. Additional FE simulations: inputs and results. 

D H/D RD N 

2 1.4 77.5 4.28 

1.5 1.8 40 3.74 

4 2.5 80 7.06 

4.5 1.8 35 4.23 

D = 4m), and to aid the PCE performance (e.g. 
H/D < 2). 

New metamodels, named PCEi
*, were developed 

considering the enlarged database and the results of the 
best-performing PCEi

* were shown in Figure 3e, 3f, 
3g, and 3h. In general, their accuracies were slightly 
improved with computed Q2 ranging from 0.964 for 
PCE3

*, to 0.971 for PCE4
* (versus Q2 = 0.954 for PCE3 

and Q2 = 0.961 for PCE4). The case of PCE3 was 
specifically analysed in Table 3. The five worst 
predictions of PCE3 were reported, showing errors 
larger than 60% and up to 111%. The same 
metamodel, developed with the enlarged database (i.e. 
PCE3

*), was able to reduce the maximum error of the 
predictions to 39.7%, with three over five cases 
reduced to errors lower than 20%. It is worth noticing 
that the worst prediction of PCE3 was reduced to an 
almost nill error in PCE3

*, as this case was specifically 
addressed by the first new run reported in Table 2. 
 
Table 3. Five worst predictions of PCE3 with original 

(N = 128) and enlarged (N* = 132) database. 

Input and output Predictions and errors 

RD 

[%] 
H/D 

[-] 
D 

[m] 
N 
[-] 

PCE3 

[-] 
error 
[%] 

PCE3
*
 

[-] 
error 
[%] 

70 1.05 2 3.01 -0.33 -111 3.00 -0.4 
70 1.05 1 3.09 0.104 -97 3.39 9.8 

48.7 3.9 0.6 6.04 10.29 70.4 7.83 29.6 
47.4 1.9 0.6 2.39 3.95 65.1 3.34 39.7 
85 1.05 2 3.17 1.15 -64 2.65 -16.4 
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The improved PCE* still computed prediction 
errors exceeding 50%, but this occured in only two 
cases. This was further reduced to a single case for 
PCE1

* and PCE2
* (Figure 3). However, a worse trend 

was observed for PCE4
*, where the number of poor 

predictions increased to four cases, with a maximum 
error of 60.3%. Despite this, PCE4

* still achieved the 
highest global accuracy score, with Q2 = 0.971.  

5 CONCLUSION  

The paper investigated the use of PCE metamodelling 
technique for analysing uplift capacity of circular plate 
anchors in sand. A database from multiple sources 
(centrifuge and FE results) was used to train four 
different PCE, which were developed by combining 
two truncation schemes and two regression methods.  

The study showed that PCE can replicate the 
original model responses with good accuracy, 
providing reliable estimations of anchor capacity. 
Accuracy scores ranging from 0.954 to 0.962 were 
computed for the four developed PCE. However, nine 
predictions exceeded 50% errors in the worst case (i.e. 
PCE3), and a new set of FE run was carried out to 
increase the training database and improve the 
metamodel performance. With just four newly-added 
data, all PCE showed consistent global accuracy 
improvements, with accuracy scores now ranging 
from 0.964 to 0.971. In particular, PCE3

* reduced its 
worst predictions to only two cases.  

A key conclusion is that a PCE metamodel – 
opportunely trained with numerical and/or 
experimental data – can provide quick and reliable 
estimates of circular anchor uplift capacity in sand, 
without the need for costly experimental investigations 
or time-consuming FE run. The PCE metamodel could 
be particularly useful in the preliminary design stage, 
where limited information is available and rapid 
decisions are required. The number of bad predictions 
(i.e., errors larger than 50%) indicates that the 
developed metamodel is not yet suitable for improving 
current design practice. Additionally, an ideal size of 
the database required to train suitable PCE 
metamodels cannot be determined a priori, as it 
depends on the non-linearity of the predicted 
outcomes. However, the PCE accuracy can be further 
enhanced by incorporating new data made available 
from future studies, ensuring continuous improvement 
and adaptability. 
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